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Abstract—The use of myoelectric signals to control myoelec-
tric prosthetic hands has been the object of numerous studies.
Recently, machine learning techniques have been proposed as
suitable methods to construct a classifier that sorts myoelectric
signals. However, machine learning needs a lot of learning data
from the user in order to generate an accurately functioning
classifier, thus placing a considerable burden on the user. In
this study, we discuss the use of myoelectric signals from non-
users to build the classifiers and we introduce a relearning
process to the construction protocol. We consider feedforward
neural networks and long short-term memory to construct the
classifiers using non-users’ and user’s myoelectric signals. In
order to show the validity of our method, we discuss the
results of experiments performed to test the classification of
the myoelectric signals for accuracy rate, precision rate, and
recall rate.

Index Terms—Long Short-Term Memory, Recurrent Neural
Networks, Feedforward Neural Networks, Support Vector Ma-
chine, Myoelectric Signals, Myoelectric Prosthetic Hand.

I. INTRODUCTION

M any studies on myoelectric prosthetic hands for people
who lost their movement function due to an accident

or illness have been published in recent years [1]-[3]. A my-
oelectric prosthetic hand refers to an electric artificial hand
that controls movements by estimating the user’s intention
from the weak electrical signals (hereinafter the myoelectric
signals) generated by the activity of the remaining muscles.
Although it is necessary to practice in order to move the
myoelectric prosthetic hand according to the user’s intention,
its use can improve their quality of life. Therefore, we think
that it is worth using the myoelectric prosthetic hand. In
recent studies, machine learning has been proposed as a
method to construct the classifier that sorts the myoelectric
signals [3]-[5]. However, myoelectric signals have individual
differences, noises are loud, and slight changes happen even
in the same repeated action of the user. Furthermore, a lot
of learning data from the user are needed to construct a high
accuracy classifier system. So, we think that the traditional
method places a large burden on the user for constructing the
classifier. Therefore, we considered the method constructing
classifier using artificial neural networks (ANNs) as one of
the methods reducing user’s burden[6].
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In this paper, in order to reduce this burden, we proceed
with the discussion of our considered method further through
outcomes of additional experiments and introduction of prior
learning and relearning process. We consider methods that
construct the classifiers using both user’s and non-users’
myoelectric signals. By adding non-users’ myoelectric sig-
nals, we think that the classifier can be constructed using
a smaller number of user’s learning data than those the
traditional method needs, because non-users’ myoelectric
signals provide a sufficient number of learning data. Fur-
thermore, we think that our method increases the generality
of the classifier by compensating for the user’s differences
of myoelectric signals. This is because the inclusion of non-
users’ myoelectric signals widens the input space of learning
data compared with the method using only user’s myoelectric
signals.

The methods we considered apply feedforward neural
networks (FFNNs) and long short-term memory (LSTM) in
artificial neural networks. We think that time series data of
myoelectric signals can be effective to construct the classifier,
so the use of LSTM, which handles long time series data
well, is expected to improve the classification performance.
The use of ANNs ensures the strongest point of our method,
i.e., that the constructed classifiers can be relearned using
new learning data and be adjusted for the user through
the relearned process. For comparison, we also construct
a classifier which uses support vector machine (SVM) in
additional to the above two methods using ANNs.

We performed some experiments in order to show the
validity of the methods we took into consideration. We
evaluate the constructed classifiers in point of accuracy rate,
precision rate and recall rate, and discuss our findings.

II. MYOELECTRIC SIGNALS AND MEASUREMENT

A. Myoelectric Signals
Myoelectric signals are generated when the brain transmits

command signals to muscle fibers. Generally, the inside of a
cell membrane of muscle fibers has an electrical potential of
-80 mV compared with the outside. This electrical potential
reverses as a result of depolarization that occurs by receiving
the command signals from the brain. The reversal electrical
potential, called action potential, propagates along muscle
fibers interactively. This action potential is called electromyo-
gram (EMG) [7].

There are two ways to measure the myoelectric signal.
One is the needle EMG method. This method is applied
to clinical uses [7] because it enables to recognize changes
in the myoelectric signal with high spatial resolution. How-
ever, the needle EMG, as an invasive procedure, hurts the
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myoelectric prosthetic user physically. The other option is
the surface EMG method, which measures the myoelectric
signals through electrodes placed on the skin surface. This
method has low invasiveness. Moreover, attachment and
detachment of the electrode are easy. The frequency range
of surface EMG is about 5∼500 Hz [8].

B. Measurement of Myoelectric Signals
We applied the surface EMG method in consideration of

its limited physical burden. 10 healthy adult participants
(9 males, 1 female, aged 21 and 22 years) were asked to
perform six hand motions (relaxation, grasping, opening,
palmer flexion, dorsal flexion and ulnar flexion) as shown
in Fig. 1. Then, we obtained the myoelectric signals from
four measurement positions (Fig. 2), which were flexor
digitorum superficialis muscle (FDS), flexor carpi ulnaris
muscle (FCU), extensor carpi radialis longus muscle (ECRL)
and extensor digitorum communis muscle (EDC). Partici-
pants began performing a hand motion at the same time as
measurement was signaled to start, and we measured the
myoelectric signals by bipolar measurement, which uses two
disposable electrodes arranged at each measurement position.
In addition, body earth is arranged on an elbow that is not
affected by electrical potential of measurement position. This
method enables noises to decrease, since there is mutual
noise cancellation between the two electrodes. The distance
between the two electrodes of each pair was 2 cm. The
myoelectric signals were measured at a sampling frequency
of 6000 Hz for 500 ms. Hence, myoelectric signals data with
time-series length of 3000 were obtained. In consideration
of the frequency range of the myoelectric signals and of the
utility frequency range, myoelectric signals with frequency
range of less than 5 Hz, 59.5∼60.5 Hz, and more than 1000
Hz were eliminated by digital filtering through MATLAB
after obtaining the data. Participants were asked to reduce
the electric impedance of the skin to less than 5 kΩ by skin
treatment before the measurement. Figure 3 and TABLE I
show the measurement system and measurement conditions,
respectively.

Fig. 1. Classification of six hand motions

III. CLASSIFIER AND THE LEARNING METHOD

A. Feedforward Neural Networks
FFNNs are composed of layers, each having some neurons.

Each neuron connects to the neurons of the following layer. A

Fig. 2. Measurement positions

The distance between

two electrodes : 2cm
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Head

amplifier
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A/D 
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Body earth

Fig. 3. Measurement system

TABLE I
MEASUREMENT CONDITIONS

Head amplifier BA-U001

Biological amplifier
BA-1008
Electrodes ： Disposable electrode
Gain ： 74 dB

A/D conversion board ADA16-32/2(CB)F

Sampling frequency 6000 Hz

Sampling time 500 ms

Filter
High-pass filter : 5 Hz
Low-pass filter ： 1000 Hz
Notch filter ： 50.5∼60.5 Hz

Electric impedance of the skin less than 5 kΩ

Participants
Four 21-year-old males
Five 22-year-old males
One 22-year-old female

weighted signal moves in one direction from the input layer
to the output layer. FFNNs having three layers are shown in
Fig. 4.

The equations for the outputs of each hidden layer neuron
and output layer neuron are, respectively, given as

zj = f

(
n∑

i=0

wjixi

)
(1)

yk = f

(
m∑
j=0

vkjzj

)
(2)

where xi is the input variable from the i-th neuron in the
input layer, zj is the output variable of the j-th neuron in
the hidden layer, yk is the output variable of the k-th neuron
in the output layer, wji is the weight between the i-th neuron
in the input layer and j-th neuron in the hidden layer, vkj is
the weight between the j-th neuron in the hidden layer and
the k-th neuron in the output layer, n and m are constants
corresponding to the numbers of input layer neurons and
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Fig. 4. Structure of FFNNs

hidden layer neurons, respectively. Moreover, f(u) is the
activation function given by the following equation:

f(u) =
1

1 + e−u
(3)

E =
∑

k (dk − yk)
2 (4)

Backpropagation (BP) is applied as a learning algorithm.
BP adjusts the weights of the network so that the error func-
tion E (Eq. (4)) is minimized. The error function indicates
the error between the calculated output and the supervised
signal. All parameters are updated according to the BP
algorithm.

The classifier constructed by FFNNs consisted of three
layers: an input layer, a hidden layer and an output layer.
The input, hidden, output layers had 4, 50, 6 neurons,
respectively.

B. Long Short-Term Memory

LSTM is a kind of recurrent neural network (RNN)
architecture that is able to handle long time-series data. It
was proposed by S. Hochreiter and J. Schmidhuber [9] and
has feedback connections. Unlike FFNNs, the input values to
the hidden layer are not only weighted signals from the input
layer, but also weighted signals from the previous hidden
layer (Fig. 5). This structure allows the past input to influence
the output and enables LSTM to capture the feature of
time-series variations. Moreover, unlike RNNs, LSTM has a
structure that replaces each neuron in a recurrent hidden layer
with an LSTM block. Each LSTM block contains a memory
cell, an input gate, a forget cell and an output gate (Fig. 6).
The memory cell plays the role of storing the internal state.
Simple RNNs are not able to handle long time-series data
because of the vanishing gradient problem. However, LSTM
is able to do so if each gate switches conveniently.

The equation for the internal state of a memory cell is
given by Eq. (5). In addition, the equation for the output of an
input gate, a forget gate and an output gate are, respectively,
given by Eqs. (6) - (8):

Fig. 5. Structure of LSTM

Fig. 6. LSTM block in the recurrent hidden layer

sτj = gF,τ
j sτ−1

j + gI,τj f

(
n∑

i=0

win
ji x

τ
i +

m∑
j′=0

wjj′z
τ−1
j′

)
(5)

gI,τj = f

(
n∑

i=0

wI,in
ji xτ

i +
m∑

j′=0

wI
jj′z

τ−1
j′ + wI

j s
τ−1
j

)
(6)

gF,τ
j = f

(
n∑

i=0

wF,in
ji xτ

i +
m∑

j′=0

wF
jj′z

τ−1
j′ + wF

j s
τ−1
j

)
(7)

gO,τ
j = f

(
n∑

i=0

wO,in
ji xτ

i +
m∑

j′=0

wO
jj′z

τ−1
j′ + wO

j s
τ
j

)
(8)

where xτ
i is the input variable from the i-th neuron at time

step τ in the input layer, zτj is the output variable of the
j-th LSTM block at time step τ , sτj is the internal state
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of the j-th LSTM block at time step τ , gI,τj is the output
variable of the input gate of the j-th LSTM block at time
step τ , gF,τ

j is the output variable of the forget gate of the
j-th LSTM block at time step τ , gO,τ

j is the output variable
of the output gate of the j-th LSTM block at time step τ ,
win

ji is the weight between the i-th neuron in the input layer
and the j-th LSTM block, wjj′ is the weight between the
j-th LSTM block in the hidden layer at time step (τ − 1)
and the j-th LSTM block at time step τ , wI,in

ji is the weight
between the i-th neuron in the input layer and input gate of
the j-th LSTM block, wI

jj′ is the weight between the j-th
LSTM block at time step (τ − 1) and the input gate of the
j-th LSTM block at time step (τ − 1), wF,in

ji is the weight
between the i-th neuron in the input layer and the forget
gate of the j-th LSTM block, wF

jj′ is the weight between
the j-th LSTM block at time step (τ − 1) and the forget
gate of the j-th LSTM block at time step (τ − 1), wO,in

ji is
the weight between the i-th neuron in the input layer and
output gate of j-th LSTM block, wO

jj′ is the weight between
the j-th LSTM block at time step (τ − 1) and the output
gate of the j-th LSTM block at time step (τ − 1), wI

j is the
weight of the peephole connection of the input gate, wF

j is
the weight of the peephole connection of the forget gate, wO

j

is the weight of the peephole connection of the output gate,
n and m are constants that correspond to the numbers of
input layer neurons and hidden layer neurons, respectively.
The output of LSTM block, the output of neuron in hidden
layer, is given by the following equation.

zτj = gO,τ
j f(sτj ) (9)

The equation for the outputs of each output layer neuron
is given as:

yτk = f

(
m∑
j=0

vkjz
τ
j

)
(10)

where yτk is the output variable of the k-th neuron at time
step τ in the output layer. In this study, the error function E
is defined as Eq. (11)

Backpropagation through time (BPTT) [10][11] is applied
as the learning algorithm for LSTM. BPTT adjusts the
weights of the network so that the error function E is
minimized. The error function indicates the error between the
calculated output and the supervised signal. All parameters
are updated according to the BPTT algorithm.

E =
1

TN

T∑
τ=0

N∑
k=0

(dτk − yτk)
2 (11)

where dτk is the supervised signal of the k-th neuron at time
step τ in the output layer, N is a constant that corresponds
to the number of output layer neurons and T is the constant
that indicates the length of a time-series input.

The classifier constructed by LSTM consisted of three
layers: an input layer, a hidden layer and an output layer.
The input, hidden, output layers had 4, 50, 6 neurons,
respectively.

C. Support Vector Machine
SVM is a learning model for pattern recognition. SVM

is applied as a solution of a binary classification problem.

Support vectors are feature vectors chosen from the learning
data to define a decision function. The margin is the distance
between the support vectors and the classification boundary
that classifies into two classes. SVM establishes a classifi-
cation boundary so that the margin is maximized (Fig. 7).

Support vector

margin

Feature vector of label A

Feature vector of label B

Support vector

=0

Fig. 7. Classification boundary and margin in SVM

The equation for the decision function of a linear SVM is
defined as

f(x) = w · x+ b (12)

where x is the input vector, w is the normal vector of the
classification boundary and b is an intercept of the decision
function. w and b are parameters to shape the decision func-
tion. These parameters are found through the Lagrange mul-
tipliers method. However, there is a limit to what linear SVM
classifies as linearly inseparable input. Therefore, nonlinear
SVM with the Kernel function is introduced. The kernel
function makes it possible to recognize linearly inseparable
input by converting a linearly inseparable input distribution
into a linearly separable input distribution. The Radial Basis
Function (Eq. (13)) is applied as the Kernel function in this
study. The decision function of nonlinear SVM is defined as
Eq. (14). The dual variable α = (α1, . . . , αn) is found by
the optimization problem, which is called dual problem (Eq.
(15)), to define the decision function.

K(xi,xj) = exp(−γ||xi − xj ||2) (13)

f(x) =
∑
i∈[n]

αiyiK(xi, x) + b (14)

max
α

−1

2

∑
i,j∈[n]

αiαjyiyjK(xi, xj) +
∑
i∈[n]

αi

subject to
∑
i∈[n]

αiyi = 0

0 ≤ αi ≤ C, i ∈ [n]

(15)

where xi is the input vector of the i-th learning data, yi is a
label of the i-th learning data which consists of yi ∈ {−1, 1},
C is the regularization parameter to permit misclassification,
γ is the parameter to decide the gradient of Kernel and n
is a constant that represents the number of learning data. In
this study, C and γ were empirically determined.

The multi-class classification is made by combining some
two-class classifiers. This study applied One-Versus-One as
a method of multi-class classification. For six-class classifi-
cation, 6C2 (= 15) of two-class classifiers were prepared.
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IV. EXPERIMENTS TO CLASSIFY MYOELECTRIC SIGNALS

A. Making of Input-Output Data

The amplitude of the myoelectric signal changes depend-
ing on the force of the squeezed muscle. Maximal voluntary
contraction (MVC) is the muscle strength which a human
maximizes by contracting one’s muscle intendedly and vol-
untarily. The amplitude and wave density of the myoelectric
signals increase with an increase of the muscle load. There
is a linear relationship between the muscle activity and the
muscle load within 10∼90% of MVC [7]. In this study, time-
integration was applied as feature variables.

The integration value was applied as input data of FFNNs
and SVM. To derive this value, we summed up the absolute
values of each myoelectric signal data obtained from four
measurement positions within 500 ms (3000 points).

The equation for the input value xk
i obtained from a

measurement position i (i=1,. . . ,4) (Fig. 2) in a hand motion
k (k=a,. . . ,f) (Fig. 1) was given as:

xk
i =

3000∑
n=1

∣∣Dataki (n)
∣∣ (16)

where Dataki (n) is the value of the n-th point from a
measurement position i in a hand motion k.

When deriving the input data for LSTM, firstly, we divided
the myoelectric signals of 500 ms (3000 points) into 20 parts;
each part contained the myoelectric signals of 25 ms (150
points). Then, each part was time-integrated within 25 ms
(150 points).

The equation for the input value xk
i (τ) of input i and time

step τ (τ = 0, . . . , 19) in a hand motion k was given as:

xk
i (τ) =

150∑
n=1

∣∣Dataki (n+ 150 · τ)
∣∣ (17)

TABLE II shows each supervised signal, for FFNNs and
LSTM, of six neurons in the output layer to each hand
motion.

TABLE II
SUPERVISED SIGNALS OF FFNNS AND LSTM

Output of k-th neuron in the output layer
Hand Motion 1 2 3 4 5 6

(a) Relaxation 0 0 0 0 0 1

(b) Grasping 0 0 0 0 1 0

(c) Opening 0 0 0 1 0 0

(d) Palmar Flexion 0 0 1 0 0 0

(e) Dorsal Flexion 0 1 0 0 0 0

(f) Ulnar Flexion 1 0 0 0 0 0

In this study, we obtained input-output data from 10
participants. We obtained 50 input-output data for each hand
motion from each participant, so that the number of each
participant’s input-output data was 300. Therefore, 3000
input-output data were obtained from 10 participants.

B. Experiment I

In Experiment I, we organized participants’ input-output
data into five data sets. Using four data sets as learning
data, we constructed classifiers based on FFNNs, LSTM and

SVM. Then, we evaluated each constructed classifier using
the remaining data set as evaluation data. The processing
flow to build five data sets was as follows:

[Step 1] Extract 10 input-output data for each hand motion
from each participant’s 50 input-output data to
make data set 1, which stores a total of 600 input-
output data.

[Step 2] Extract 10 input-output data, which is not used in
[Step 1], for each hand motion from each partici-
pant’s remaining 40 input-output data to make data
set 2, which stores a total of 600 input-output data.

[Step3 ] Repeat [Step 2] to make data set 3∼5.
Figure 8 shows the method to build data set 1.

Fig. 8. Method to build data set 1

5-fold-validation was applied as an evaluation method. In
FFNNs and LSTM for Experiment I, the epoch was 3000,
and the learning rate was 0.005. Also, the learning rate of
LSTM was changed automatically by applying the Adam
algorithm [12]. The parameters of SVM were C=10 and
γ=10.

TABLE III
RESULTS OF EXPERIMENT I

Evaluation Items Accuracy[%] Precision[%] Recall[%]

FFNNs 89.6 89.8 89.8

LSTM 93.8 93.8 93.8

SVM 91.1 91.2 91.2

TABLE III shows the average results of five folds for
Experiment I. in terms of accuracy rate, precision rate
and recall rate. The corresponding values were more than
89% for all three classifiers: FFNNs, LSTM and SVM. In
particular, the classifier obtained using LSTM achieved high
discrimination performance. We considered that the LSTM
model could acquire time-series variations of the myoelectric
signals as a feature variable from input data by handling the
locally divided myoelectric signals data as time-series data.

C. Experiment II

Experiment II was performed to discuss the generality of
the classifier constructed using non-users’ input-output data.
In this experiment, we assumed 9 participants over 10 to be
non-users, with the remaining one participant considered as
a user. We used 9 non-users’ input-output data as learning
data to construct each classifier. Then, we evaluated each
constructed classifier using the remaining one user’s input-
output data as evaluation data. In FFNNs and LSTM for
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TABLE IV
RESULTS OF EXPERIMENT II

Acuracy rate[%]

Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Evaluation Data A B C D E F G H I J

FFNNs 84.7 85.0 79.7 86.3 88.3 61.0 83.7 85.0 64.0 91.3

LSTM 76.7 82.3 76.0 86.3 89.7 82.7 76.3 86.0 69.3 83.3

SVM 87.3 83.3 85.7 86.0 87.7 71.3 79.3 89.0 68.0 77.7

Precision rate[%]

Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Evaluation Data A B C D E F G H I J

FFNNs 86.0 86.0 87.0 90.0 89.0 72.0 90.0 89.0 53.0 92.0

LSTM 72.0 84.0 86.0 88.0 90.0 85.0 86.0 89.0 75.0 84.0

SVM 90.0 83.0 88.0 90.0 90.0 78.0 90.0 92.0 57.0 76.0

Recall rate[%]

Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Evaluation Data A B C D E F G H I J

FFNNs 85.0 85.0 80.0 86.0 88.0 61.0 84.0 85.0 64.0 91.0

LSTM 77.0 82.0 76.0 86.0 90.0 83.0 76.0 86.0 69.0 83.0

SVM 87.0 83.0 86.0 86.0 88.0 71.0 79.0 89.0 68.0 78.0

Experiment II, the epoch was 3000, and the learning rate
was 0.005. Also, the learning rate of LSTM was changed
automatically by applying the Adam algorithm [12]. The
parameters of SVM were C=1 and γ=1. The experiment was
performed ten times for 10 participants.

TABLE IV shows the average results in Experiment II.
The majority of results for accuracy rate, precision rate and
recall rate were more than 70%. However, in the case of
evaluation data F, the accuracy rate and recall rate were
60% units in FFNNs. In the case of evaluation data I, the
accuracy rate and recall rate were also 60% units in all
three classifiers. In addition, in the case of evaluation data
I, the precision rate was 50% units in FFNNs and SVM.
According to the results of Experiment II, we found that
it is possible to construct a classifier having discrimination
performance by only using non-users’ data. It is assumed
that differences between participant F’s and I’s generating
factors of myoelectric signals and others’ ones such as
muscle strength, caused low discrimination performance. As
a consequence, vast amounts of non-users’ input-output data
are needed for constructing classifiers having high generality.

D. Experiment III

Experiment III was performed to assess the method where
a classifier built using non-users’data undergoes a relearning
process using user’s data.

The experimental protocol consists of the following steps:
firstly, we constructed classifiers with FFNNs and LSTM
using 9 participants’ input-output data (2700 input-output
data), assuming them to be non-users’ data. This step is
called prior learning. Secondly, we made five data sets,
with each data set comprising 60 input-output data from the
remaining one participant’s 300 input-output data, assuming
these to be user’s data. Thirdly, the classifier relearned using
four data sets. This step is called relearning process. Lastly,
we evaluated the constructed classifier using the remaining

data set. By adopting this protocol, the classifier constructed
through the relearning process is updated to fit the user and
is expected to get a higher discrimination performance. 5-
fold validation was applied as an evaluation method. Figure
9 shows the method for building a data set from the user.
In FFNNs and LSTM, the epochs in prior learning and
relearning were 3000 respectively, and the learning rate
was 0.005. Also, the learning rate of LSTM was changed
automatically by applying the Adam algorithm [12]. SVM is
not able to relearn, so we only took into consideration only
FFNNs and LSTM in the experiment with prior learning.
TABLE V shows the related average results of 5 folds.

Fig. 9. Method for building a data set from participant A

TABLE V shows LSTM achieved higher discrimination
performance (more than 94.0%) than FFNNs, and the dis-
crimination performance of LSTM was the best in this paper.
The differences are significant at p < 0.01 measured using
the two-tailed t-test for accuracy rate (t-stat = 3.62, p-value
= 0.0056), precision rate (t-stat = 3.81, p-value = 0.0041)
and recall rate (t-stat = 3.62, p-value = 0.0056).

Also, we constructed classifiers without prior learning
using only the user to compare with the discrimination
performance of the experiment with prior learning. In FFNNs
and LSTM, the epochs were 6000, and the learning rate
was 0.005. Also, the learning rate of LSTM was changed
automatically by applying the Adam algorithm [12]. The
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TABLE V
RESULTS OF EXPERIMENT III WITH PRIOR LEARNING

Accuracy rate[%]

Prior Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 100.0 91.7 93.3 93.0 91.7 92.3 97.3 99.7 89.0 97.3

LSTM 99.7 94.0 94.7 94.7 96.3 96.0 99.7 99.7 96.0 99.3

Precision rate[%]

Prior Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 100.0 92.4 93.6 93.0 92.0 93.4 97.2 99.6 90.2 97.2

LSTM 99.6 94.4 95.2 95.0 97.2 96.4 99.6 99.6 96.2 99.4

Recall rate[%]

Prior Learning Data B-J A,C-J A,B,D-J A-C,E-J A-D,F-J A-E,G-J A-F,H-J A-G,I,J A-H,J A-I

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 100.0 91.8 93.4 93.0 91.6 92.2 97.2 99.6 89.0 97.2

LSTM 99.6 94.0 94.8 94.8 96.2 96.0 99.6 99.6 96.0 99.4

TABLE VI
RESULTS OF EXPERIMENT III WITHOUT PRIOR LEARNING

Accuracy rate[%]

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 99.7 91.0 93.3 92.3 90.0 91.7 96.7 99.3 86.7 96.7

LSTM 97.7 85.0 91.0 83.0 92.3 92.7 96.0 93.0 87.0 94.0

SVM 100.0 89.0 92.0 93.7 90.0 93.3 96.7 99.7 85.0 97.0

Precision rate[%]

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 99.6 91.8 93.6 92.8 90.2 93.0 96.8 99.2 87.6 97.0

LSTM 97.6 83.2 93.2 80.2 90.8 93.4 96.2 93.8 89.0 94.6

SVM 100.0 89.0 92.2 93.8 90.4 94.0 96.6 99.6 86.2 97.2

Recall rate[%]

Additional Learning
and Evaluation Data

A B C D E F G H I J

FFNNs 99.6 91.0 93.2 92.2 90.0 91.6 96.6 99.2 86.6 96.8

LSTM 97.6 83.2 93.2 80.2 90.8 93.4 96.2 93.8 89.0 94.6

SVM 100.0 89.0 91.8 93.6 89.8 93.4 96.6 99.6 84.8 97.0

TABLE VII
T-TEST RESULTS WITH AND WITHOUT PRIOR LEARNING

FFNNs LSTM
accuracy precision recall accuracy precision recall

t-stat 3.64 2.67 3.83 5.87 4.61 5.89
p-value 0.0054 0.0256 0.0040 0.0002 0.0013 0.0002
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parameters of SVM were C=10 and γ=10. TABLE VI
shows the results for the constructed classifiers, which were
evaluated by 5-fold-validation. According to TABLE V, the
classifiers constructed without prior learning did not show
good performances in point of accuracy rate, precision rate
and recall rate. We think that the classifier constructed using
only the user’s myoelectric signals cannot achieve high
performance because insufficient input data for learning exist
in the input space.

The results shown in TABLE V and TABLE VI, make
clear that the classifier with prior learning achieved better
discrimination performance than the classifier without prior
learning. This indicates the validity of using non-users’ data
for constructing the classifier and an effectiveness of prior
learning. We think that using multiple non-users’ input-
output data for learning, the lack of input-output data for
learning using only the user’s data are compensated. We
found that the method we took into consideration, LSTM
with prior learning, had better discrimination performance
than SVM. The results of Experiment III proved that the
method with prior learning is able to lighten the user’s burden
because the use of non-users’ data enables to reduce the
number of user’s data required for learning. Therefore, we
achieved the goal of this study. Additionally, the differences
between with and without prior learning are significant at p
< 0.05 measured using a two-tailed t-test in accuracy rate,
precision rate and recall rate. This is shown in TABLE VII.
The differences between our proposed method and SVM
are significant at p < 0.05 measured by two-tailed t-test
in accuracy rate (t-stat = 3.16, p-value = 0.0115), precision
rate (t-stat = 3.31, p-value = 0.0091) and recall rate (t-stat
= 3.18, p-value = 0.0111). However, there were merely 10
participants in this experiment. Future studies will need to
involve a much larger number of participants in order to
improve the significance of the results.

V. CONCLUSION

In this paper, we considered a strategy to reduce the user’s
burden when constructing a classifier for the control of a
myoelectric prosthetic hand. To this end, we developed a
method that uses both user’s and non-users’ myoelectric
signals and introduced a relearning process to obtain a
classifier that both fits the user and has high discrimination
performance. The introduction of non-users’ myoelectric
signals ensures that a sufficient number of learning data is
provided and that learning data are widely distributed in the
input space. We took into consideration both FFNNs and
LSTM as methods to construct the classifiers. The classifiers
built with FFNNs and LSTM can be reconstructed using extra
learning data after they have been constructed. Furthermore,
in order to show the validity of our methods, we performed
experiments to classify the myoelectric signals. As shown
by our results, LSTM performs better in point of accuracy
rate, precision rate and recall rate. In Experiment III, we
constructed classifiers by two steps. In the first step, the
classifiers were constructed using non-users’ learning data.
In the following step, the classifiers ware reconstructed by
relearning user’s learning data, that is by performing a
relearning process. We showed that the classifiers based on
LSTM which had been constructed through these two steps
had the best discrimination performance.

Future studies will focus on using more participants’ input-
output data in the classification to improve the significance
of the results.
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