
 

  

Abstract—A modeling method using multiquadric (MQ) 

radial basis function (RBF) and k-means clustering is proposed 

to establish the tropospheric atmospheric refractivity (TAR) 

profile model. The MQ-RBF interpolation algorithm is trained 

with the measurement data from 132 meteorological stations in 

10 years. Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE) of the prediction results are investigated with 

different local neighborhood parameters (r, θ, and t) of the 

MQ-RBF. Considering the tradeoff between RMSE and MAE, 

the parameters of the search ellipse (r, θ, and t) are optimized. 

The linear fit coefficients (a1, b1, a2, and b2) of the linear 

relationships between the coefficients (C1 and G) of TAR 

distribution formula and atmospheric refractive (N0) at 

observation station are obtained by using the least square linear 

regression method with k-means clustering algorithm. This 

method overcomes the difficulty of measuring the TAR profile 

under various meteorological conditions at different time and 

place, and has the characteristics of real-time, convenient and 

accurate. It provides a promising method for the correction of 

TAR errors in the radar applications. 

 
Index Terms—Tropospheric atmospheric refractivity, RBF, 

multiquadric, linear regression, k-means clustering 

 

I. INTRODUCTION 

ince radar was invented, it had played important roles in 

meteorological forecast, resource survey and supervision, 

Internet of things (IOT) industry, environmental monitoring 

and scientific researches on celestial bodies, atmospheric 

physics and ionospheric structure. The radar wave 

propagation path and phase angle of echo are greatly affected 

by the tropospheric atmospheric reflectivity (TAR). 

Therefore, the refractivity correction methods are widely 

used to improve the accuracy of the radar detection. 

Traditional refractivity correction methods are classified into 

three groups: ray tracing method, radiometer method and 

simplified correction method. Compared with the first two 
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methods, simplified correction method has the advantages of 

short operation time and low cost. Hence, it is necessary to 

establish the atmospheric refractivity profile model within a 

short time. Simplified atmospheric refractivity profile models 

have been investigated extensively, for example, linear 

model, exponential model, double exponential model, 

Hopfield model and subsection model [1]-[3]. 

Recently, the refractivity in the tropospheric region is 

estimated using an artificial neural network (ANN) which use 

sigmoid transfer function as the activation function between 

the hidden and output layers [4]. The results show that the 

influence of the relative humidity on the refractivity is greater 

than that of other tropospheric parameters. A hybrid model 

based on the ANN with a genetic algorithm (GA) is proposed 

to solve the inversion problem of atmospheric refractivity 

estimation [5]. A propagation factor curve achieved by the 

hybrid method is closer to the reference one. As a special case 

of ANN, the RBF neural network has excellent features, such 

as universal approximation, compact topology, faster 

learning speed and excellent non-linear approximation 

capabilities [6]-[8]. Therefore, it is widely used for time 

series prediction, pattern recognition and complex mappings 

[9]-[14]. The RBF neural network method is also used to 

retrieve atmospheric extinction coefficients (AEC) in the 

lidar measurements [15]. The results confirm that the model 

established by the RBF neural network is better than the 

Fernald method in the aspect of speed and robustness. The 

MQ method has been proved to be an excellent interpolation 

method in terms of timing, storage, accuracy, visual 

pleasantness of the surface, and ease of implementation 

[16]-[18]. Moreover, the MQ-RBF is proposed as an 

effective numerical method for solving the science, 

engineering and economics problems, such as the heat 

conduction problems [19], radiative heat transfer problems 

[20], acoustic problems [21], elastic problems [22], options 

evaluation problems [23], and financial Heston–Hull–White 

(HHW) equation [24]. 

The k-means clustering algorithm is the simplest and 

widely used partitioning-based clustering technique due to its 

ease of implementation, simplicity, efficiency, and empirical 

success [25]. A new method based on Entropy-Maximizing 

theory is investigated to model the Origin-Destination (OD) 

distribution of taxi trips in Harbin city-China. In this method, 

the k-means clustering method is utilized to partition raw 

pick-up and drop-off location into different zones. The 

established taxi trips distribution model is beneficial to 

improve the efficiency of transportation planning and 

enhance the quality of taxi services [26]. To solve the 
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problem of noise and nonlinearity in under water visible light 

communication systems, an algorithm based on k-means 

clustering is proposed to correct the phase deviation of 

special-shaped 8-QAM constellations [27]. A method based 

on the semi-supervised k-means and mean shift algorithm is 

used to detect the high-frequency oscillations (HFOs) in 

epileptic seizure onset zones (SOZs) localization. It is helpful 

for the accurate localization before clinical epilepsy surgery 

due to its good sensitivity and specificity [28]. In addition, 

the k-means algorithm is proposed to analyze commercial 

aircraft fuel consumption during descent [29], performance 

optimization of copy number variants (CNVs) [30], and 

classification of the different phases of an uninterrupted 

traffic flow [31]. An RBF neural network with k -Means 

clustering is also developed to establish the rainfall 

prediction model [32] and estimate the sound source angle 

[33]. 

In this paper, a method based on MQ-RBF and k-means 

clustering is proposed to fast establish the TAR profile model. 

The principle of the MQ-RBF and the flow chart of TAR 

profile modeling are introduced briefly. Then MAE and 

RMSE of the prediction results with different interpolation 

methods are studied and compared. The local neighborhood 

parameters of the MQ are optimized, and the TAR profiles in 

China are established and demonstrated. 

The rest of the paper is organized as follows. Section II 

describes the Modeling Theory and Analysis Method of the 

MQ-RBF, including its principle and algorithm flow. In 

Section III, the performances of the MQ-RBF and parameters 

optimization are discussed, then TAR profiles are established. 

At last, conclusions are given. 

II. MODELING THEORY AND ANALYSIS METHOD 

The TARs at 132 meteorological stations in China are 

obtained by using the ten-year meteorological data which 

were measured by the method of balloon sounding. The 

geographic position distribution of the 132 stations in China 

is shown in Fig. 1. 

In general, the atmospheric refractive index (n) is between 

1.00026 to 1.00046 near the ground. It is usually represented 

as radio refractivity (or atmospheric refractivity, N) in radio 

band [34]. The flow chart of TAR profile modeling is shown 

in Fig. 2. The modeling of TAR profile is divided into 4 steps: 

 

(1) Generation of the training dataset: the training dataset 

is established from the measurement data by using the 

piecewise model. Then the outlier data are removed from 

the training dataset according to the Pauta criterion. The 

training dataset can be updated to meet user needs. 

(2) Prediction of the TAR coefficients: the gridding of the 

prediction region is firstly divided, and the initial 

parameters of the MQ method are set for predicting TAR 

coefficients of each grid node. Then, the MQ parameters are 

optimized by using the cross validation. The prediction 

dataset can be achieved and expressed as a matrix Z. 

(3) Linear regression optimization: the parameter k is 

determined according to the observation time in one day. 

The data in matrix are assigned to the closest initial cluster 

center. Then the centers are recalculated until the 

termination conditions are met. The linear regressions of the 

data after k-means clustering are achieved with least square 

method (LSM). The linear fit coefficients are obtained, 

which are used for the correction of TAR errors in the radar 

applications. 

(4) Establishment of the TAR model profile: according to 

the ground refractive index and altitude measured by the 

instrument, the grid parameters and linear fit coefficients are 

determined. Then the TAR model is established, and it is 

compared with the measurement data to verify its accuracy 

and error. 

The refractive index N(h) with different altitude (h) is 

calculated by formula (1) at observation stations. The 

piecewise model is usually adopted to simulate the TAR at 

different altitudes, which is shown as 
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where hs is the altitude of the observation station, H1=1 km, 

H9=9 km. N0, N1, and N9 are the atmospheric refractive 

indices at hs, H1, and H9, respectively. G is the vertical 

gradient of the atmospheric refractive index within 1 km 

above the ground. C1 is the exponential attenuation 

coefficient of the atmospheric refractive index when h is 

between hs+H1 and H9. C9 is the exponential attenuation 

coefficient of the atmospheric refractive index when h is 

higher than H9. The annual mean of C9=0.1434 is widely used 

because the atmospheric state parameters above the altitude 

of 9 km are nearly unchanged. The ten-year N0, G, and C1 of 

the atmospheric refractive index model at 132 observation 

stations are obtained by using the piecewise model, which are 

chosen as the training dataset. The training dataset is 

expressed as an m×3 matrix Atr, where m is the number of 

the coefficient set (N0, G, and C1). The outlier data are 

removed from the Atr based on the Pauta criterion. 

In order to establish the TAR profile model, rectangular 

grids are used. China covers a vast territory and its 

atmospheric environment range from 70°E to 135°E, and 

15°N to 55°N. The N0, G, and C1 at 5,346 grid nodes are 

predicted by using the MQ-RBF interpolation method at a 1° 
longitude interval and 0.5° latitude interval. 

 
Fig. 1. Geographic position distribution of the 132 observation stations in 

China. 
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The MQ-RBF method is looking for an appropriate 

function s(x) to describe the relationship between x and fk in a 

given dataset {x, fk}, (k=1, 2, ..., n), namely, s(x)= fk, where 

( ) ( )
N

k1
= Φik

s x c x x
=

− . The multiquadric function is used 

as the basis kernel function of the RBF due to the high 

accuracy and smoothness in the interpolation applications. 

The multiquadric function shows as formula (2). 

( ) ( )2 2Φ =r r +


 ,        (2) 

where γ and r are the shaping factor and the space radius of 

the RBF, respectively. The value of γ2 controls the 

smoothness of s(x), which is calculated by the numerical 

method which decides the weight of the edge point. A small γ 

makes Φ(r) change sharply along the radial direction from the 

center point (the grid node to be predicted) and leads to 

overfit. And r is the relative distance from the center point to 

the training sample nodes, which has a great impact on the 

predicted value of the grid node. Here, β is 0.5, γ2 is 

calculated by the formula of L2/(25×N), L is the length of 

diagonal of the data extent, N is the number of training 

samples. 

The predicted value Z could be N0, G, or C1, which is 

obtained by 

( ) ( )
1

= Φ
N

kk k
x, y x, y

=
Z ,      (3) 

where x and y are respectively the longitude and latitude 

values of the geographical coordinates. Here, r in formula (2) 

is replaced by || (x, y)- (xk, yk) ||. The predicted values at grid 

nodes are put in a M by 1 matrix Z = (Z1, Z2, ..., ZM) T, M is the 

number of the grid nodes to be predicted. Z can be expressed 

as Z=Φ·ω, where Φ is a M by M matrix of the multiquadric 

functions. ω= (ω1, ω2, ..., ωM) T is a M by 1 matrix of the weight 

coefficients. 

To verify the accuracy of the proposed algorithms, the 

leave-one-out cross validation is adopted. The sample set is 

divided into two groups: one is training set, the other is 

validation set. After training with the training set, the 

predicted data are obtained and compared with the 

measurement data in the validation set. Then MAE and 

RMSE are calculated to evaluate the accuracy of the 

prediction results, which are expressed as 

01
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where Zi0 and Zi are the measured and predicted values of the 

i-th station, respectively. N is the number of the observation 

stations for verification. The MAE reflects the overall error 

or precision level of the prediction results, and RMSE reflects 

the sensitivity and extreme value of the estimated value of the 

sample data. 

III. TAR PROFILE MODELING AND ANALYSIS 

A. Coefficients Model of the TAR profile 

The modeling of the coefficients of TAR profile is based 

on the sample data at 12:00 on 26 January 1995. The 

distribution of the predicted coefficients (N0, C1, and G) are 

simulated as shown in Figs. 3(a)-3(c). 

In Fig. 3(a), N0 is between 170 and 380. N0 of the eastern 

coastal area is higher than that of west area in China, because 

the eastern coastal area belongs to the monsoon climate 

affected by the Marine climate greatly. The air humidity is 

high due to abundant rainfall, which leads to the increase of 

N0. The western China mostly belongs to continental climate, 

which is mostly arid or semi-arid region. Due to the lack of 

precipitation and the low content of water vapor in the air, N0 

is much smaller than that in the eastern regions. Especially in 

the region between 85°E to 95°E and 25°N to 35°N, it 

belongs to the plateau mountain climate, the average altitude 

 
Fig. 2.  Flowchart of the TAR profile modeling with the multiquadric RBF and k-means clustering. 
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is higher than 2000 meters. The low air temperature and low 

air pressure lead to the sharp decrease of the N0.  

The contour distribution C1 of and G are shown in Figs. 3(b) 

and 3(c), respectively. C1 and G change greatly in the 

southeast of China, while change slowly in the northwest of 

China. The reason is the same as above. 

B. Error comparison 

For comparison, MAE and RMSE of the prediction results 

by using the Multiquadric (MQ) method are investigated with 

other 7 different methods which are Kriging (KG), Modified 

Shepard's Method (MSM), Triangulation with Linear 

Interpolation (TLI), Natural Neighbor (NAN), Minimum 

Curvature (MC), Nearest Neighbor (NEN), and Inverse 

Distance to a Power (IDP). RMSE and MAE with different 

methods are shown in Figs. 4(a)-4(c). 

For N0, RMSE and MAE of the MQ are 8.3652 and 5.7945, 

respectively. The MQ has the smallest RMSE and MAE 

among the 8 methods. The discreteness of the predicted N0 

deviates from the measured value is smallest, and the overall 

error level is the best one. For C1, RMSE and MAE of the 

MQ are close to that of the KG and NAN, but smaller than 

other methods. For G, RMSE of MQ and TLI are similar and 

superior to other methods, while the MAE is comparable to 

other methods. RMSE and MAE of the prediction results 

simulated by 8 methods are shown in TABLE 1. 

C. Parameter optimization of the MQ-RBF 

The MQ interpolation algorithm is better than the other 7 

algorithms. Using the MQ as the radial basis kernel function, 

the capability of prediction results mainly depends on its 

basic parameters of the local neighborhood (e.g., search 

circle or search ellipse). The atmospheric refractive index 

distribution is a natural phenomenon which is caused by the 

physical processes. It has a preferred orientation, such as the 

direction parallel to the coastline in China. Hence, the search 

ellipse is used as the local neighborhood for prediction of the 

grid nodes. Data in the search ellipse determine the value of a 

grid node at the center of the search ellipse, however the data 

outside are ignored. Excessive neighborhood selection will 

contain some data without correlation degree, while smaller 

neighborhood will lead to no correlation data in the 

neighborhood. Therefore, the neighborhood parameters 

greatly affect the accuracy of the prediction results. Usually, 

data closer to the grid nodes have more weight than those 

farther from the grid nodes. 

 

 

 

 
Fig. 3. Contour distributions of (a) N0, (b) C1, and (c) G. 

 

 
Fig. 4.  Comparison of RMSE and MAE for N0, C1, and G with 8 interpolation methods. 
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In order to optimize the performance of the MQ-RBF, 

RMSE and MAE with different local neighborhood 

parameters are studied. The main parameters of the search 

ellipse and search circle are shown in Figs. 5(a) and 5(b), 

respectively. The major axis of the search ellipse is set as 

same as the radius of the search circle (r), its unit is as same 

as longitude. The ratio of major and minor axes is r/b. θ is the 

angle between the major axis and the horizontal axis. Taking 

the prediction of N0 as an example, the influences of r, θ and t 

on RMSE and MAE are discussed. For the search circle as 

shown in Fig. 5(c), the smallest RMSE and MAE are 

achieved when r is less than 4. However, small r leads to no 

correlation data for the grid nodes to be predicted, which 

make RMSE and MAE incorrect. The second smallest RMSE 

and MAE are obtained when r is ~6. RMSE and MAE change 

slowly when r is greater than 10, because the prediction 

values of the grid nodes with the MQ-RBF method mainly 

depend on the data near the nodes. 

For the search ellipse, the influences of θ and t on RMSE 

and MAE are investigated. In Fig. 5(d), RMSE and MAE 

periodically change with θ when t is 1.5 due to the 

periodically change of θ. There are minimum RMSE and 

MAE when θ is 19°. The selection of θ is in accordance with 

the climate distribution in China. Both RMSE and MAE have 

a minimum when r is 6. When r of 6, the variations of RMSE 

and MAE with t are simulated and shown in Fig. 5(e). RMSE 

has a minimum when t=1.9, and changes slowly when θ 

varies from 15° to 19°. However, the MAE shows little 

change when t is less than 1.6, while it changes greatly when t 

is greater than 1.6. The value of t corresponding to the 

smallest MAE varies from 1.6 to 2.0. Considering the 

tradeoff between RMSE and MAE, r=6, θ=19° and t=1.9 are 

chosen as the optimized parameters of the MQ-RBF method. 

 

 
Fig. 5. (a) search circle and its parameters, (b) search ellipse and its parameters, RMSE and MAE with 

different (c) r, (d) θ, and (e) t. 
 

TABLE 1 

RMSE AND MAE OF N0, C1 AND G WITH 8 INTERPOLATION METHODS 

Interpolation Function 
RMSE MAE 

N0 C1 G N0 C1 G 

Multiquadric (MQ)  8.3652 0.0048 4.2588 5.7945 0.0038 3.1648 

Kriging (KG) 10.3001 0.0047 4.4156 6.8071 0.0036 3.1540 

Modified Shepard’s Method (MSM) 10.4758 0.0054 5.4477 7.1084 0.0042 3.5290 

Triangulation with Linear 
Interpolation (TLI) 

11.6469 0.0051 4.2397 7.2327 0.0039 3.0435 

Natural Neighbor (NAN) 12.1926 0.0048 4.3790 7.4810 0.0037 3.1568 
Minimum Curvature (MC) 14.3241 0.0050 8.0811 5.8547 0.0036 3.9809 

Nearest Neighbor (NEN) 14.6841 0.0078 5.6189 9.4707 0.0053 3.7378 

Inverse Distance to a Power (IDP) 18.4021 0.0059 5.3297 11.0335 0.0045 3.6802 

 

Engineering Letters, 28:3, EL_28_3_11

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



 

 
 

 

TABLE 2 

LINEAR FIT COEFFICIENTS AND DETERMINATION COEFFICIENTS OF C1 AND G 

Longitude Latitude 
C1 G 

a1 b1 R2 a2 b2 R2 

100°E 27°N 0.040527 0.000350 0.920773 21.168072 -0.207652 0.933147 

132°E 44°N -0.010669 0.000445 0.877651 184.07320 -0.712291 0.902551 

108°E 21.5°N -0.154016 0.000871 0.902876 124.73015 -0.485488 0.830441 

98°E 27°N  0.044068 0.000345 0.874978 25.439297 -0.226326 0.897084 

 

 
Fig. 6.  Linear fit optimized by k-means clustering method, the linear fit of (a) C1 and (b) G 

at the grid node [100°E, 27°N], the linear fit of (c) C1 and (d) G at the grid node [132°E, 
44°N], the linear fit of (e) C1 and (f) G at the grid node [108°E, 21.5°N], the linear fit of (g) 

C1 and (h) G at the grid node [98° E, 27° N]. 
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D. linear regression optimized by k-means 

In engineering applications, real-time radio wave 

refraction error correction is mainly used to improve radio 

instrumentation accuracy. Therefore, it is necessary to 

establish relationships between the parameters (C1 and G) of 

the TAR profile model and N0. In order to obtain the TAR 

quickly and accurately, a linear regression method optimized 

by k-means clustering algorithm is proposed for C1 and G 

fitting. Then we take the January data for 10 years in 5,346 

grid nodes as an example. The parameter k is chosen as 2 

since there are only two observation moments in each day. 

For each grid node, the groups (N0, G) and (N0, C1) in a month 

are set as the data groups before clustering. New data groups 

could generate according to the k-means clustering algorithm. 

Then the least square method is used to achieve the linear fit 

for the data groups after clustering. The linear relationships 

between C1, G and N0 are respectively expressed 

as
1 1 1 0C a b N= +  and 

2 2 0G a b N= + , where a1, b1, a2 and b2 

are the linear fit coefficients. The prediction data at the grid 

nodes [100°E, 27°N], [132°E, 44°N] and [108°E, 21.5°N], 

[98°E, 27°N] are choose for clustering and linear fit as shown 

in Fig. 6. Their linear fit coefficients a1, b1, a2, b2 and 

determination coefficients R2 are listed in TABLE 2. 

To verify the accuracy of the TAR model, the comparison 

of prediction results and relevant measurement data of 6 test 

stations are studied. The 6 test stations are Shenyang (SY), 

Harbin (HEB), Hailar (HLE), Ejin Qi (EJNQ), Taroom 

(TAM), and TogtonHe (TTH). Their parameters (longitude, 

latitude, grid node, observation time, N0 and hs are listed in 

TABLE 3. 

E. TAR profile model 

The TAR model could be obtained by using the linear fit 

coefficients. The prediction data and measurement data with 

different altitude of the 6 observation stations are shown in 

Figs. 7(a)-7(f). The black solid lines are the prediction data 

built with the linear fit coefficients which obtained by the 

method based on MQ-RBF and k-means clustering. The red 

stars represent the observation data at the observation stations. 

In order to evaluate the error between the prediction data and 

observation data, MAE and RMSE are calculated as shown in 

Fig. 8. Smaller MAE and RMSE are achieved at TAM and 

TTH stations which have higher altitudes. Because the high 

altitude reduces the influence of the tropospheric region, 

which makes the prediction data more accurate. When hs≥9 

km, MAE and RMSE are smaller than those when hs<9 km. It 

proves that the TAR model agrees well with the observation 

data when the altitude is over 9 km. The reason is that the 

atmosphere over 9 km is the stratosphere which is cloudless 

and rarely changes in weather. On the contrary, at the altitude 

of below 9 km, the agreement between the TAR model and 

the observation data is not as good as that at the altitude of 

over 9 km. 

 

 

 

TABLE 3 

TEST STATION WITH GEOGRAPHICAL LOCATION, GROUND REFRACTIVE INDEX AND ALTITUDE 

Test Station Longitude Latitude Grid Node Observation time N0 hs 

Shenyang (SY) 123.24 41.47 [123, 42.5] 1995012800 316.6 42 

Harbin (HEB) 126.46 45.45 [126, 45.5] 1995 01 27 12 312.2 147 

Hailar (HLE) 119.45 49.13 [119, 49] 1995011400 299.4 613 

Ejin Qi (EJNQ) 101.13 42.15 [101, 42] 1995 01 27 12 269.8 936 

Taroom (TAM) 94.38 36.12 [94, 40] 1994 01 31 12 217.7 2806 

TogtonHe (TTH) 92.37 33.57 [92, 33.5] 1992011612 176.5 4555 

 

 
Fig. 7.  Comparisons of the TAR prediction data and measurement data at the test stations. 
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IV. CONCLUSIONS 

In this paper, a method for establishing the TAR profile 

model based on the MQ-RBF algorithm is proposed, and the 

coefficients for wave refraction error correction are obtained 

with the least square linear regression method optimized by 

k-means clustering algorithm. The parameters N0, C1, and G 

for the 5,346 grid nodes are predicted by using the 10-year 

observation data at 132 stations in China. The 

cross-validation results show that RMSE and MAE are 

optimized when r=6, θ=19°, and t=1.9. The linear fit 

coefficients a1, b1, a2 and b2 between C1, G and N0 are 

achieved to establish the TAR profile models. The 

measurement data of 6 observation stations are used to 

compare with the prediction data. It shows that the prediction 

and measurement data are consistent with each other. The 

relation coefficients a1, b1, a2 and b2 can be used to correct the 

refractive error of radio waves fast and in real-time. The 

atmospheric refractive index at different altitudes at any site 

can be predicted using the corresponding coefficients a1, b1, 

a2 and b2, and N0. The proposed method has promising 

applications in the fields of satellite measurement and control 

system, navigation and positioning system, geodetic 

precision measurement, and astronomical measurement. 
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