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Abstract—An image can be viewed as a connected
graph. The minimum spanning tree of the connected
graph can be built and not always unique. If the
edge whose weight is greater than a threshold of min-
imum spanning tree is removed, it will form some
of the connected components. One of the connected
components will form a segment of an image. The
image segmentation generated by different minimum
spanning tree is unique. The purpose of this study is
to determine the relationship between segment edges
and thresholds on segmentation generated by mini-
mum spanning trees. This research provides several
results. A segment corresponding to a threshold of β

is a composite of several segments corresponding to a
threshold of α (smaller than β). So the boundary of
a segment corresponding to the threshold of β is the
pieces of the boundary curve of the smaller segments
corresponding to a threshold of α (smaller than β).
Let GD, GT , GS be the set of segments formed after
the sides whose weight are greater than β are dis-
carded from grid graph, triangular graph, and super
grid graph, respectively. A segment in GT is a union
of several segments of GD. So that the boundary of
a segment on GT is the boundary pieces of several
segments of its forming. A segment in GS is a union
of several segments of GT . So that the boundary of
a segment on GS is the boundary pieces of several
segments of its forming.

Keywords: Boundary, connected component, minimum

spanning tree, segmentation

1 Introduction

An image can be viewed as a weighted undirected grid
graph, where the pixels are the points on the graph, and
the difference from the color intensity value of two adja-
cent pixels is the weight of the side connecting the two
pixels [1]. Some ways of presenting images in the graph
are among others: grid graph, triangular grid graph, and
super grid graph [2] as shown Figure 1. Grid graph is a
graph whose sides are the connecting side of each pixel
of digital images with four pixels around them: pixels on
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top, bottom, left, and right. The triangular grid graph is
a graph whose sides are the connecting side of each pixel
of digital images with six pixels around them, namely:
upper left pixel, bottom right, up, down, left, and right.
The super grid graph is a graph whose sides are the con-
necting side of each pixel of the image with eight or all
of the surrounding pixels. Multiscale graph-based seg-
mentation (MGS) algorithms use a popular graph-cut ap-
proach that presents digital images as grid graphs [3].

Segmentation is widely used in computer vision
[4][5][6][7][8][9]. Image segmentation is done in various
approaches such as developing area approach, bound-
ary approach and graph approach. One approach is the
method of developing regions meanshift. This method
uses a series of vectors to the point of convergence [10].
The edge functions in Matlab are commonly used to de-
velop the boundary approach area [11][12].

Many algorithms in stereo vision use image segmenta-
tion to be part of the steps [13]. Multiscale graph-based
segmentation (MGS) algorithms use a popular graph-cut
approach that presents digital images as grid graphs [3].
In fact, almost all stereo vision uses segmentation as part
of its method, among others: belief propagation methods
[14], [15], [16], [17]. Methods that rely on segment bound-
aries and metric similarities [18], [19] also use segmenta-
tion. Optimization methods with global constraints [20],
[21] also use image segmentation in their steps.

All segmentation steps previously mentioned still have
weaknesses. The selection of threshold or bandwidth
greatly influences the results of this segmentation. An
example is the shifting method. This method still has
weaknesses, namely: the wider segment boundary formed
by the addition of the threshold value is not always a com-
bination of the segment boundary element of the smaller
threshold [22]. This weakness is due to the fact that
the proposed method can not exclude outlier data. To
improve it, Peter [23] uses the minimum spanning tree
approach of the graph to replace the square in locally
matching. This method is called labeling in the graph
[24].

One of the approaches in image segmentation is the use
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Figure 1: The shape of the Graph of the Image: (a) Grid Graph, (b) Triangular Grid Graph, (c) Super Grid Graph.

of a minimum spanning tree. The pixels of the image
are seen as a points, while the side/edge is seen as the
difference from the color intensity value of two adjacent
pixels. Furthermore, the side-weight value of the mini-
mum spanning tree that is greater than the threshold will
be discarded [23], so that sub-tree will be formed, where
one sub tree is seen as one segment in the image. Search-
ing for isomorphic sub-trees [25] will help us in terms of
looking for some of the same segments.

The spanning tree of a graph is not unique. This can be
shown using the Kruskal algorithm. With the minimum
spanning tree method, we can generate segmentation of
an image.

An increase in a threshold value will increase the extent
of each segments of the image. Is a segment, which cor-
responds to a threshold value β, the union of several seg-
ments corresponding to a smaller threshold value than
β? This is the problem that will be investigated in this
paper.

This paper consists of five sections. The first section is
an introduction that provides the background and issues
discussed in this paper. The second section discusses the
definition of trees and tree properties required in this pa-
per. The third section contains the minimum spanning
tree. The fourth section is results and discussion. This
section is the answer to the problem stated in the first
section. The different aspects of the theorem about the
minimum spanning tree and segmentation is the begin-
ning of this section. The discussion concludes with the
statement that the boundary of a segment correspond-
ing to the threshold of β is the pieces of the boundary
curve of the smaller segments corresponding to a thresh-
old smaller than β. This paper will end with conclusions.

2 Tree

A tree is a connected graph that does not contain a circle.
We will notice the important properties of the tree [26],
[27] that are useful in this paper. The first property of the
tree to be discussed is the relation between the number

of points with the number of sides of a tree. Let T be a
graph with n points and m sides. T is a tree if and only
if T is connected and n = m + 1.

Furthermore, a simple path connecting the two points will
be the basis of the next discussion which says that the
addition of one side to a tree will form a circle. This will
be stated in the following properties. The graph T is a
tree if and only if every two different points are connected
by exactly one simple path. If two points, which are not
neighbors, of a tree are connected then they will form
exactly one circle. This is easily proven. Let u and v be
two non-neighboring points in the tree. There is exactly
one path P from point u to point v. So 〈P, {v, u}〉 is a
simple and closed path. Hence, a simple path 〈P, {v, u}〉
forms exactly one circle.

The last properties states that each connected graph G
has a spanning tree. This properties guarantees the exis-
tence of a spanning tree. This means that we can always
build a spanning tree from the graph if the graph is con-
nected. The sum of the spanning trees of graph G with
n points is κ(G) = det(J +PP t)/n2, where J is a square
matrix whose all elements are one and P is an adjacency
matrix. The properties says that the spanning tree of the
graph is not unique.

3 Minimum Spanning Tree

This section begins with a discussion of the Kruskal
algorithm. After that the properties of the two minimum
spanning trees will be discussed.

Kruskal Algorithm

Input : The undirected graph G, with the weight of
w : E(G) → R.

Output : Spanning tree with minimum weight of G
1. Sort the sides such that

w(e1) ≤ w(e2) ≤ ... ≤ w(en).
2. Set T := (V (G), ∅).
3. For i := 1 to m do:

If T + ei does not contain the circle then
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set T := T + ei.

The Kruskal algorithm produces a minimum tree that
spans simple connected graphs. This statement can be
proved by two parts [28], [29], [30]. But we will present
almost different evidence in proving the following theo-
rem.

Theorem 3.1.[31] The Kruskal algorithm produces a
minimum spanning tree of connected weighted graphs.
Proof: Suppose G is a connected weighted graph, with n
points, and T is the sub graph produced by the Kruskal
Algorithm. Due to the addition of the ei side of the tree,
ie: T := T +ei in step 3 of the algorithm, which does not
contain a circle, then T is the spanning tree of graph G.
According to the properties that if two points (which are
not neighbors) of a tree are connected then they will form
exactly one circle, the sides of the graph can be written
as

E(T ) = {e1, e2, ..., en−1},
where w(e1) ≤ w(e2) ≤ ... ≤ w(en−1). So the weight of
the T tree is

w(T ) =
∑n−1

i=1 w(ei).
Next we will show that T is the minimum spanning tree
of G. Suppose that T is not the minimum spanning
tree of G. Thus, from among all the minimum spanning
trees of G, there is a minimum spanning tree, called H ,
which is most similar to T , ie: the number of common
sides between H and T is more than that of other mini-
mum spanning trees and T . Since the minimum spanning
tree H and T must not be identical, T has at least one
side of T which is not the side of H . Suppose ej , for a
j = 1, 2, ..., n− 1, is the first side of T which is not the
side of H . Suppose H1 = H + ej, then, according to
Lemma 2.3 , H1 has exactly one circle, called C. Since
T has no circle, there is a side e0 in C that is not in T .
Since e0 is the side in the circle C, then T1 = H1 − e0 is
the spanning tree and

w(T1) = w(H) + w(ej) − w(e0).
Since H is the minimum spanning tree, then w(H) ≤
w(T1). Consequently w(e0) ≤ w(ej). According to the
Kruskal Algorithm, the ej side is a next side, with mini-
mum weights, such that the sub graph

〈{e1, e2, ..., ej−1}〉 ∪ {ej}
does not contain the circle. But 〈{e1, e2, ..., ej−1, e0}〉 is
a sub graph of H that does not contain the circle. This
means w(ej) ≤ w(e0). Thus w(T1) = w(H). Therefore,
T1 is a minimum spanning tree of G. But T1 and T have
more common sides sides than H and T . This contradicts
the assumption that H and T have more number equal
sides than other minimum spanning trees and T . So T is
the minimum spanning tree of G. Q.E.D

According to Mayr [32], every minimum spanning tree
can be generated using the Kruskal Algorithm. Thus all
minimum spanning trees can be viewed as the result of
the Kruskal Algorithm.

We will start the theorem which discusses the singularity
of the circle inside the tree if the two non-adjacent points
are connected. This circle has very interesting properties.

Theorem 3.2. [33] Let G(V, E) a weighted graph and
S, T be the minimum spanning tree of G. If e ∈ E(S) \
E(T ), then T+e contains exactly one circle C such that C
contain side e ∈ E(T ) \ E(S) where w(e) = w(e), E(C −
e) ⊆ E(T ), E(C − e) ⊆ E(S). For every ei ∈ C apply
w(ei) ≤ w(e) = w(e).
Proof: Let e1, e2, ..., en1 be the sides of S, where w(e1) ≤
w(e2) ≤ ... ≤ w(en1). Assume that the first member
ej = e ∈ E(S) ⊆ E(T ) is a side of S that is not a
side of T . Since T is the minimum spanning tree of G
then T1 = T + e contains exactly one circle C. Thus
E(C −e) ⊆ E(T ). Since S is also the minimum spanning
tree of G that does not contain a circle, then circle C
contains the e ∈ E(T ) ⊆ E(S) with the greatest weight.
Circle C is unique and E(C−e) ⊆ E(S). Note S1 = T1−e
is the spanning tree of G and w(S1) = w(T ) + w(e) −
w(e). Since T is the minimum spanning tree of G then
w(S1)−w(T ) ≥ 0 and w(e) ≤ w(e). The sequence of sides
starting with the smallest side weights e1, e2, ..., ej−1, ej,
where ej = e, are the sides of S and e1, e2, ..., ej−1, e is
a sub-graph of T which does not contain a circle . So
by applying the Kruskal Algorithm to S, we get w(e) =
w(ej) < w(e). Thus w(e) = w(e). Since e′ is the edge
with the greatest weight on the circle C then for every
ei ∈ C we get w(ei) ≤ w(e) = w(e). In the same way,
we can do this for each next member of E(S) ⊆ E(T ).
Q.E.D

Corollary 3.3. [33] Let S and T be the different min-
imum spanning trees of graph G. Let C be a simple
circle containing sides es and et on S + T such that
es ∈ E(S) ⊆ E(T ) and et ∈ E(T ) ⊆ E(S). Then ev-
ery ei ∈ E(C) apply w(ei) ≤ w(es) = w(et).
Proof: Theorem 3.2 is used for S + et and for T + es.
Q.E.D

Corollary 3.4. [33] Two different minimum spanning
trees from the weighted graph G(V, E) are only distin-
guished by equal-weighted sides.
Proof: Let S, T be the different spanning tree min-
imum from a weighted graph G(V, E). Assume e ∈
E(S) ⊆ E(T ), then according to Corollary 3.3 there is
e ∈ E(T ) ⊆ E(S), where w(e) = w(e′). Q.E.D

4 Results and Discussion

Let S be the minimum spanning tree of a graph G and
α ∈ R. The connected components of S corre-

sponding to α are the set of all sub-trees of S after
sides whose weights are greater than α are removed. The
connected components of S corresponding to α are de-
noted by <(G : S, α). If <(G : S, α) = {S1, S2, ..., Sp}
and <(G : T, α) = {T1, T2, ..., Tq} then it is easy to show
that ∪p

i=1V (Si) = ∪q
j=1V (Tj) = V (G).
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Lemma 4.1. Let G(V, E) a weighted graph and S, T
be the minimum spanning tree of G. Let <(G : S, α) =
{S1, S2, ..., Sp} and <(G : T, α) = {T1, T2, ..., Tq}. If
V (Si) ∩ V (Tj) 6= ∅ then Si + Tj is connected. If
V (Si) ∩ V (Tj) 6= ∅ and Si + Tj do not contain the circle
then Si = Tj .
Proof: Let V (Si) ∩ V (Tj) ∈ ∅ and x0 ∈ V (Si) ∩ V (Tj).
Let x1 ∈ V (Si) and x2 ∈ V (Tj). Since Si is connected
then there is a walk from x1 to x0, and Ti is connected
then there is a walk from x0 to x2. So there is a path
from x1 to x2 passing x0. So Si + Tj is connected. Sup-
pose that V (Si) ∩ V (Tj) 6= ∅ and Si + Tj do not contain
a circle then according to the Kruskal Algorithm Si + Tj

is the sub-tree of S, and also the sub-tree of T . Since all
the weights of the sides are smaller than α then Si +Tj is
one component in S and also one component in T . Thus
Si + Tj = Si = Tj. Q.E.D

Lemma 4.2. Let G(V, E) a weighted graph and S, T
be the minimum spanning tree of G. Let <(G : S, α) =
{S1, S2, ..., Sp} and <(G : T, α) = {T1, T2, ..., Tq}. If
there is es ∈ E(Si) ⊆ E(Tj) then Si +Tj contains a circle
C and there is et ∈ E(Tj) ⊆ E(Si) also side on C such
that for each ek ∈ E(C) apply w(ek) ≤ w(es) = w(es),
and V (C) ⊆ V (Si), V (C) ⊆ V (Tj).
Proof: Suppose es ∈ E(Si) ⊆ E(Tj). Since w(es) < α
and according to the Kruskal algorithm, Tj + es contains
a circle C. According to Theorem 3.2, there is ek ∈ E(C)
and for each ek E(C) apply w(ek) ≤ w(es) = w(es) < α.
So E(Tj − et) = E(Si − es) and V (Tj − et) = V (Si − es).
Since V (C−e) = V (C−e) = V (C), then V (e) ⊆ V (C) =
V (C−e) ⊆ V (Tj) and V (e) ⊆ V (C) = V (C−e) ⊆ V (Si).
So V (Si) = V (Tj). Q.E.D

Theorem 4.3. Let G(V, E) be a weighted connected
graph. Let α ∈ R, and S, T be the minimum span-
ning tree of graph G. Let <(G : S, α) = {S1, S2, ..., Sp}
and <(G : T, α) = {T1, T2, ..., Tq}. Thus p = q, and if
V (Si) ∩ V (Tj) 6= ∅ then V (Si) = V (Tj).
Proof: We will first prove the statement that if V (Si)∩
V (Tj) 6= ∅ then V (Si) = V (Tj). In the case of E(Si) =
E(Tj), V (Si) = V (Tj) is proven. So we only prove in
the case of E(Si) ⊆ E(Tj). No less generality, since
V (Si) ∩ V (Tj) 6= ∅ then suppose there is only one e ∈
E(Si) ⊆ E(Tj). According to Lemma 4.2, V (C) ⊆ V (Si)
and V (C) ⊆ V (Tj). So V (Si) = V (Tj).
Furthermore, since

V (S) = ∪q
i=1V (Si) = ∪p

j=1V (Tj) = V (T )
is finite set. For i = 1, 2, ..., q, suppose the Si com-
ponent is connected from the tree S. Select pi ∈ Si.
Since V (S) = V (T ), then there is a connected compo-
nent of T which contains pi ∈ Tj for j = 1, 2, ..., p. Since
V (Si) ∈ V (Tj) 6= ∅ then V (Si) = V (Tj). So we get
q ≤ p. In the same way for j = 1, 2, ..., p, take the Tj

of the connected component of the S. Select pj ∈ Tj .
Since V (S) = V (T ), then there is a connected compo-
nent of S which contains pj ∈ Si for i = 1, 2, ..., q. Since

V (Si) ∩ V (Tj) 6= ∅ then V (Si) = V (Tj). Thus we ob-
tained p ≤ q. Hence p = q. Q.E.D

Image can be viewed as a connected graph. Spanning tree
of a connected graph can be built and not always unique.
So the minimum spanning tree of the connected graph can
be built and not always unique. If the edge whose weight
is greater than a threshold of minimum spanning tree is
removed, it will form some of the connected components.
One of the connected components will form a segment of
an image. A collection of all these segments will form the
segmentation of the image. Such a segmentation of an
image is formed by using a minimum spanning tree for a
threshold. Suppose that there are two segmentation of an
image produced by two different minimum spanning trees
for the same threshold value. Then the two segmentations
are the same.

The following theorem says that the points of a sub-tree
corresponding to a threshold of β are the union of the
points of the sub-trees for a threshold smaller than β.

Theorem 4.4. Let α, β ∈ R, and α < β. Let <(G :
S, α) = {S1, S2, ..., Sp} and <(G : T, β) = {T1, T2, ..., Tq}.
For each Ti ∈ <(G : T, β), i = 1, 2, ..., q, there are
{Si,1, Si,2, ..., Si,ni

} ⊆ <(G : S, α) such that V (Ti) =
∪ni

j=1V (Si,j).
Proof: Let Ti ∈ <(G : T, β), for i = 1, 2, ..., q. Ac-
cording to Theorem 4.3, there is Si ∈ <(G : S, α) such
that V (Ti) = V (S′

i). The sides whose weight is greater
than α are removed from the S′

i, so we obtain the con-
nected components labeled with Si,1, Si,2, ..., Si,ni

. Thus
V (Ti) = ∪ni

j=1V (Si,j). Suppose that the G graph is con-
structed from the image. The image can be segmented us-
ing a minimum spanning tree corresponding to a thresh-
old. A segment in the image is viewed as a sub-tree cor-
responding to a threshold. Then the Theorem 4.4 says
that a segment corresponding to a threshold of β is a
composite of several segments corresponding to a thresh-
old of α (smaller than β). So the boundary of a segment
corresponding to the threshold of β is the pieces of the
boundary curve of the smaller segments corresponding to
a threshold of α (smaller than β). Q.E.D

Let G = (V, E) graph. Graph G1 = (V1, E1) is called a

sub-side graph of G if V1 = V and E1 ⊆ E. A segment
of an image can be seen as a set of points from a sub-tree
S. Suppose s1, s2 ∈ V (S) are points that are in the same
segment then there is a path from s1 to s2. Suppose x
and y are two points on graph G. If there is not path
from x to y then x and y are in different segments. This
idea will be used to prove the Theorem 4.5 which relates
to Super Grid graph in Figure 1.

Theorem 4.5. Suppose GD, GT are a sub-side graph
of Super Grid graph and GD is a sub-side graph of GT .
Let <(GD : D, β) = {D1, D2, ..., Dp} and <(GT : T, β) =
{T1, T2, ..., Tq}. For each Di ∈ <(GD : D, β), there is
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Tj ∈ <(GT : T, β) such that V (Di) ⊆ V (Tj). So V (Tj) =
{d ∈ V (GD)|d ∈ V (Di), Di ∈ <(GD : D, β), V (Di) ⊆
V (Tj)}.
Proof: Because GD is a sub-side graph of GT then
V (GD) = V (GT ) and E(GD) ⊆ E(GT ). We prove that
for every Di ∈ <(GD : D, β), there is Tj ∈ <(GT : T, β)
such that V (Di) ⊆ V (Tj). This theorem will be proven
by the contradiction with fact that D, and T are the min-
imum spanning trees of GD and GT graphs, respectively.
Suppose there is Di ∈ <(GD : D, β) such that there is not
Tj ∈ <(GT : T, β) such that V (Di) ⊆ V (Tj). Without
reducing generality, suppose V (Di) = (V (Di)∩ V (Tj))∪
(V (Di) ∩ V (Tk)) for i, j = 1, 2, ..., q and j 6= k. Select
d1, d2 ∈ V (Di) adjacent points such that d1 ∈ V (Tj),
d2 ∈ V (Tk). Because d1, d2 ∈ V (Di), then the weight
of the side (d1, d2) is smaller than β. Because d1, d2 ∈
V (T ), there is a path (d2, t1), (t1, t2), (t2, t3), ..., (tm, d1)
in T . Because the path (d2, t1), (t1, t2), (t2, t3), ..., (tm, d1)
connect two different segments, Tj and Tk seg-
ments, then, according to segment formation, there
are sides (ti, t(i+1)) whose weight is greater than
β. Paths (d1, d2), (d2, t1), (t1, t2), (t2, t3), ..., (tm, d1) are
closed paths. Then circle C can be formed from the part
of the closed path which contains sides (d1, d2), (ti, t(i+1)).
So T − (ti, t(i+1)) + (d1, d2) is a tree that spans GT be-
cause E(GD) ⊆ E(GT ). Because w(d1, d2) < β and
w(ti, t(i+1)) > β then w(T−(ti, t(i+1))+(d1 , d2)) < w(T ).
This means T is not the minimum of spanning tree, i.e.
a contradiction. So the true statement is that every
Di ∈ <(GD : D, β), there is Tj ∈ <(GT : T, β) such
that V (Di) ⊆ V (Tj).
We prove Tj = {d ∈ V (GD)|d ∈ V (Di), Di ∈ <(GD :
D, β), V (Di) ⊆ V (Tj)}. It is clear that {d ∈ V (GD)|d ∈
V (Di), Di ∈ <(GD : D, β), V (Di) ⊆ V (Tj)} ⊆ V (Tj).
Let d ∈ V (Tj). Because V (GD) = V (GT ), there
is Di ∈ <(GD : D, β) such that d ∈ V (Di). We
get V (Di) ⊆ V (Tj). So V (Tj) ⊆ {d ∈ V (GD)|d ∈
V (Di), Di ∈ <(GD : D, β), V (Di) ⊆ V (Tj)}. Q.E.D

Suppose GD, GT , GS are grid graph, triangular Graph,
and Super Grid graph, respectively, which are formed
from an image in Figure 1. We will use Theorem 4.5 to
prove Theorem 4.6.

Theorem 4.6. Suppose GD, GT , GS are grid graph,
triangular Graph, and Super Grid graph, respectively,
which are formed from an image. Let <(GD : D, β) =
{D1, D2, ..., Dp}, <(GT : T, β) = {T1, T2, ..., Tq}, and
<(GS : S, β) = {S1, S2, ..., Sr}. So V (Tj) = {d ∈
V (GD)|d ∈ V (Di), Di ∈ <(GD : D, β), V (Di) ⊆ V (Tj)}
and V (Sk) = {d ∈ V (GT )|d ∈ V (Tj), Tj ∈ <(GT :
T, β), V (Tj) ⊆ V (Sk)}
Proof: Because GD is a sub-side graph of GT then
according to theorem 4.5 V (Tj) = {d ∈ V (GD)|d ∈
V (Di), Di ∈ <(GD : D, β), V (Di) ⊆ V (Tj)}. Because
GT is a sub-side graph of GS then V (Sk) = {d ∈
V (GT )|d ∈ V (Tj), Tj ∈ <(GT : T, β), V (Tj) ⊆ V (Sk)}

according to theorem 4.5. Q.E.D

Let GD, GT , GS be the set of segments formed after
the sides whose weight are greater than β are discarded
from grid graph, triangular graph, and super grid graph,
respectively. Toerema 4.5 says that a segment in GT is a
union of several segments of GD. So that the boundary
of a segment on GT is the boundary pieces of several
segments of its forming. A segment in GS is a union
of several segments of GT . So that the boundary of a
segment on GS is the boundary pieces of several segments
of its forming.

5 Conclusion

Image can be viewed as a connected graph. Spanning tree
of a connected graph can be built and not always unique.
So the minimum spanning tree of the connected graph can
be built and not always unique. If the edge whose weight
is greater than a threshold of minimum spanning tree is
removed, it will form some of the connected components.
One of the connected components will form a segment of
an image. A collection of all these segments will form the
segmentation of the image. Such a segmentation of an
image is formed by using a minimum spanning tree for a
threshold. Suppose that there are two segmentation of an
image produced by two different minimum spanning trees
for the same threshold value. Then the two segmentations
are the same.

A segment corresponding to a threshold of β is a com-
posite of several segments corresponding to a threshold
of α (smaller than β). So the boundary of a segment
corresponding to the threshold of β is the pieces of the
boundary curve of the smaller segments corresponding to
a threshold of α (smaller than β).

Let GD, GT , GS be the set of segments formed after
the sides whose weight are greater than β are discarded
from grid graph, triangular graph, and super grid graph,
respectively. A segment in GT is a union of several seg-
ments of GD. So that the boundary of a segment on GT

is the boundary pieces of several segments of its forming.
A segment in GS is a union of several segments of GT . So
that the boundary of a segment on GS is the boundary
pieces of several segments of its forming.

6 Acknowledgement

My special thanks to Dr. Argenes Siburian for editing my
paper and giving several valuable suggestions. This re-
search project was sponsored by the Nommensen HKBP
University, Medan-Indonesia.

References

[1] F. Zhang, L.D. S. Xiang and X. Zhang, ”Seg-
ment Graph Based Image Filtering: Fast Structure-

Engineering Letters, 28:3, EL_28_3_18

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



Preserving Smoothing,” Proceeding of the IEEE
ICCV, pp. 361-369, 2015.

[2] Ruo-Wei Hung, Horng-Dar Chen, and Sian-Cing
Zeng, ”The Hamiltonicity and Hamiltonian Connec-
tivity of Some Shaped Supergrid Graphs,” IAENG
International Journal of Computer Science, vol. 44,
no.4, pp432-444, 2017

[3] F. Kallasi, D.L. Rizzini, F. Oleari and J. Aleotti,
”Computer Vision in Underwater Environments: a
Multiscale Graph Segmentation Approach,” Pro-
ceeding of the OCEANS 2015-Genova. IEEE, pp. 1-
6, 2015.

[4] Ricardo Prez-Aguila, ”Automatic Segmentation and
Classification of Computed Tomography Brain Im-
ages: An Approach Using One-Dimensional Ko-
honen Networks,” IAENG International Journal of
Computer Science, vol.37, no.1, pp27-35, 2010

[5] N. Mohd Saad, S.A.R. Abu-Bakar, Sobri Muda,
M. Mokji, and A.R. Abdullah, ”Fully Automated
Region Growing Segmentation of Brain Lesion
in Diffusion-weighted MRI,” IAENG International
Journal of Computer Science, vol.39, no.2, pp155-
164, 2012

[6] Fangyan Nie, and Pingfeng Zhang, ”Fuzzy Partition
and Correlation for Image Segmentation with Dif-
ferential Evolution,” IAENG International Journal
of Computer Science, vol.40, no.3, pp164-172, 2013

[7] Jonathan Blackledge, and Oleksandr Iakovenko,
”Resilient Digital Image Watermarking for Docu-
ment Authentication,” IAENG International Jour-
nal of Computer Science, vol. 41, no.1, pp1-17, 2014

[8] N. Mohd Saad, N. S. M. Noor, A.R. Abdullah, So-
bri Muda, A. F. Muda, and Haslinda Musa, ”Seg-
mentation and Classification Analysis Techniques
for Stroke based on Diffusion-Weighted Images,”
IAENG International Journal of Computer Science,
vol. 44, no.3, pp388-395, 2017

[9] Sirikan Chucherd, and Stanislav S. Makhanov,
”Sparse Phase Portrait Analysis for Preprocessing
and Segmentation of Ultrasound Images of Breast
Cancer,” IAENG International Journal of Computer
Science, vol.38, no.2, pp146-159, 2011

[10] D. Freedman and P. Kisilev, KDE Paring and a
Faster Mean Shift Algorithm, SIAM J. Imaging Sci,
vol.3, no.4, pp. 878903, 2010.

[11] T. Uemura, G. Koutaki and K. Uchimura, ”Im-
age Segmentation Based on Edge Detection Using
Boundary Code,” Proc. ICIC International, 2011.

[12] YongSang Ryu, YoungSoo Park, JinSoo Kim, and
SangHun Lee, ”Image Edge Detection using Fuzzy

C-means and Three Directions Image Shift Method,”
IAENG International Journal of Computer Science,
vol. 45, no.1, pp1-6, 2018

[13] Khalid Salhi, El Miloud Jaara, Mohammed Talibi
Alaoui, and Youssef Talibi Alaoui, ”Color-Texture
Image Clustering Based on Neuro-morphological
Approach,” IAENG International Journal of Com-
puter Science, vol. 46, no.1, pp134-140, 2019

[14] K. Klaus, M. Sormann and K. Karner, ”Segment-
based Stereo Matching Using Belief Propagation and
a Self-adapting Dissimilarity Measure,” Proceedings
of the IEEE International Conference on Computer
Vision, p.15-18, 2006.

[15] Q. Yang, L. Wang, R. Yang, H. Stewenius and D.
Nister, ”Stereo matching with color-weighted corre-
lation, hierarchical belief propagation and occlusion
handling,” Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern
Recognition, p. 492-504, 2006.

[16] J. Sun, Y. Li, S.B. Kang and H.-Y. Shum, ”Symmet-
ric Stereo Matching for Occlusion Handling,” Pro-
ceedings of the CVPR, 2005.

[17] L. Zitnick and S.B. Kang, ”Stereo for Image-Based
Rendering Using Image over-Segmentation,” Inter-
national Journal of Computer Vision, vol.75, no.1,
pp. 49-65, 2007.

[18] S. Mattoccia, F. Tombari and L. Di Stefano, ”Stereo
vision enabling precise border localization within a
scanline optimization framework”, Proceedings of the
Asian Conference on Computer Vision, pp. 517-527,
2007.

[19] K.-J. Yoon, and I. S. Kweon, ”Stereo Matching with
the Distinctive Similarity Measure”, Proceedings of
the ICCV, p. 1-7, 2007.

[20] M. Bleyer and M. Gelautz, ”A Layered Stereo Algo-
rithm Using Image Segmentation and Global Visibil-
ity Constraints”, Image Processing of ICIP’04, pp.
2997-3000, 2004.

[21] H. Hirschmller, ”Stereo Vision in Structured En-
vironments by Consistent Semi-Global Matching”,
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), Vol. 2, pp. 2386-2393, 2006.

[22] E. Manik, Pengaruh Bandwidth Terhadap Segmen-
tasi Citra Digital Dengan Menggunakan Mean Shift,
VISI, vol.18, no.1, pp. 43 -49, 2010.

[23] S.J. Peter, ”Minimum Spanning Tree-based Struc-
tural Similarity Clustering for Image Mining with
Local Region Outliers,” IJCA, Vol.8, no.6, pp.
09758887, 2010.

Engineering Letters, 28:3, EL_28_3_18

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



[24] S K Vaidya, N A Dani, K K Kanani, and P L Vihol,
”Cordial and 3-equitable Labeling for Some Wheel
Related Graphs,” IAENG International Journal of
Applied Mathematics, vol.41, no.2, pp99-105, 2011

[25] E. Manik, S. Suwilo, Tulus and O. S. Sitompul, ”On
the 5-Local Profiles of Trees”, IOP Conf. Series:
Materials Science and Engineering 300, 2018.

[26] J.M Haris, J.L. Hirst and M.J. Mossinghoff,
Combinatorics and Graph Theory,Second Edition,
Springer, 2008.

[27] R.J. Wilson, Intoduction to Graph Theory, fourth
Edition, Longman, 1996.

[28] B. Korte and J. Vygen, Combinatorial Optimization:
Theory and Algorithms, Third Edition, Germany:
Springer, 2006.

[29] K. H. Rosen, Discrete Mathematics and its applica-
tions, 6th ed, McGraw-Hill, 2007.

[30] W.L. Winston, Operations Research: Applications
and Algorithms, Fourth Edition, USA: Thomson,
2004.

[31] J. B. Kruskal, ”On the shortest spanning subtree of
a graph and the travelling salesman problem”, Proc.
AMS, pp. 48-50, 7, 1956.

[32] E. W. Mayr and C. G. Plaxton, ”On the spanning
trees of weight graphs,” Combinatorica, vol.12, no.4,
pp. 433-447, 1992.

[33] E. Manik, S. Suwilo, Tulus and O. S. Sitompul,
”The Uniqueness of Image Segmentation Generated
by Different Minimum Spanning Tree”, Global Jour-
nal of Pure and Applied Mathematics, vol.13, no.7,
pp. 2975-2980, 2017.

Engineering Letters, 28:3, EL_28_3_18

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 




