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Abstract—An adaptive fuzzy control scheme is proposed for 

a class of unknown multi-input multi-output (MIMO) 

nonlinear dynamic systems with bounded control inputs. A 

regularized inverse matrix was adopted to obtain a stable 

controller. Using a hyperbolic tangent smoothing function, the 

control signals can be limited to the amplitude range of 

actuators. This solves the problem of an arbitrary amplitude of 

control signals, which is very disadvantageous for the actuator. 

The feasibility of the proposed approach is demonstrated by 

simulations. 

  

Index Terms—Adaptive fuzzy control, MIMO nonlinear 

systems, bounded control inputs, simulation 

 

I. INTRODUCTION 

n the past two decades, controller design for nonlinear 

systems has been given sustained attention. Traditional 

feedback control theory is inadequate for designing a 

controller in nonlinear systems that can meet performance 

requirements, while the newer adaptive control technology 

can ensure the stability of the system globally. In 1998, Ye 

and Jiang [1] reported an adaptive scheme for nonlinear 

systems that did not require prior knowledge of control 

directions. Fuzzy control is also an effective method for 

nonlinear system design, and has been widely used in many 

industrial systems [2-3]. Al-Hadithi et al. [4] in 2015 

developed a fuzzy optimal control scheme using a 

generalized Takagi-Sugeno model for nonlinear 

multivariable systems, which was improved through a 

weighting parameters approach. 

With advances in intelligent theory, many adaptive control 

systems have been generated, including those based on fuzzy 

logic or neural networks. Indeed, for complex nonlinear  
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systems, adaptive fuzzy control (AFC) is superior to 

traditional methods for dealing with parameter changes, 

unmodeled dynamics, and external disturbances [5]. 

Ghavidel and Kalat [6] proposed an observer-based adaptive 

fuzzy controller for nonlinear systems, with a feedback error 

function to approximate and compensate for unknown 

uncertainties and external disturbances. Liu et al. [7] 

developed an adaptive fuzzy controller for nonlinear 

discrete-time systems with dead zone and input constraints. 

The backstepping method has also been applied to the design 

of nonlinear systems. Lin et al. [8] designed an AFC scheme 

using backstepping for nonlinear pure-feedback systems with 

unknown dead zone output and external disturbance. Tong et 

al. [9] developed a fuzzy adaptive backstepping output 

feedback control scheme for MIMO (multiple input, multiple 

output) nonlinear systems with immeasurable states. Tong et 

al. [10] described an adaptive fuzzy backstepping dynamic 

surface control algorithm, with a fuzzy state observer 

adopted to estimate immeasurable states. 

An adaptive fuzzy output tracking control approach was 

also proposed for SISO (single input, single output) unknown 

nonlinear systems [11], and furthermore, for SISO nonlinear 

systems with unstructured uncertainties and unknown dead 

zone [12]. In the later, fuzzy logic systems were used to 

approximate unstructured uncertainties. 

In recent years, many scholars have studied the AFC of 

MIMO nonlinear systems [13-24]. Labiod et al. [13] reported 

an AFC method for uncertain MIMO nonlinear systems, in 

which the non-singularity of the fuzzy controller is 

guaranteed based on a generalized inverse of the matrix. To 

avoid the singularity problem of fuzzy controllers, Tong et al. 

[14] adopted singular value decomposition of matrices. 

Labiod et al. [15] offered a direct AFC law to approximate an 

unknown ideal controller; the parameters of the fuzzy 

systems were adjusted using a gradient descent algorithm. 

Three AFC schemes were proposed by Boulkroune et al. [16] 

for MIMO nonlinear systems with known or unknown 

control directions. A Nussbaum-type function was 

incorporated to accommodate control gain matrices of 

unknown sign. For MIMO nonlinear time-delay systems, this 

group also developed an AFC of variable-structure using 

matrix decomposition [17]. For MIMO non-affine systems, a 

fuzzy indirect adaptive control, based on approximation, was 

investigated by Boulkroune et al. [18], also with the 

Nussbaum gain function. Nekoukar and Erfanian [19] 

adopted an adaptive fuzzy sliding mode control for MIMO 

uncertain nonlinear systems, to identify the dynamics of the 
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plant. For unknown input nonlinearities such as 

backlash-like hysteresis or dead-zone, an adaptive fuzzy 

output feedback controller was presented by Reza [20]. Shi 

[21] offered an indirect AFC approach for MIMO nonlinear 

systems with asymmetric control gain matrix and unknown 

control direction. For systems with asymmetric control gain 

matrix and unknown dead-zone inputs, the same author 

developed an AFC scheme using matrix decomposition [22]. 

Furthermore, Shi et al. [23] designed an indirect adaptive 

fuzzy-prescribed performance control scheme for MIMO 

feedback linearizable systems with unknown control 

direction, and Shi and Li [24] proposed an AFC scheme 

using prescribed performance bounds and Nussbaum-type 

gain function for MIMO nonlinear systems with unknown 

control direction and external disturbances. 

Although the contributions of the above authors have been 

valuable, yet systems in which the control input is limited 

have not been considered. In actual systems, the output 

amplitude of the actuator is bounded within limits and 

control law cannot be applied. The present study formulated 

a control goal for MIMO nonlinear systems, and presents an 

AFC scheme with bounded control inputs. The control 

scheme is then demonstrated via simulation with a two-link 

rigid robot manipulator. 

This paper is organized as follows. Section II formulates a 

class of MIMO nonlinear systems and the control goal. In 

Section III, an adaptive fuzzy control scheme with bounded 

control inputs is presented. In Section IV, the control scheme 

is applied to a two-link rigid robot manipulator. Section V 

concludes this paper. 

II. PROBLEM FORMULATION 

Consider the following MIMO nonlinear system [13]: 
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state vector which is assumed measurable, u=[u1,…, up]
T is 

the control input vector, y=[y1,…,yp]
T is the output vector, 
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nonlinear functions.  
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Then (1) can be rewritten as: 

( ) ( ) ( )r  y F x G x u .                   (2) 

By designing the control law u(t), it is guaranteed that all 

variables of the closed-loop system are bounded, and the 

output of the system can track the desired trajectory: 

yd(t)=[yd1(t),…,ydp(t)]
T. 

 

We make two assumptions throughout this report, as 

follows. 

Assumption 1. G(x) is a positive definite matrix, and there 

exists a real number 0 >0 such that G(x)≥
0 p I . 

Assumption 2. The desired trajectory ydi(t), i=1,…,p is 

bounded, and ri-order derivatives are bounded.  

Trajectory tracking errors are defined as: 
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Filter tracking errors are defined as: 
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According to Newton's binomial theorem: 
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 are binomial expansion coefficients. 

Applying (5) to (4), one obtains: 
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The time derivatives of the filtered errors can be rewritten 

as: 
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where v1,…,vp are as follows: 
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Denote s(t)=[s1(t),…, sp(t)]
T, v(t)=[v1(t),…, vp(t)]

T, then (8) 

can be expressed as: 

= - ( )- ( )s v F x G x u .        (10) 

If the nonlinear functions F(x) and G(x) are given, the 

following control law can be used: 
1

0( )( ( ) )   u = G x F x v K s ,   (11) 

where K0=diag[k01,…, k0p], k0i>0, i=1,…,p. 

Substituting (11) into (10) yields: 

0( ) = ( )t ts K s ,            (12) 

or, equivalently 

0( ) , ,( 1),i i it K s t i ps   .     (13) 

Solving differential equations yields: 

0( ) (0) 1, ,,iK t

i is t s e i p

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which implies that si(t)0 as t∞.  

Therefore ei(t) and its ri-1 order derivative converge to 

zero uniformly. When fi(x) and gij(x) are known, the control 

law (11) is easily obtained, but in the actual system, the 

nonlinear functions fi(x) and gij(x) are unknown, and the 

control law (11) cannot be designed. Fuzzy systems can be 

used to approximate the nonlinear functions fi(x) and gij(x). 

III. ADAPTIVE FUZZY CONTROL SCHEME 

A. Fuzzy Logic Systems 

The fuzzy system applied in this paper consists of a 

fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference 

engine, and a defuzzifier. The fuzzy inference engine utilizes 

the fuzzy IF-THEN rules to perform a mapping from an input 

vector x=[x1,…,xn]
T R

n , to an output variable y R . The 

lth fuzzy rule can be written as: 
( )lR :IF x1 is 

1

lF  and… and xn is 
l

nF ,Then y is 
lG , 

where l

iF  and 
lG  are fuzzy sets associating with fuzzy 

member functions ( )l
i

iF
x  and ( )lG

y ,respectively, and 

l=1,…,M; M is the number of rules. 

Applying singleton fuzzification, product inference, and 

center-average defuzzification to design the fuzzy system, 

the output of the fuzzy system is expressed as follows: 
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Define the fuzzy basis function as: 
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then (15) can be rewritten as: 
T( ) ( )y x x  ,               (17) 

where 
T

1 M         x x x ;θ=[y1,…, yM]T. 

 

B. Adaptive Fuzzy Control Scheme 

If fuzzy systems are used to approximate the unknown 

nonlinear functions fi(x) and gij(x), then these 

approximations are employed to design the adaptive control 

laws, to meet the control goal. Let the nonlinear functions fi(x) 

and gij(x) be approximated by fuzzy systems as follows: 
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as the optimal approximation parameters of
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By using f
ˆ ( , )F x  and

g
ˆ ( , )G x   respectively, instead 

of F(x) and G(x) in (11), then from the above analysis, we 

have: 

*

f f f f
ˆ ˆ ˆ( ) ( , ) = ( , ) ( , ) + ( ) F x F x F x F x x    , (25) 
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ˆ ˆ ˆ( ) ( , ) = ( , ) ( , ) + ( ) G x G x G x G x x    . (26) 

Consider the control law u=uc, where uc is the control 

term defined as 

1

c g f 0
ˆ ˆ( , )( ( , ) )   u = G x F x v K s  .   (27) 

Since the matrix g
ˆ ( , )G x  is generated on-line by 

estimating the parameters θg, it is difficult to guarantee 

the non-singularity g
ˆ ( , )G x  .  

For this reason, the regularized 

inverse:
T T 1
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where 0 is a small positive constant and Ip is an identity 

matrix.  

To reduce the reconstruction errors, the robust control 

term ur is introduced to the control law: 

u=uc+ur ,                                 (29) 
T

f g c 0

r 2

0

| | ( | | | |)

 

 




s s u u
u

s

 
 ,          (30) 

T 1

0 0 0 g g f 0
ˆ ˆ ˆ[ + ( , ) ( , )] ( ( , ) + + )p   u = I G x G x F x v K s   , 

(31) 

where δ is a time-varying parameter, defined below. 

To meet the control goal, the design parameter δ and 

the adaptive parameters
fi
 and gij

 are updated by the 

following adaptive laws: 
T

f g c 0

0 2

0

| | ( | | | |)
 

 

 
 



s u u

s

 
,   (32) 

f f f ( )
i i i is  x  ,           (33) 

g g g c( )
ij ij ij jis u  x  ,       (34) 

where
f 0
i

  , g 0
ij

  , 0 0  , and (0) 0  . 

If the system (1) satisfies the Assumptions 1 and 2, and 

adopts the control laws defined by (28)-(30) with the adaptive 

laws designed by (32)-(34), then all signals in the closed loop 

system are bounded, and the tracking errors and its 

derivatives asymptotically converge to zero [13]. 

However, the above control laws do not consider the 

problem of limited control inputs. In practical control 

applications, the output amplitude of the actuator, due to its 

own physical characteristics, is limited. Thus, the problem of 

input limitation must be considered.  

To satisfy ( ) Mu t u , consider the following hyperbolic 

tangent smoothing function: 
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which has the following characteristics: 
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Control law (29) is then modified as follows: 

a tanh( )M

M

u
u


u

u ,              (36) 

where ua is the real control input. 

IV. SIMULATION 

A. Control Inputs Without Restriction 

For a two-link rigid robot manipulator moving in a 

horizontal plane, the dynamic equations can be written as 

[13]: 
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Equation (37) can be written as 
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           
           

, (38) 

where 

11 1 3 2 4 22 cos 2 sinM a a q a q   , 

21 12 2 3 2 4 2cos sinM M a a q a q    , 

22 2M a , 

3 2 4 2sin cosh a q a q   

with 
2 2 2

1 1 1 c1 c 1e e e ea I m l I m l m l     , 

2

2 ce e ea I m l  , 

3 1 c cose e ea m l l  , 
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4 1 c sine e ea m l l   

Let m1=1, me=2, l1=1, lc1=0.5, lce=0.5, I1=0.12, Ie=0.25, 

e =π/6, and let y=[q1, q2]
T, u=[u1, u2]

T, x=[ 1q , 1q , 2q , 2q ]T. 

Then: 

1 2 1 2 11

2 1 2

( ) ( )
( )

( ) 0

f hq h q q q
M

f hq q


       

       
     

x
F x

x

1

11 12 11 121

21 22 21 22

( )
g g M M

M
g g M M



   
     
   

G x  

and the robot system described by (38) can be express as 

( ) + ( )y = F x G x u .                        (39) 

The control goal is to make the system outputs q1 and q2 

track the desired trajectories yd1=sint and yd2=sint, 

respectively. With the simulation, F(x) and G(x) are assumed 

to be unknown, i.e., the adaptive fuzzy controller does not 

need the knowledge of the system’s model, and the dynamic 

model is only required for simulation. For 

x=[ 1q , 1q , 2q , 2q ]T, we define three Gaussian membership 

functions as: 

1

21.251
( ) exp( ( ) )

2 0.6i

i
iF

x
x


  , 

2

21
( ) exp( ( ) )

2 0.6i

i
iF

x
x   , 

3

21.251
( ) exp( ( ) ), 1,2,3,4

2 0.6i

i
iF

x
x i


   . 

First, the control law (29) is employed. The initial 

conditions of the robot: x(0)=[0.5 0 0.25 0]T, and the design 

parameters of the simulation are selected as 

follows: 0 0.1  ,
f 0.5
i

  , g 0.5
ij

  , 0 0.001  ,

0 0.2  , (0) 0  , g

0.2 0.2

0.2 0.2

 
  
 

 ,

 
T

f 0.2, 0.2 . 

When λ1=25, λ2=25, and K0=15I2, the simulation results 

for the first and second links are shown in Figs. 1 and 2, 

respectively, and for the control inputs are shown in Fig. 3. 

From the simulation experiments, we conclude that the 

values of λ1, λ2, and K0 have great influence on the control 

input u, and the control input u increases with increases in λ1, 

λ2, and K0. 
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Fig. 1. Tracking curves of Link 1: actual(-) and desired(--) 
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Fig. 2. Tracking curves of Link 2: actual(-) and desired(--) 
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Fig. 3. Control inputs: u1(-) and u2(--) 

 

From the simulation results, we can conclude that the 

control laws are effective for the unknown nonlinear systems. 

However, the maximum of u is 333.7, and the minimum of u 

is -291.4. It is unrealistic to consider that an actual control 

signal will be free from restrictions or constraints. 

B. Control Inputs With Restriction 

For restricted control inputs, the control law (36) is 

exploited. When Mu =150 and all other parameters are the 

same as those in Section IV, the simulation results are shown 

in Figs. 4-5. 
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Fig. 4. Tracking curves of Link 1 with bounded control inputs (uM =150): 

actual(-) and desired(--) 

 

 
Fig. 5. Tracking curves of Link 2 with bounded control inputs (uM=150): 

actual(-) and desired(--) 

 

When Mu =100 and all other parameters are the same as 

those in Section IV, the simulation results are shown in Figs. 

6-7. 

 
Fig. 6. Tracking curves of Link 1 with bounded control inputs (uM =100): 

actual(-) and desired(--) 

 

 
Fig. 7. Tracking curves of Link 2 with bounded control inputs (uM=100): 

actual(-) and desired(--) 

 

When Mu =50 and all other parameters are the same as 

those in Section IV, the simulation results are shown in Figs. 

8-10. 
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Fig. 8. Tracking curves of Link 1 with bounded control inputs (uM =50): 

actual(-) and desired(--) 
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Fig. 9. Tracking curves of Link 2 with bounded control inputs (uM =50): 

actual(-) and desired(--) 
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Fig. 10. Control inputs with restriction (uM =50): u1(-) and u2(--) 

 

The simulation results show that tracking capability of the 

proposed controller is acceptable, when the control inputs 

have restricted amplitudes. 

V. CONCLUSION 

In this paper, an adaptive fuzzy control scheme with 

bounded control inputs is proposed for a class of MINO 

nonlinear systems. The proposed approach does not know the 

mathematical model of the plant with the help of fuzzy 

systems. To avoid a situation in which the control signal 

exceeds its amplitude, a hyperbolic tangent smoothing 

function is incorporated in the control terms to deal with the 

unknown amplitude of control signals. Simulation results 

demonstrate the feasibility and capability of the proposed 

approach. The proposed approach is of practical significance 

for the control of real nonlinear systems. 
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