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Abstract—In this article, the following advanced partial
difference equation

pum+2,n + qum,n+2 − um,n + rum+σ,n+τ = 0

is considered, where p, q, r are real numbers satisfying p2+q2+
r2 6= 0, and m,n, σ, τ are non-negative integers. It derives some
necessary and sufficient conditions by means of the envelope
theory to ensure the oscillatory properties of solutions for the
equation.

Index Terms—advanced partial difference equation, oscilla-
tion, envelope, characteristic equation.

I. INTRODUCTION

OSCILLATORY behavior is always one of the important
study fields in the qualitative theory research. Mean-

while, partial difference equations have numerous applica-
tions as in population control, image processing, economic
time series problem, material mechanics, etc[1-3]. In recent
years, the study of oscillatory solution of partial difference
has attracted considerable attention. In [4], by means of
zero point theorem, B. G. Zhang and R. P. Agarwal have
investigated the oscillatory property of the following partial
difference equation

Am+1,n +Am,n+1 − pAm,n +

µ∑
i=1

qiAm−ki,n−li = 0,

where p, qi are real numbers, ki, li ∈ N0(i = 1, 2, ..., µ),
Nt = {t, t+ 1, ...}, and µ is a positive integer.

There are many literature dealing with oscillatory studies
for difference equations, we refer the reader to [5-10] for
some references. However, most research handled ordinary or
delay partial difference equations. For the oscillatory studies,
there appeared few sample of work related to advanced
partial difference equations, especially for the second order
case. In this paper, we consider the following advanced
partial difference equation

pum+2,n + qum,n+2 − um,n + rum+σ,n+τ = 0, (1)

where p, q are real parameters satisfying p2 + q2 + r2 6= 0,
and m,n, σ, τ are nonnegative real numbers. We will apply
the envelope theory to derive necessary and sufficient con-
ditions for the advanced partial difference equation (1) to be
oscillatory without the sign constrains for parameters p, q
and r.
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Before stating the main results, we provide some defini-
tions used in this paper.

Definition 1 If σ ≥ 0, τ ≥ 0 and σ2 + τ2 6= 0. Then the
equation(1) is called advanced equation.

Definition 2 A solution of (1) is a real double sequence
{um,n} which is defined for m ≥ −σ,n ≥ −τ and satisfies
(1) for m ≥ 0 and n ≥ 0.

Definition 3 A solution {um,n} of (1) is said to be eventually
positive (or negative) if um,n > 0 (or um,n < 0 ) for large
numbers m and n. It is said to be oscillatory if it is neither
eventually positive nor eventually negative. (1) is called
oscillatory if all of its nontrivial solutions are oscillatory.

II. PRELIMINARIES

In this section, we give some lemmas that will be used in
the proof of the main results in section 3.

Lemma 1 [11] The following statements are equivalent:
(i) Every solution of equation (1) is oscillatory.
(ii) The characteristic equation of equation (1)

pλ2 + qµ2 − 1 + rλσµτ = 0

has no positive root.
Lemma 2 [12] Suppose that f(x), g(x) and v(x) are differ-
entiable on (−∞,+∞). Let Γ be the one-parameter family
of lines defined by the equation

f(λ)x+ g(λ)y = v(λ)

, where λ is a parameter. Let Σ be the envelope of the family
Γ. Then the equation

f(λ)a+ g(λ)b = v(λ)

has no real root if and only if there is no tangent line of Σ
passing through the point (a, b) in xy-space.

Lemma 2’ [12] Suppose that f(x), g(x), h(x) and v(x) are
differentiable on (−∞,+∞). Let Γ be the one-parameter
family of planes defined by the equation

f(λ)x+ g(λ)y + h(λ)z = v(λ)

, where λ is a parameter. Let Σ be the envelope of the family
Γ. Then the equation

f(λ)a+ g(λ)b+ h(λ)c = v(λ)

has no real root if and only if there is no tangent plane of
Σ passing through the point (a, b, c) in xyz-space.

Lemma 3 [12] Assume f(x, y), g(x, y), h(x, y) and v(x, y)
are differentiable on (−∞,+∞)× (−∞,+∞). Let Γ be the
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the two-parameter family of planes defined by the following
equation

f(λ, µ)x+ g(λ, µ)y + h(λ, µ)z = v(λ, µ),

where λ, µ are real numbers. Let Σ be the envelop of family
of planes Γ. Then the equation

f(λ, µ)a+ g(λ, µ)b+ h(λ, µ)c = v(λ, µ)

has no real root if and only if there is no tangent plane of
Σ passing through the point (a, b, c) in xyz-plane.

Lemma 3’ [12] If the function f(x, y), g(x, y), h(x, y) are
differentiable on (−∞,+∞) × (−∞,+∞), and Γ is the
the two-parameter family of lines defined by the following
equation

f(λ, µ)x+ g(λ, µ)y = h(λ, µ),

where λ, µ are real numbers. Let Σ be the envelop of family
of lines Γ. Then the equation

f(λ, µ)a+ g(λ, µ)b = h(λ, µ)

has no real root if and only if there is no tangent line of Σ
passing through the point (a, b) in xy-plane.

Lemma 4 [12] Let f(x) be continuously differentiable
and not equivalent to zero on (0,+∞). If f satisfies
limx→+∞ f(x) > 0 or limx→0+ f(x) > 0, then the equation

F (x, y) = y + f(x) = 0

has no positive root on (0,+∞) × (0,+∞) if and only if
the equation f(x) = 0 has no positive root on (0,+∞).

Lemma 5 Let

f(λ, p, r) = rλk + pλ2 − 1 = 0, (2)

where k ∈ Z and k ≥ 3, p, r are real parameters. Then the
equation f(λ, p, r) = 0 has no positive root if and only if
p ≤ 0, r ≤ 0 or p > 0, r < −2(k − 2)

k−2
2 p

k
2 /k

k
2 .

Proof (I)If r = 0, then f(λ, p) = pλ2−1 = 0 has no positive
root if and only if p ≤ 0.

(II)If r 6= 0, we will consider (p, r) as a point in xy-
plane, and try to search for the exact regions including points
(p, r) in xy-plane such that (2) has no positive root. Actually,
f(λ, x, y) = 0 can be regarded as an equation describing a
one-parameter family of lines in xy-plane where λ is the
parameter. According to the envelop theory, the points of the
envelope of the one-parameter family of lines defined by (2)
satisfy the following equations{

f(λ, x, y) = λky + λ2x− 1 = 0,

fλ(λ, x, y) = kλk−1y + 2λx = 0,
(3)

where λ > 0 . Eliminating the two parameters λ from (3),
we get the equation of the envelope

y(x) = −2(k − 2)
k−2
2

k
k
2

x
k
2 , x > 0. (4)

From (4), we get

y′ = − (k − 2)
k−2
2

k
k−2
2

x
k−2
2 , y′′ = − (k − 2)

k
2

2k
k−2
2

x
k−4
2 , x > 0.

Fig. 1. The envelope curve for k = 4

Then we have y(x) < 0, y′ < 0, y′′ < 0 on (0,+∞),
which implies y is strictly decreasing and convex. Fur-

thermore, limx→0+ y(x) = limx→0+
−2(k−2)

k−2
2 x

k
2

k
k
2

=

0, limx→+∞ y(x) = limx→+∞
−2(k−2)

k−2
2 x

k
2

k
k
2

= −∞. The
envelope C defined by (4) is negative, strictly decreasing
and convex as described in Figure 1. It is clearly seen that
when the point (p, r) is under the envelope C, namely, p > 0

and r < −2(k − 2)
k−2
2 p

k
2 /k

k
2 , there cannot be any tangent

line of C which passes through the point (p, r). When the
point (p, r) is in the third quadrant, observing that p ≤ 0 and
r < 0, there cannot be any tangent line of C which passes
through the point (p, r).

According to lemma 2, (2) has no positive real root if
and only if p ≤ 0 and r ≤ 0 or p > 0 and r < −2(k −
2)

k−2
2 p

k
2 /k

k
2 .

III. MAIN RESULTS

In this section, some necessary and sufficient conditions
for oscillations of all solutions of equation (1) are established.

Theorem 1 Let σ ≥ 2, τ ≥ 1 or σ ≥ 1, τ ≥ 2. Then every
solution of equation (1) oscillates if and only if p ≤ 0, q ≤
0, r ≤ 0.

Proof When σ ≥ 2, τ ≥ 1 or σ ≥ 1, τ ≥ 2, the characteristic
equation of equation (1) is

φ(p, q, r, λ, µ) = pλ2 + qµ2 − 1 + rλσµτ = 0. (5)

According to lemma 1, we only need to consider the positive
solution of (5), that is λ > 0, µ > 0. We will consider
(p, q, r) as a point in xyz-space and search for the exact
regions including points (p, q, r) such that (5) has no positive
root. Actually, φ(x, y, z, λ, µ) = 0 can be considered as
an equation describing a two-parameter family of planes in
xyz-space, where λ, µ are two real parameters. According
to the envelop theory, the points of the envelope of the
two-parameter family of planes defined by (5) satisfy the
following equations

φ(x, y, z, λ, µ) = 0,

φλ(x, y, z, λ, µ) = 2λx+ σλσ−1µτz = 0,

φµ(x, y, z, λ, µ) = 2µy + τλσµτ−1z = 0,

(6)
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where λ > 0, µ > 0. Eliminating the parameter λ, µ from
(6), we obtain the equation of the envelope

z(x, y) = −2(σ + τ − 2)
σ+τ−2

2

σ
σ
2 τ

τ
2

x
σ
2 y

τ
2 , (7)

where x > 0, y > 0. Consequently we have

∂z

∂x
= − (σ + τ − 2)

σ+τ−2
2

σ
σ−2
2 τ

τ
2

x
σ−2
2 y

τ
2 ,

∂z

∂y
= − (σ + τ − 2)

σ+τ−2
2

σ
σ
2 τ

τ−2
2

x
σ
2 y

τ−2
2 ,

∂2z

∂x2
= − (σ − 2)(σ + τ − 2)

σ+τ−2
2

2σ
σ−2
2 τ

τ
2

x
σ−4
2 y

τ
2 ,

∂2z

∂y2
= − (τ − 2)(σ + τ − 2)

σ+τ−2
2

2σ
σ
2 τ

τ−2
2

x
σ
2 y

τ−4
2 ,

∂2z

∂x∂y
= −2(σ + τ − 2)

σ+τ−2
2

2σ
σ−2
2 τ

τ−2
2

x
σ−2
2 y

τ−2
2 .

Then ∂2z/∂x2 < 0, ∂2z/∂y2 < 0, ∂2z/∂x2 · ∂2z/∂y2 −

Fig. 2. The envelope surface for σ = 2, τ = 2

(∂2z/∂x∂y)2 < 0, so the function z(x, y) is neither convex
nor concave on (0,+∞)×(0,+∞). Furthermore, when x >
0, y > 0, z(x, y) < 0, lim(x,y)→(+∞,+∞) z(x, y) = −∞
and lim(x,y)→(0+,0+) = 0. The envelope S defined by (7) is
in the fifth quadrant as described in Figure 2. It is clearly
seen that when the point (p, q, r) in the seventh quadrant and
p ≤ 0, q ≤ 0 and r ≤ 0 , there cannot be any tangent plane
of the envelope S which passes through the point (p, q, r).
According to lemma 3, the characteristic equation of equation
(5) has no positive real root if and only if p ≤ 0, q ≤ 0 and
r ≤ 0. Associated with lemma 1, the proof is accomplished.

Theorem 2 Let σ ≥ 3, τ = 0. Then every solution of
equation (1) oscillates if and only if p ≤ 0, q ≤ 0, r ≤ 0 or
p > 0, q ≤ 0, r < −2(σ − 2)

σ−2
2 p

σ
2 /σ

σ
2 .

Proof When σ ≥ 3, τ = 0 the characteristic equation of
equation (1) is

φ(p, q, r, λ, µ) = pλ2 + qµ2 − 1 + rλσ = 0. (8)

If q > 0, it is clear that (8) has positive root. So we only
need to consider the case q ≤ 0.

(I) For q = 0, (8) can be rewritten as

φ(p, r, λ) = rλσ − 1 + pλ2 = 0. (9)

According to lemma 5, (9) has no positive root if and only

if p ≤ 0, r ≤ 0 or p > 0, r < − 2(σ−2)
σ−2
2

σ
σ
2

p
σ
2 .

(II) For q < 0, the characteristic equation (8) can be
rewritten as

φ(p, q, r, λ, µ) = q(µ2 +
p

q
λ2 − 1

q
+
r

q
λσ) = 0. (10)

Set
F (

1

q
,
p

q
,
r

q
, λ) =

p

q
λ2 − 1

q
+
r

q
λσ. (11)

Since q < 0, limλ→0+ F (1/q, p/q, r/q, λ) = −1/q > 0
and F (1/q, p/q, r/q, λ) is differentiable on (0,+∞) with
regard to λ. According to lemma 1, we only need to consider
the positive solution of (11), that is λ > 0. Now consider
(1/q, p/q, r/q) as a point in xyz-space and search for the
exact regions including points (1/q, p/q, r/q) such that (11)
has no positive root. Actually, F (x, y, z, λ) = 0 can be
regarded as an equation describing a one-parameter family
of planes in xyz-space , where λ is the parameter. According
to the envelop theory, the points of the envelope of the
one-parameter family of planes defined by (11) satisfy the
following equations{

F (x, y, z, λ) = −x+ λ2y + λσz = 0,

Fλ(x, y, z, λ) = 2λy + σλσ−1z = 0,
(12)

where λ > 0. Eliminating the parameter λ from (12), we
obtain the equation of the envelope

z(x, y) = −
2(σ − 2)

σ−2
2 y σ2

σ
σ
2 x

σ−2
2

, (13)

where x < 0, y < 0. Then

∂z

∂x
=

(σ − 2)
σ
2 y

σ
2

σ
σ
2 x

σ
2

,
∂z

∂y
= − (σ − 2)

σ−2
2 y

σ−2
2

σ
σ−2
2 x

σ−2
2

,

∂2z

∂x2
= − (σ − 2)

σ
2 y

σ
2

2σ
σ−2
2 x

σ+2
2

,
∂2z

∂y2
= − (σ − 2)

σ
2 y

σ−4
2

2σ
σ−2
2 x

σ−2
2

,

∂2z

∂x∂y
=

(σ − 2)
σ
2 y

σ−2
2

2σ
σ−2
2 x

σ
2

,

where x < 0, y < 0. Thus z(x, y) > 0, ∂2z/∂x2 >
0, ∂2z/∂y2 > 0 and ∂2z/∂x2 ·∂2z/∂y2−(∂2z/∂x∂y)2 = 0,
and so z(x, y) is convex on (−∞, 0) × (−∞, 0). The en-
velope defined by (13) is a convex surface S in the third
quadrant, described in Figure 3. It is clearly seen that in the
first place, when the point (1/q, p/q, r/q) is directly over
the envelop S, that is, when 1/q < 0, p/q < 0, r/q >

−2(σ−2)
σ−2
2 (p/q)

σ
2 /σ

σ
2 (1/q)

σ−2
2 , which can be simplified

as p > 0, q < 0 and r < −2(σ− 2)
σ−2
2 p

σ
2 /σ

σ
2 , there cannot

be any tangent plane of the envelope S which passes through
the point (1/q, p/q, r/q). According to lemma 2’, the char-
acteristic equation of equation (8) has no positive real root
if and only if p > 0, q < 0 and r < −2(σ − 2)

σ−2
2 p

σ
2 /σ

σ
2 .

In the second place, when the point (1/q, p/q, r/q) is in
the second quadrant, which means q < 0, p/q ≥ 0 and
r/q ≥ 0 , and simplified as p ≤ 0, q < 0 and r ≤ 0,
similarly there cannot be any tangent plane of the envelope
S which passes through the point (1/q, p/q, r/q). Since (8)
and (11) has the same positive roots, based on lemma 2’,
the characteristic equation (8) has no positive real root if
and only if p ≤ 0, q < 0 and r ≤ 0 or p > 0, q < 0 and

r < − 2(σ−2)
σ−2
2

σ
σ
2

p
σ
2 .
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Combined with (I) and (II), (8) has no positive real root
if and only if p ≤ 0, q ≤ 0 and r ≤ 0 or p > 0, q ≤ 0 and
r < −2(σ − 2)

σ−2
2 p

σ
2 /σ

σ
2 . Associated with lemma 1, the

proof is accomplished.

Fig. 3. The envelope surface for σ = 4, τ = 0

Theorem 3 Let σ = 0, τ ≥ 3. Then every solution of
equation (1) oscillates if and only if p ≤ 0, q ≤ 0, r ≤ 0 or
p ≤ 0, q > 0, r < −2(τ − 2)

τ−2
2 q

τ
2 /τ

τ
2 .

Proof The proof is similar to that of theorem 2 since the
equation has symmetric property.

Theorem 4 Let σ = 0, τ = 2. Then every solution of
equation (1) oscillates if and only if q + r ≤ 0.

Proof When σ = 0, τ = 2, the characteristic equation of
equation (1) is

φ(p, q, r, λ, µ) = pλ2 + (q + r)µ2 − 1 = 0. (14)

We discuss it in three cases.
(I) When p = 0, the characteristic equation is

φ(q, r, µ) = (q + r)µ2 − 1 = 0. (15)

It is obvious that the equation (15) has no positive real root
if and only if q + r ≤ 0.

(II) When p < 0, (14) can be rewritten as

φ(p, q, r, λ, µ) = p(λ2 +
q + r

p
µ2 − 1

p
) = 0. (16)

Set
F (

1

p
,
q + r

p
, µ) =

q + r

p
µ2 − 1

p
= 0. (17)

It is obvious that the equation (17) has no positive real root
if and only if q + r ≤ 0. Since limµ→0+ F ( 1

p ,
q+r
p , µ) =

− 1
p > 0 and F ( 1

p ,
q+r
p , µ) is continuously differentiable with

respect to µ ∈ (0,+∞). Based on lemma 4, (14) and (17) has
the same positive roots, which implies that the characteristic
equation (14) has no positive real root if and only if q+r ≤ 0.

(III)For p > 0, we have

(q + r)µ2 − 1 = −pλ2 ≤ 0, (18)

which means µ2 ≤ 1
q+r . Thus (18) has no positive root if

and only if q + r < 0.
Combined with the above three cases, equation (14) has

no positive root if and only if q + r ≤ 0. Associated with
lemma 1, the proof is accomplished.

Similarly, the following theorem holds true symmetrically.

Theorem 5 Let σ = 2, τ = 0. Then every solution of
equation (1) oscillates if and only if p+ r ≤ 0.

Theorem 6 Let σ = 0, τ = 1. Then every solution of
equation (1) oscillates if and only if p ≤ 0, q < 0, r <

√
−4q

or p > 0, q < 0, r > −
√
−4q or p > 0, q = 0, r < 0.

Proof When σ = 0, τ = 1, the characteristic equation of
equation (1) is

φ(p, q, r, λ, µ) = pλ2 + qµ2 − 1 + rµ = 0. (19)

we discuss it in three cases.
(I) p = 0. In this case, the characteristic equation has the

form
φ(q, r, µ) = qµ2 − 1 + rµ = 0. (20)

According to lemma 1, we only need to consider the positive
solution of (20), that is µ > 0. We will consider (q, r) as a
point in xy-space and search for the exact regions including
points (q, r) such that (20) has no positive root. Actually,
φ(x, y, µ) = 0 can be considered as an equation describing
a one-parameter family of planes in xy-space , where µ is
the parameter. According to the envelop theory, the points of
the envelope of the one-parameter family of lines defined by
(20) satisfy the following equations{

φ(x, y, µ) = µ2x+ µy − 1 = 0,

φµ(x, y, µ) = 2µx+ y = 0,
(21)

where µ > 0. Eliminating the parameter µ from (21), we
obtain the equation of the envelope

y(x) =
√
−4x, (22)

where x < 0. Consequently,

y′(x) = −2 · (−4x)−
1
2 , y′′(x) = −4 · (−4x)−

3
2 , x < 0.

Therefore, from y(x) > 0, y′(x) < 0, y′′(x) < 0, x ∈
(−∞, 0), we conclude that y(x) is a positive strictly convex
on (−∞, 0) and limx→−∞ y(x) = limx→−∞

√
−4x =

+∞, limx→0− y(x) = limx→0−
√
−4x = 0. The envelope

curve defined by (21) is a convex curve C in the second
quadrant, described in Figure 4. It is clearly seen that when
the point (q, r) is directly below the envelop C, that is
q < 0, r <

√
−4q, there cannot be any tangent line of

the envelop C pass through the point (q, r). According to
lemma 2, equation (20) has no positive root if and only if
q < 0, r <

√
−4q.

Fig. 4. The envelope curve y =
√
−4x
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(II) For p < 0, (19) can be rewritten as

φ(p, q, r, λ, µ) = p(λ2 +
q

p
µ2 − 1

p
+
r

p
µ) = 0. (23)

Set
F (

1

p
,
q

p
,
r

p
, µ) =

q

p
µ2 − 1

p
+
r

p
µ = 0. (24)

We have limµ→0+ F ( 1
p ,

q
p ,

r
p , µ) = − 1

p > 0 and
F ( 1

p ,
q
p ,

r
p , µ) is continuously differentiable with respect to

µ ∈ (0,+∞). According to lemma 4, (23) and (24) has
the same positive roots. Then by lemma 1, we only need to
study the positive solution of (24), that is µ > 0. Consider
(1/p, q/p, r/p) as a point in xyz-space and search for the
exact regions including points (1/p, q/p, r/p) such that (20)
has no positive root. Actually, F (x, y, z, µ) = 0 can be
considered as an equation describing a one-parameter family
of plane in xyz-space , where µ is the parameter. According
to the envelop theory, the points of the envelope of the
one-parameter family of planes defined by (24) satisfy the
following equations{

F (x, y, z, µ) = −x+ µ2y + µz = 0,

Fµ(x, y, z, µ) = 2µy + z = 0,
(25)

where µ > 0. Eliminating the parameter µ from (25), we
obtain the equation of the envelope

z(x, y) = −
√
−4xy, (26)

where x < 0, y > 0. Thus we have

∂z

∂x
= 2y · (−4xy)−

1
2 ,

∂z

∂y
= 2x · (−4xy)−

1
2 ,

∂2z

∂x2
= 4y2 · (−4xy)−

3
2 ,

∂2z

∂y2
= 4x2 · (−4xy)−

3
2 ,

∂2z

∂x∂y
= (−4xy)−

1
2 , x < 0, y > 0.

Therefore, for x < 0, y > 0, z(x, y) < 0, ∂2z/∂x2 >
0, ∂2z/∂y2 > 0 and ∂2z/∂x2 ·∂2z/∂y2−(∂2z/∂x∂y)2 = 0,
which imply that z(x, y) is convex on (−∞, 0)× (0,+∞).
The envelope plane defined by (19) is a convex surface S in
the sixth quadrant , described in Figure 5. It is clearly seen
that when the point (1/p, q/p, r/p) is directly over S, that
is 1/p < 0, q/p > 0, r/p > −

√
−4 · 1p ·

q
p , which can be

simplified as p < 0, q < 0 and r <
√
−4q, there cannot be

any tangent plane of the envelope S which passes through
the point. For (23) and (24) has the same positive root, based
on lemma 4 the characteristic equation has no positive root
if and only if p < 0, q < 0 and r <

√
−4q.

(III) For p > 0, we have qµ2 + rµ− 1 = −pλ2 ≤ 0. Set

f(q, r, µ) = qµ2 + rµ− 1. (27)

(i) When q = 0, then the equation f(q, r, µ) = 0 can
be rewritten as rµ − 1 = 0, which implies µ = 1

r > 0 if
r > 0. Therefore, when p > 0, q = 0, r < 0, the equation
f(q, r, µ) = 0 has no positive solution.

(ii) When q 6= 0, the equation f(q, r, µ) = 0 can be
regarded as a function of µ and the root µ1, µ2 satisfy

µ1 + µ2 = −r
q
,

µ1 · µ2 = −1

q
.

(28)

Fig. 5. The envelope surface z = −
√
−4xy

We can see that
(a) if q > 0, r2 + 4q > 0 and µ1µ2 < 0, consequently,

f(q, r, µ) = 0 has one positive solution.
(b) if q < 0, if r2 + 4q < 0, f(q, r, µ) = 0 has no positive

solution; if r2+4q ≥ 0 and r < 0, f(q, r, µ) = 0 has just one
positive solution; if r2 + 4q ≥ 0 and r > 0, f(q, r, µ) = 0
has two positive solutions.

Combined with the above cases, equation (19) has no
positive root if and only if p ≤ 0, q < 0, r <

√
−4q or

p > 0, q < 0, r > −
√
−4q or p > 0, q = 0, r < 0.

Associated with lemma 1, the proof is accomplished.

Similarly, using the symmetric property, we have the
following theorem.

Theorem 7 If σ = 1, τ = 0. Then every solution of equation
(1) oscillates if and only if p < 0, q ≤ 0, r <

√
−4p or

p < 0, q > 0, r > −
√
−4p or p = 0, q > 0, r < 0.

Theorem 8 Let σ = 1, τ = 1. If p ≤ r2

4q , q < 0, r > 0
or p < 0, q = 0, r < 0, then every solution of equation (1)
oscillates.

Proof Set µ = cλ(c > 0), the characteristic equation is

φ(p, q, r, λ) = pλ2+qµ2−1+rλµ = (p+c2q+cr)λ2−1 = 0.
(29)

To prove (29) has no positive root, we only need to prove
qc2 + rc+ p ≤ 0. Set

f(p, q, r, c) = qc2 + rc+ p. (30)

Since c > 0, the symmetric axis of (30) should be positive,
that is, −r2q > 0. We consider the following three cases.

(I) When q < 0, we have r > 0. If p ≤ r2

4q , we have

max
c>0

f(p, q, r, c) = 4pq−r2
4q ≤ 0. Consequently, f(p, q, r, c) ≤

0, which implies that (29) has no positive root.
(II) When q > 0, we have r < 0. Since (30) is an upwards

parabola, f can not be always negative, which means (29)
could have positive root.

(III) When q = 0, f(p, q, r, c) = rc + p. If r < 0, p < 0,
with the condition c > 0, we have f(p, q, r, c) < 0. Then
(29) has no positive root.

Combined with lemma 1, we conclude by the above three
cases that the theorem holds.

Theorem 9 Let σ = 0, τ = 0. If p ≥ 0, q ≥ 0, r > 1
or p ≤ 0, q ≤ 0, r < 1 or p2 + q2 6= 0, r = 1, then every
solution of equation (1) oscillates.
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Proof Set µ = cλ(c > 0), the characteristic equation is

φ(p, q, r, λ) = pλ2 + qµ2−1 + r = (p+ c2q)λ2−1 + r = 0.
(31)

We consider the following three cases
(I) When r = 1, (31) has no positive root as long as

p2 + q2 6= 0.
(II) When r > 1, if p ≥ 0, q ≥ 0, then (31) has no positive

root.
(III) When r < 1, if p ≤ 0, q ≤ 0, then (31) has no

positive root.
Combined with lemma 1, we conclude by the above three

cases that the theorem holds.

IV. ILLUSTRATIVE EXAMPLES

In this section, we give some examples to illustrate the
results obtained in Section 3.
Example 1 Consider the partial difference equation

−0.2um+2,n − 0.1um,n+2 − um,n − um+2,n+2 = 0, (32)

where σ = 2, τ = 2. Since p = −0.2 < 0, q = −0.1 < 0
and r = −1 < 0, by theorem 1, every solution of equation
(32) is oscillatory. The oscillatory behavior of equation (32)
is demonstrated by Figure 6.

Fig. 6. Oscillatory behavior of (32)

Example 2 Consider the partial difference equation

0.2um+2,n − um,n+2 − um,n − 0.02um+4,n = 0, (33)

where σ = 4, τ = 0. Since p = 0.2 > 0, q = −1 < 0,
r = −0.02 < −0.01 = −2(σ−2)

σ−2
2 p

σ
2 /σ

σ
2 , by theorem 2,

every solution of equation (33) is oscillatory. The oscillatory
behavior of equation (33) is demonstrated by Figure 7.

Fig. 7. Oscillatory behavior of (33)

Example 3 Consider the partial difference equation

−0.2um+2,n − 0.1um,n+2 − um,n − 0.1um+2,n = 0, (34)

where σ = 2, τ = 0. Since q = −0.1 < 0 and r = −0.1
imply that p+ r = −0.3 < 0, by theorem 5, every solution
of equation (34) is oscillatory. The oscillatory behavior of
equation (34) is demonstrated by Figure 8.

Fig. 8. Oscillatory behavior of (34)

Example 4 Consider the partial difference equation

−0.01um+2,n−0.5um,n+2−um,n+0.03um+1,n = 0, (35)

where σ = 1, τ = 0. Since p = −0.01 < 0, q = −0.5 < 0
and r = 0.03 < 0.2 =

√
−4p imply that p+ r = −0.3 < 0,

by theorem 7, every solution of equation (35) is oscillatory.
The oscillatory behavior of equation (35) is demonstrated by
Figure 9.

Fig. 9. Oscillatory behavior of (35)

Example 5 Consider the partial difference equation

−0.6um+2,n−0.5um,n+2−um,n+0.2um+1,n+1 = 0, (36)

where σ = 1, τ = 1. Since p = −0.6 < r2

4q , q = −0.5 < 0,
r = 0.2 > 1, by theorem 8, every solution of equation (36)
is oscillatory. The oscillatory behavior of equation (36) is
demonstrated by Figure 10.
Example 6 Consider the partial difference equation

−0.24um+2,n− 0.18um,n+2−um,n + 0.12um,n = 0, (37)

where σ = 0, τ = 0. Since p = −0.24 < 0, q = −0.18 < 0,
r = 0.12 < 1, by theorem 9, every solution of equation (37)
is oscillatory. The oscillatory behavior of equation (37) is
demonstrated by Figure 11.
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Fig. 10. Oscillatory behavior of (36)

Fig. 11. Oscillatory behavior of (37)
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