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Abstract—In this paper a novel approach for state estimation
of large sparse systems is proposed considering a Parallel Dual
Adaptive Fast Iterative Shrinkage-Thresholding Algorithm with
spatial and temporal constraints. The proposed method is
applied to a large sparse state space model with inherent
dynamic activity related to electric model of the brain, which
is modeled by a state space sparse equation. The inclusion of
the temporal constraint improves the resolution in time of the
proposed method but holding the sparseness of the solution.
In order to efficiently apply the proposed method over large
sparse state space models, the proposed algorithm is developed
by considering that the method can be divided into several
parallel processes. An experimental analysis is performed for a
state space model with n = 74382, n = 10016 and n = 2004
states and d = 230 outputs. The performance of the proposed
method is evaluated in terms of the normalized estimation error
and by comparing with the Tikhonov estimation method with
dynamic constraints.

Index Terms—Dual adaptive FISTA, Sparse, Temporal Con-
straint, Large Scale Systems.

I. INTRODUCTION

STate estimation of large scale systems is a task required
for several applications such as: brain activity estimation,

brain-computer interfaces, state estimation in power systems
and distribution systems, system dynamics in mechanical
systems, among others [1], [2].

The estimation of states for observable large scale systems
is a task that can reduce the cost of the measurement elements
since the activity of the states is estimated [3]. In some cases,
as in the brain activity estimation, the state estimation can be
used to determine how is the activity into the brain. This is
performed by using a low number of measurements which is
useful for epilepsy detection, reducing the necessity of func-
tional resonances, and therefore diminishing the costs [4].
In addition, for systems where the measurements of each
state are available, the state estimation can be used as a
robustness issue that can validate the estimation and enhance
the performance of the system when the measurement of a
sensor fails or by using an optimal filtering stage [5].

Estimation of large scale systems from a reduced number
of measurements is an ill-conditioned and ill-posed inverse
problem. When the measurements have an inherent temporal
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dynamic the inverse problem solution must contain temporal
and spatial constraints, and also must be solved for each
sample. An state space estimation method can be easily
designed for low scale systems, but when the scale of the
system (number of states) is increased, the selection of closed
loop gains for the observer is a high-complex and computer-
demanding task which carries on a high computational
cost [6]. An additional feature of large scale systems is
related with the sparseness of its dynamics, that feature is
usually exploited by solving a large number of low scale
independent state estimation problems where the interaction
among subsystems is neglected.

Several methods for estimation of sparse solutions are
used where the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) and its variations are the most common
approach [7], [8]. However, FISTA algorithm only considers
spatial constraints [9]. In [10] and approach for l2 norm with
temporal and spatial constraint but with high computational
cost. In [11] a mixed l1 norm and l2 or l1 norm is proposed
for spatial and temporal constraints, however, even when
the authors use a projection matrix to reduce the amount
of sources and therefore the computational cost a reduction
of the quality of the estimation is obtained.

In this work, a novel approach for state estimation of
large sparse systems is proposed considering a Parallel Dual
Adaptive Fast Iterative Shrinkage-Thresholding Algorithm
with spatial and temporal constraints. The proposed method
is applied to a large sparse state space model with inherent
dynamic activity related to electric system where the activity
of each point state is modeled by a second order differential
equation. The inclusion of the temporal constraint improves
the resolution in time of the proposed method but holding
the sparseness of the solution. In order to efficiently apply
the proposed method over large sparse state space models,
the proposed algorithm is developed by considering that the
method can be divided into several parallel processes. An
experimental analysis is performed for a state space model
with n = 74382, n = 10016 and n = 2004 states and
d = 230 outputs. The performance of the proposed method
is evaluated in terms of the normalized estimation error and
by comparing with the Tikhonov estimation method with
dynamic constraints. In section II the theoretical framework
for large scales state estimation of sparse systems is proposed
based in a FISTA method with a proximal operator that
allows parallel computation of the estimation. In III the
results of large scale state estimation for an sparse system
by using form 1 to 12 parallel processes are evaluated in
terms of the relative error and speed-up, in comparison
with a Tikhonov estimation method. And finally, in V the
conclusions and future work of the proposed method are
presented.
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II. THEORETICAL FRAMEWORK

In this work, we use as an application of state space
estimation of large sparse systems the widely studied brain
imaging problem based on electroencephalographic (EEG)
signals. The distributed solution tho this problem consists
of projecting the EEG data at the brain cortical surface
populated with thousands of candidate sources, yielding the
following discrete state space system described by its output
equation:

yk = Mxk + µk, (1)

being the output of the system yk ∈ Rm×1 the elec-
troencephalographic (EEG) activity measured at m sensors,
M ∈ Rm×n a gain matrix commonly known as lead field,
that relates inputs (brain activity) and outputs (EEG data) of
the model. Moreover, µk ∈ Rn×1 is the measurement noise.

To parallelize the state estimation, the above system equa-
tion can be reformulated as:

yk =
N∑
i=1

Mixik + µk (2)

being N the total number of parallel processes, M j ∈
Rm×nj the j − th block of the lead-field matrix, and
xjk ∈ Rnj×1 the corresponding j − th state vector block
describing the neural activity.

By considering the inherent temporal evolution in time
of xk and the sparseness in the solution, the following cost
function is proposed [11]:

x̂k =arg min
xk

(‖yk −Mxk‖22 + λ2k
∥∥xk − x−k

∥∥
1

+ γ2k ‖xk‖1)

(3)

being x−k the a priori estimation which is defined as x−k =
xk−1 .

By considering (2), the Parallel Dykstra-like splitting,
presented in [12], and the Beck and Teboulle FISTA method,
discussed in [13], the following Parallel Dual Adaptive
FISTA (PDA-FISTA) method can be proposed for (3), where
at each j − th block the following equations are computed:

tk =
1 +

√
1 + 4t2k−1

2
(4)

αk =
tk − 1

tk
(5)

x̄jk = xj,pk + αk

(
xj,pk − xj,p−1k

)
(6)

gj1 = (Mj)T

 N∑
j=1

Mjx̄jk − yk

 (7)

zj,pk = x̂jk + prox
λk,‖‖̇1

(
x̄jk − x̂jk − δpg

j
1

)
(8)

z̄jk = zj,pk + αk

(
zj,pk − zj,p−1k

)
(9)

gj2 = (Mj)T

 N∑
j=1

Mj z̄jk − yk

 (10)

xj,p+1
k = proxγk,‖‖̇1

(
z̄jk − δpg

j
2

)
(11)

being proxλk,‖‖̇1 and proxγk,‖‖̇1 the proximal operators of
l1 norm defined as [12]:

proxω,‖‖̇1(x) =


x− ω2 if x < ω2

0 if − ω2 ≤ x ≤ ω2

x+ ω2 if x > ω2

(12)

and being δp = 1
L with L defined as the Lipschitz constant

and computed as the maximum eigenvalue of (Mj)(Mj)T ,
and x̂jk the j−th block of x−k , and p the refinement iteration.

III. EXPERIMENTAL SET-UP

A large scale model is considered for evaluation of the
dynamic state estimation. The model considers a simulated
sparse state activity, and an output equation corresponding to
a real head model obtained from a high resolution structural
Magnetic Resonance Imaging.

A. Forwad model

As volume conductor model (gain matrix), we use the New
York (NY) head that is frequently used in neuroimage studies
in lack of individual MRIs. NY was constructed based on
the segmentation of a symmetric head template (ICBM-152
v2009) into two tissue types (gray matter (GM) and white
matter (WM)) and partition of another symmetric template
(ICBM-152 v6) into non-brain tissues (CSF, skull, and scalp).
The segmentation is shown in top of Fig. 1.

Fig. 1. New York head model. Top: Segmented tissues. Bottom: 3D view
of the cortical surface.

For applying distributed solutions to the EEG inverse
problem, the New York provides cortical meshes with dif-
ferent numbers of candidate sources (source space), as seen
in Fig. 2. Summarizing, our large scale model comprises
m = 230 outputs (number of EEG channels), and n =
74382, 10016, 2004 states (possible places of source activ-
ity). A further description of the NY model can be found in
[14].
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Fig. 2. Brain model for computing M

B. Activity simulation

A common approach to assessing the quality of inverse
solutions is to use simulated state activity, for which the
underlying brain activity is known. Thus, an sparse state
space equation is used to described the dynamical of the EEG
simulation model. The state space equation for the i−th state
is defined as:

xk =w1xk−1 + w2xk−2 + w3xk−τ (13)

+ w4x
2
k−1 + w5x

3
k−1 + ηk

being w1 = 1.0628, w2 = −0.42857, w3 = 0.008, w4 =
0.000143 y w5 = −0.000286, τ = 20 and by considering a
parameter variation at sample 50 to the following parameters
w1 = 1.3, w2 = −1.

A sparse distance matrix Q ∈ Rn×n is used to define
the set of active sources. The structure of the state transition
matrix for the n = 74382 states model is presented in Fig. 3.
Here, the number of non-zero elements is 15605938.

The set of active sources around source 20000 from
distance matrix Q is presented in Fig. 4.

Later, using eq. (1), state activity is mapped to the
measurements considering a Signal-to-Noise-Ratio of 5dB.
Simulation results for T = 100 samples an a sample time
of 100 milliseconds are shown in Fig. 5. It can be seen that

Fig. 3. Distance matrix of n = 74382 states where the number of non-zero
elements is 15605938.

Fig. 4. Set of active sources around source 20000 for a n = 74382 states.

the simulated activity exhibit from the measurements point
of view of a combination of the activity in the n = 74382
states.

C. Comparison approaches

The proposed model is compared with a regularized state
space estimation method called Tikhonov with dynamic
constraints. The estimation is computed as follows:

x̂k =(MTM + λ2kIn)−1(MTyk + λ2kxk−1), (14)

where the xk−1 is the estimated activity at sample k − 1. It
can be seen that this method requires the inverse of an n×n
matrix, and for implementation the inverse is computed by
using a Singular Value Decomposition.

The selection of the regularization parameters of (14) and
(4) are computed by using the generalized cross-validation.
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Fig. 5. Simulated brain activity. Top left: Simulated source around n =
20000 in the n = 74382 model. Top right: Simulated time series according
to the state-space model described above. Bottom: Simulated EEG yk for
the first m = 18 channels (measurements)

The comparison is performed in terms of relative estima-
tion error computed as follows:

ek =
‖xk − x̂k‖
‖xk‖

(15)

IV. RESULTS AND DISCUSSION

The relative error calculation by using the FISTA method
and Thikonov method in terms of the relative error are shown
in Fig. 6. The experiment is repeated 50 times to account
for variations in the simulated additive noise. It is noticeable
that for n = 74382, n = 10016 and n = 2004 states the
estimation results under several parallel processes (1 to 12)
is hold. That means that the estimation is not affected by
the number of parallel processes used for the computation
of the dual FISTA algorithm based on the proximal operator.
In addition, the results obtained by the Tikhonov method
are also hold, which validated the implementation of the
method. It is remarkable that for the Tikhonov method the
mathematical library used for linear algebra operations is
compiled by using the number of parallel processes detailed
in Fig. 6. In addition it can be seen that the relative error
is lower for the FISTA algorithm (proposed method) in
comparison with the Tikhonov method.

Figures 7 and 8 show an example of the achieved re-
construction using the methods under comparison. Top left
figure (brain activity reconstruction) shows that both FISTA

Fig. 6. Comparison of Tikhonov and FISTA estimation results in terms of
the relative error

and Tikhonov methods are able to identify the simulated
source (shown in Fig. 5) in the frontal left lobe of the brain.
However, it is noticeable that the sparseness achieved by
the FISTA method, allows to obtain a more focal states
reconstruction unlike the Tikhonov solution which is not
able to follow the sparse pattern of the simulated activity.
Consequently, the Tikhonov solution shows activity almost
in the entire brain lobe. The same patter can be identified in
the bottom of both Figures (source distribution).

Top right panels of Figs. 7 and 8 show the reconstructed
time series around state 20000 (simulated state location).
It can be seen that regardless the sparse penalty for states
transition (second term of Eq. 3), the FISTA temporal pattern
resembles to the simulated one, alike to the Tikhonov solu-
tion. Sumarizing, FISTA properly identifies both the spatial
sparse pattern and the temporal changes in the simulated
states activity.

The speedup result of the proposed method by comparing
the performance for several parallel processes is presented in
Fig. 9. It can be seen that the acceleration in the computation
of the estimation method is increased when the number of
parallel processes is increased. Therefore, a reduction in the
computational time can be obtained without reducing the
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Fig. 7. Achieved solution using Tikhonov estimation. Top left: Brain
activity reconstruction.Top right: Reconstructed time series around state
20000. Bottom: Source distribution.

Fig. 8. Achieved solution using FISTA estimation. Top left: Brain activity
reconstruction.Top right: Reconstructed time series around state 20000.
Bottom: Source distribution.

estimation accuracy.
In Fig. 10 is presented the comparison of Simulated,

Tikhonov and FISTA estimation results in terms of brain
mapped activity and their corresponding time series. It can
be seen, that the mapped activity by using the FISTA method
reduces the dispersion and estimate adequately the time
series.

V. CONCLUSIONS

In this work a novel method for state estimation of
large sparse systems is proposed considering a Parallel Dual
Adaptive Fast Iterative Shrinkage-Thresholding Algorithm
with spatial and temporal constraints. The proposed method
is applied to a large sparse state space model with inherent
dynamic activity related to electric system where the activity
of each point state is modeled by a second order differential
equation. The inclusion of the temporal constraint improves
the resolution in time of the proposed method but holding
the sparseness of the solution. According to the presented
results the proposed method reduces the relative estimation

Fig. 9. Speedup performance for several parallel processes

Fig. 10. Comparison of Simulated, Tikhonov and FISTA estimation results
in terms of brain mapped activity and their corresponding time series

error in comparison with the Tikhonov estimation method for
large scale systems. It can be seen that the relative estimation
error for large scale sparse systems is hold even when the
number of sources of the model is increased, in contrast
with the Tikhonov method where the error is increased when
the number of states is increased. As a result an estimation
method for large scale systems is validated for several
number of states where the selection of the parameters of the
observer are computed by using generalized cross-validation.

REFERENCES

[1] J. Mota, N. Deligiannis, A. C. Sankaranarayanan, V. Cevher, and
M. Rodrigues, “Dynamic sparse state estimation using l1-l1 minimiza-
tion: Adaptive-rate measurement bounds, algorithms and applications,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), April 2015, pp. 3332–3336.

Engineering Letters, 28:4, EL_28_4_02

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



[2] W. Pan, Y. Yuan, J. Goncalves, and G. Stan, “A sparse bayesian
approach to the identification of nonlinear state-space systems,” IEEE
Transactions on Automatic Control, vol. 61, no. 1, pp. 182–187, Jan
2016.

[3] J. D. Martinez-Vargas, E. Giraldo, and G. Castellanos-Dominguez,
“Enhanced spatio-temporal resolution using dynamic sparse coding
for eeg inverse problem solutions,” IAENG International Journal of of
Computer Science, vol. 46, no. 4, pp. 564–574, 2019.

[4] M. Bueno-Lopez, P. A. Munoz-Gutierrez, E. Giraldo, and M. Moli-
nas, “Electroencephalographic source localization based on enhanced
empirical mode decomposition,” IAENG International Journal of of
Computer Science, vol. 46, no. 2, pp. 228–236, 2019.

[5] M. Bueno-Lopez, E. Giraldo, M. Molinas, and O. Fosso, “The mode
mixing problem and its influence in the neural activity reconstruction,”
IAENG International Journal of of Computer Science, vol. 46, no. 3,
pp. 384–394, 2019.

[6] C. D. Molina-Machado, J. D. Martinez-Vargas, and E. Giraldo, “Dy-
namic state estimation for large scale systems based on a parallel
proximal algorithm,” Engineering Letters, vol. 28, no. 2, pp. 347–351,
2020.

[7] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse op-
timization,” in 2013 Asilomar Conference on Signals, Systems and
Computers, Nov 2013, pp. 659–646.

[8] C. Y. Lin and J. A. Fessler, “Efficient dynamic parallel mri recon-
struction for the low-rank plus sparse model,” IEEE Transactions on
Computational Imaging, vol. 5, no. 1, pp. 17–26, March 2019.

[9] C. D. Molina-Machado, E. Cuartas, J. D. Martı́nez-Vargas, and
E. Giraldo, “Comparative analysis of parallel brain activity mapping
algorithms for high resolution brain models,” TecnoLógicas, vol. 22,
no. 46, pp. 177–187, 2019.

[10] E. Giraldo, Nonlinear time varying model identification in ill-posed
problems. Germany: Scholar’s Press, 2014.

[11] E. Giraldo-Suarez, J. Martinez-Vargas, and G. Castellanos-Dominguez,
“Reconstruction of neural activity from EEG data using dynamic
spatiotemporal constraints,” International Journal of Neural Systems,
vol. 26, no. 07, pp. 1–15, 2016.

[12] P. L. Combettes and J.-C. Pesquet, Proximal Splitting Methods in
Signal Processing. New York, NY: Springer New York, 2011,
pp. 185–212. [Online]. Available: https://doi.org/10.1007/978-1-4419-
9569-8-10

[13] J. Liang and C.-B. Schönlieb, “Improving FISTA: Faster, Smarter and
Greedier,” arXiv e-prints, p. arXiv:1811.01430, Nov 2018.

[14] Y. Huang, L. C. Parra, and S. Haufe, “The new york head: A precise
standardized volume conductor model for eeg source localization and
tes targeting,” NeuroImage, vol. 140, pp. 150 – 162, 2016.

Engineering Letters, 28:4, EL_28_4_02

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 




