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Abstract—The Gierer-Meinhardt model is a prototypical and
significant activator-inhibitor model of the reaction-diffusion
system. This paper focuses on the Turing instabilities analysis
and pattern formation in the general Gierer-Meinhardt model.
Based on the analysis of eigenvalues of the eigenpolynomial, we
derive the existence and stability of the positive equilibrium.
By using center manifold theory, the critical value and type
of Hopf bifurcation are obtained. The effects of diffusions on
the stability of the equilibrium and the bifurcated limit cycle
are studied by employing normal form and center manifold
reduction. The results show that the equilibrium undergoes a
supercritical Hopf bifurcation. If the diffusion coefficients of
the two species are sufficiently different, the stable equilibrium
and the limit cycle will occur Turing instability, respectively.
Moreover, we perform the numerical simulations for the derived
results, which states clearly that the Turing patterns are either
spot or stripe patterns.

Index Terms—asymptotic stability, Hopf bifurcation, super-
critical, Turing instability.

I. INTRODUCTION

AS early as 1952s, to understand the underlying mech-
anism for some patterns, Turing [1] proposed the

coupled reaction-diffusion equation in his percussive paper.
Reaction-diffusion systems are mathematical models that
describe how the concentrations of substances distributed
in space change under the influence of local chemical re-
actions and diffusion. As a fact, they play a vital role in
explaining and revealing the spatial pattern formations in
many fields, such as predator-prey model [2-3], forest fire
model [4], models of infectious disease in medicine [5-7],
and so on. Turing indicated that although diffusion has a
smoothing and trivializing effect on a single compound, in
the case of interaction of two or more compounds, different
diffusion rates will make the uniform steady state of the
corresponding reaction-diffusion systems becomes unstable,
resulting in a nonhomogeneous distribution of such reactants.
This phenomenon is now known as Turing instability.

In 1972, Gierer and Meinhardt [8] proposed a prototypical
model of coupled reaction-diffusion equations through a
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typical experiment that describes the interaction between
two substances, i.e., the activator and the inhibitor. This
model can be widely used to model patterns in biology and
chemistry, which has the following forms:


∂a

∂t
= ρa

a2

(1 + kaa)h
− µaa+ σa +Da

∂2a

∂x2
,

∂h

∂t
= ρha

2 − µhh+ σh +Dh
∂2h

∂x2
,

(1)

where a (x, t) and h (x, t) represent the density of the ac-
tivator and inhibitor, respectively. Da and Dh represent the
constant diffusion coefficients of the a and h; µa, µh are the
removal rates and ρa, ρh are the cross-reactions coefficients;
σa, σh are basic production terms; ka is a saturation constant.

The aforementioned system has experienced significant
attention from many scholars. For instance, Ruan [9] has
investigated the instability of the homogeneous equilibrium
and periodic solution under different diffusion coefficients.
Since the Turing criterion depends on the period of the limit
cycle obtained from the Hopf bifurcation, it is not easy to ver-
ify and apply. As a consequence, many researchers [10-13]
also studied the Turing instability of the Gierer-Meinhardt
system by using some numerical analysis methods.

Moreover, Liu et al. [14] have considered a reaction-
diffusion Gierer-Meinhardt model of morphogenesis subject
to Dirichlet fixed boundary condition in the one-dimensional
spatial domain. Also, they have conducted a detailed study
of the model and obtained the results of the bifurcation. Mai
[15] has investigated the spatial patterns of two-dimensional
discrete systems with periodic boundary conditions and time
continuity and compared them with continuous models. The
reaction-diffusion Gierer-Meinhardt system with saturation
in the activator production has been considered in reference
[16]. Chen et al.[17] have discussed global and blow-up
solutions for the general Gierer-Meinhardt system with zero
Neumann boundary conditions and obtained some new suf-
ficient conditions for global existence and finite time blow-
up of solutions. Furthermore, the existence and asymptotic
behaviors of solutions and their stability in terms of diffusion
effects have been extensively investigated [18-25].

In this paper, we mainly consider the stability of the
positive equilibrium and the bifurcation limit cycle with
diffusion. Through qualitative analysis, we know that the
stable equilibrium and the stable limit cycle of this system
will become unstable under diffusion conditions. The calcu-
lations are done explicitly for system (1) with the restriction
ka = σh = 0 (this greatly simplifies the calculations) [26].
To make the later exposition easier, we nondimensionalize
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system (1). Let

t̄ = µat, ā =
µaρh
µhρa

a, h̄ =
µ2
aρh
µhρ2

a

h,

d =
Da

Dh
, µ =

µh
µa
, σ =

σaρh
µhρa

,

we have 
∂ā

∂t̄
=
ā2

h̄
− ā+ σ + d

∂2ā

∂x̄2
,

∂h̄

∂t̄
= µ

(
ā2 − h̄

)
+
∂2h̄

∂x̄2
.

(2)

For convenience, we will use a, h, t, x instead of ā, h̄, t̄, x̄.
we write


∂a

∂t
=
a2

h
− a+ σ + d

∂2a

∂x2
,

∂h

∂t
= µ

(
a2 − h

)
+
∂2h

∂x2
.

(3)

In addition, we will also assume the following Neumann
boundary conditions

∂a

∂x
(0, t) =

∂a

∂x
(π, t) = 0,

∂h

∂x
(0, t) =

∂h

∂x
(π, t) = 0.

(4)

The rest of the paper is organized as follows: In section
II, we analyze the existence and stability of the positive
equilibrium and the Hopf bifurcation. Section III studies the
Turing instability of the equilibrium and limit cycles, and
theoretically elaborates on the sufficient conditions and peri-
odic solutions for the equilibrium and spatial homogeneous
Turing instability. Finally, in section IV, we give examples
to illustrate the analytic conditions and the numerical simu-
lations are employed to verify the theoretical analysis.

II. EXISTENCE OF HOPF BIFURCATION

In this section, the stability of system (5) without diffusion
at positive equilibrium is investigated.


da

dt
=
a2

h
− a+ σ,

dh

dt
= µ

(
a2 − h

)
.

(5)

Obviously, the aforementioned system has a unique posi-
tive equilibrium (a∗, h∗) =

(
1 + σ, (1 + σ)

2
)
. The Jacobian

matrix of (5) at the equilibrium (a∗, h∗) is

J(µ) =

 1− σ
1 + σ

− 1

(1 + σ)
2

2µ(1 + σ) −µ

 (6)

and the corresponding characteristic equation is

λ2−Trλ+Det = 0,

where Tr = −1− µ+
2

1 + σ
,Det = µ.

It is easy to solve that the characteristic equation has two
eigenvalues

λ1,2 = −1

2

[σ − 1

1 + σ
+µ(1 + σ)

2

±

√(
µ(1 + σ)

3
+ σ − 1

)2

− 4µ(1 + σ)
4

1 + σ

]
.

Let

µ0 =
1− σ
1 + σ

,

and

µ1 =
(3 + σ)− 2

√
2
√

(1 + σ)

1− σ µ0,

µ2 =
(3 + σ) + 2

√
2
√

(1 + σ)

1− σ µ0.

From this, we have the following Theorem 1.

Theorem 1. The unique equilibrium of system (5) is asymp-
totically stable if either condition (H1) or condition (H2)
holds and unstable if condition (H3) holds.

(H1) σ ≥ 1;
(H2) µ > µ0, 0 < σ < 1;
(H3) µ < µ0, 0 < σ < 1.

Furthermore, we analyze the equilibrium in detail and ob-
tain the following properties. Firstly, if σ ≥ 1, then µ1 < µ2,

we have
(
µ(1 + σ)

3
+ σ − 1

)2

− 4µ(1 + σ)
4
< 0 (≥ 0)

if µ1 < µ < µ2 (0 < µ ≤ µ1 or µ ≥ µ2). For 0 < σ < 1,
it is easy to note that µ1 < µ0 < µ2, and then λ1,2

are negative real numbers and
(
µ(1 + σ)

3
+ σ − 1

)2

−
4µ(1 + σ)

4 ≥ 0 if µ ≥ µ2. λ1,2 are a pair of conjugate
complex numbers with negative real parts if µ0 < µ < µ2

and we have
(
µ(1 + σ)

3
+ σ − 1

)2

− 4µ(1 + σ)
4
< 0;

λ1,2 are positive real numbers if µ0 < µ < µ1 and we

have
(
µ(1 + σ)

3
+ σ − 1

)2

− 4µ(1 + σ)
4 ≥ 0; λ1,2 are

a pair of conjugate complex numbers with positive real

parts if µ1 < µ < µ0 and we have
(
µ(1 + σ)

3
+ σ − 1

)2

−
4µ(1 + σ)

4
< 0.

Hence, we know that (i) the equilibrium (a∗, h∗) is a
stable node if one of the following conditions holds: (ia) σ ≥
1, 0 < µ ≤ µ1, (ib) σ ≥ 1, µ ≥ µ2, (ic) 0 < σ < 1, µ ≥ µ2;
(ii) the equilibrium (a∗, h∗) is a stable foucs if one of
the following conditions holds: (iia) σ ≥ 1, µ1 < µ < µ2,
(iib) 0 < σ < 1, µ0 < µ < µ2; (iii) the equilibrium (a∗, h∗)
is an unstable node if 0 < σ < 1 and 0 < µ ≤ µ1; (iv) the
equilibrium (a∗, h∗) is an unstable foucs if 0 < σ < 1 and
µ1 < µ < µ0.

From the analyses made above, we may come to the
conclusion that the Jacobian matrix (6) has a pair of pure
conjugate imaginary eigenvalues. As a result, the system (5)
may undergo Hopf bifurcation at µ = µ0 under condition
0 < σ < 1.

Let x̂ = a − a∗, ŷ = h − h∗, and the system (5) at
equilibrium (a∗, h∗) becomes

d

dt

(
x̂
ŷ

)
= J(µ)

(
x̂
ŷ

)
+

(
f1(x̂, ŷ, µ)
g1(x̂, ŷ, µ)

)
, (7)
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where

f1(x̂, ŷ, µ) =
x̂2

(1 + σ)
2 −

2x̂ŷ

(1 + σ)
3 +

ŷ2

(1 + σ)
4 −

ŷ3

(1 + σ)
6

+
2x̂ŷ2

(1 + σ)
5 −

x̂2ŷ

(1 + σ)
4 +O(4),

g1(x̂, ŷ, µ) = µx̂2 +O(4),

and O(4) represents the remaining terms with order greater
than or equal to 4.

For µ = µ0, we can easily obtain λ1,2 (µ0) = ±iω0 and
ω0 =

√
1−σ
1+σ > 0. Then, we know

J(µ0) =


1− σ
1 + σ

− 1

(1 + σ)
2

2 (1− σ) −1− σ
1 + σ

 .

Besides, the eigenvector corresponding to the eigenvalue

iω0 of J (µ0) is ξ =
(

1
2(1+σ) + ω0

2(1−σ) i, 1
)T

and nonzero

transversally condition d
dµRe (λ1,2)|µ=µ0

= −2σ
1+σ < 0.

Setting

P =

 ω0

2(1− σ)

1

2(1 + σ)
0 1

 ,

and (
x̂
ŷ

)
= P

(
u
v

)
,

then (7) becomes

(
u̇
v̇

)
=

(
0 −ω0

ω0 0

)(
u
v

)
+

(
f2 (u, v, µ0)
g2 (u, v, µ0)

)
,

(8)

where

f2 (u, v, µ0) =
ω0

4(1− σ2)
u2 − 3− σ

2(1 + σ)
3uv

+
ω0

4(1 + σ)
2 v

2 − ω0

2(1 + σ)
4
(1− σ)

u2v

+
1

(1 + σ)
5uv

2 − ω0

2(1 + σ)
5 v

3 +O(4),

g2 (u, v, µ0) =
1

4(1 + σ)
2u

2 +
ω0

2(1 + σ)
2uv

− σ − 1

4(1 + σ)
3 v

2 +O(4).

According to the references [27-28], the type of the Hopf
bifurcation at equilibrium (a∗, h∗) is determined by the
following symbols

σ0 =
1

16
(f2uuu + g2uuv + f2uvv + g2vvv)

+
1

16ω0
[f2uv (f2uu + f2vv)− g2uv (g2uu + g2vv)

− f2uug2uu + f2vvg2vv] .

where

f2uu =
ω0

2(1− σ2)
, g2uu =

1

2(1 + σ)
2 ,

f2vv =
ω0

2(1 + σ)
2 , g2vv = − σ − 1

2(1 + σ)
3 ,

f2uv = − 3− σ
2(1 + σ)

3 , g2uv =
ω0

2(1 + σ)
2 ,

f2uuu = 0, g2uuv = 0,

f2uvv =
2

(1 + σ)
5 , g2vvv = 0.

Thus

σ0 =
−σ

8(1− σ)(1 + σ)
5 < 0.

Based on the above discussion, it is easy for us to draw
the Theorem 2.

Theorem 2. System (5) undergoes a Hopf bifurcation at
the equilibrium (a∗, h∗) for µ = µ0 if 0 < σ < 1. The
Hopf bifurcation is supercritical because of σ0 < 0 and the
bifurcated limit cycle is stable.

III. TURING INSTABILITY OF THE EQUILIBRIUM AND
LIMIT CYCLES

In this section, we deduce and obtain the results on Turing
instability in equilibrium and limit cycles under the influence
of diffusion.

A. Turing Instability of the Equilibrium

We first assume that condition (H2) holds so that the
equilibrium (a∗, h∗) is stable for system (5).

With Neumann boundary conditions (4), we consider the
diffusion system (3) in the Banach space H2 ((0, π)) ×
H2 ((0, π)) , where

H2((0, π)) =

{
w(·, t)|∂

iw

∂xi
(·, t) ∈ L2((0, π)), i = 0, 1, 2

}
.

Obviously, the equilibrium (a∗, h∗) is a stable solution of
(3)-(4). The equilibrium (a∗, h∗) is nonlinearly unstable for
(3)-(4), if it is unstable in H2 ((0, π))×H2 ((0, π)) .

Let u1 = a − a∗, u2 = h − h∗, the linearized system of
(3) at the equilibrium (a∗, h∗) is

(
u1t

u2t

)
=

 1− σ
1 + σ

− dk2 − 1

(1 + σ)
2

2µ(1 + σ) −µ− k2

( u1

u2

)
.
= L

(
u1

u2

)
,

(9)

with Neumann boundary conditions

u1x(0, t) = u2x(0, t) = u1x(π, t) = u2x(π, t) = 0. (10)

The solution (u1, u2) of (9)-(10) in H2((0, π))×H2((0, π))
has the following form

(
u1(x, t)
u2(x, t)

)
=
∞∑
k=0

(
Ak
Hk

)
eλtcos(kx), (11)
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where λ ∈ C is the temporal spectrum, k is the wave number
and Ak, Hk are complex numbers for k = 0, 1, 2, · · · , n, · · · .
Substituting (11) into (9), we have

∞∑
k=0

λ

(
Ak
Hk

)
eλtcos(kx)

=
∞∑
k=0

 1− σ
1 + σ

− dk2 − 1

(1 + σ)
2

2µ(1 + σ) −µ− k2


×
(
Ak
Hk

)
eλtcos(kx).

We collect items equal to the power of k and in that way
we have

(λI − Jk (µ))

(
Ak
Hk

)
=

(
0
0

)
, k = 0, 1, 2, · · · , n, · · ·

(12)

where

Jk(µ) =

 1− σ
1 + σ

− dk2 − 1

(1 + σ)
2

2µ(1 + σ) −µ− k2

 . (13)

Equation (12) has a nonzero solution if and only if

det (λI − Jk(µ)) = 0. (14)

Nextly, we rewrite (14) into equation

λ2 − Tr (k)λ+Det (k) = 0, k = 0, 1, 2, · · · , n, · · · (15)

where

Tr(k) = −(1 + d)k2 − 1− µ+
2

1 + σ
,

Det(k) =

(
dk2 − 1− σ

1 + σ

)
k2 + dµk2 + µ.

If condition (H2) holds, Tr (k) < 0 for all k =
0, 1, 2, · · · , n, · · · and Det (0) > 0. Note that if d > 1−σ

1+σ ,
then Det (k) > 0, thus, we have the equilibrium (a∗, h∗)
is still stable for (3). If m2 < 1−σ

d(1+σ) ≤ (m+ 1)2 and

d < Dm, where Dm = min
1≤k≤m

k2(1−σ)−µ(1+σ)
k2(k2+µ)(1+σ) , we have

the equilibrium (a∗, h∗) is still stable for (3). If m2 <
1−σ
d(1+σ) ≤ (m+ 1)2 and d > Dm, then there exists at least
one negative in Det (1) , Det (2) , · · · , Det (m). It implies
that the equilibrium (a∗, h∗) will lose its stability and occur
Turing pattern for (3).

Now, after the aforementioned analysis, we summarize the
Theorem 3 as follows.

Theorem 3. Assume condition (H2) is satisfied, let

Dm = min
1≤k≤m

k2(1− σ)− µ(1 + σ)

k2(k2 + µ)(1 + σ)
,

then the equilibrium (a∗, h∗) is stable for (3) if condition
(H4) or (H5) is satisfied and is unstable for (3) if condition
(H6) is satisfied.

(H4) d >
1− σ
1 + σ

;

(H5) m2 <
1− σ
d(1 + σ)

≤ (m+ 1)2, d < Dm;

(H6) m2 <
1− σ
d(1 + σ)

≤ (m+ 1)2, d > Dm.

Remark 1. It is easy to observe that
min

1≤k≤m
k2(1−σ)−µ(1+σ)
k2(k2+µ)(1+σ) < 0 for k = 1 and µ > µ0. If

Dm > 0, condition (H5) may be satisfied; If Dm < 0,
condition (H5) can’t hold due to d > 0. So, condition (H5)
can’t be satisfied due to d > 0. In this paper, we deem that
Dm ≥ 0.

B. Turing Instability of the Limit Cycle

In this section, we apply the normal form and center
manifold theory to the diffusion system (3). The stability of
the limit cycle under inhomogeneous disturbances in space in
theorem 3 is analyzed. Here suppose condition (H3) holds,
then the supercritical Hopf bifurcation occurs at µ = µ0.
And, the limit cycle is stable under spatially homogeneous
perturbation.

According to the reference [29], let u1 = a − a∗, u2 =
h− h∗, µ = µ0, and at U = (u1, u2)

T system (3) becomes

 Ut =

[
J (µ0) +D

(
∂xx 0
0 ∂xx

)]
U + F (U, µ0) ,

Ux(0, t) = Ux(π, t) = (0, 0)T ,
(16)

where

J(µ0) =


1− σ
1 + σ

− 1

(1 + σ)
2

2(1− σ)
−1 + σ

1 + σ

 ,

D =

(
d 0
0 1

)
.

According to the reference [30], F (U, µ0) has the follow-
ing form

F (U, µ0) =
1

2
Q(U,U) +

1

6
C(U,U, U) +O

(
|U |4

)
,

and

Q(U, V ) =

(
Q1(U, V )
Q2(U, V )

)
,

C(U, V,W ) =

(
C1(U, V,W )
C2(U, V,W )

)
,

with
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Q1(U, V ) =
2u1v1

(1 + σ)
2 −

2(u2v1 + u1v2)

(1 + σ)
3 +

2u2v2

(1 + σ)
4 ,

Q2(U, V ) =
2(1− σ)u1v1

1 + σ
,

C1(U, V,W ) = − 2

(1 + σ)
6 ((1 + 2σ)u2v1w1

+ (1 + 2σ)u1v2w1 + (1 + 2σ)u1v1w2

− 2(1 + σ)u2v1w2 − 2(1 + σ)u1v2w2

− 2(1 + σ)u2v2w1 + σ2u1v2w1

+ σ2u2v1w1 +σ2u1v1w2 + 3u2v2w2

)
,

C2(U, V,W ) = 0.

For any U = (u1, u2)
T
, V = (v1, v2)

T
,W = (w1 , w2)T ,

and U, V,W ∈ H2((0, π)) × H2((0, π)), the linear operator
L defined in (9) for µ = µ0 is

LU =

[
J (µ0) +D

(
∂xx 0
0 ∂xx

)]
U,

for U ∈ H2((0, π))×H2((0, π)).
Let L∗ be the adjoint operator of L, then

L∗U =

[
J∗ (µ0) +D

(
∂xx 0
0 ∂xx

)]
U,

where

J∗ (µ0) =


1− σ
1 + σ

2(1− σ)

− 1

(1 + σ)
2

−1 + σ

1 + σ

 .

Obviously, 〈L∗U, V 〉 = 〈U,LV 〉 and the inner prod-
uct in H2((0, π)) × H2((0, π)) is defined as 〈U, V 〉 =
1
π

∫ π
0
ŪTV dx. The linearized system of (16) at the equilib-

rium (0, 0) is (
u1t

u2t

)
= L

(
u1

u2

)
, (17)

with Neumann boundary conditions

Ux (0, t) = Ux (π, t) = (0, 0)
T
. (18)

The solution (u1, u2) of (17)-(18) in H2((0, π)) ×
H2((0, π)) has the following form

(
u1(x, t)
u2(x, t)

)
=
∞∑
k=0

(
ak
hk

)
eλtcos(kx), (19)

where λ ∈ C is the temporal spectrum, k is the wave number
and ak, hk are complex numbers for k = 0, 1, 2, · · · , n, · · · .
Substituting (19) into (17), we have

∞∑
k=0

λ

(
ak
hk

)
eλtcos(kx) =

∞∑
k=0

Lk

(
ak
hk

)
eλtcos(kx).

We collect items equal to the power of k and in that way
we have

(λI − Lk)

(
ak
hk

)
=

(
0
0

)
, k = 0, 1, 2, · · · , n, · · ·

(20)

where

Lk =


1− σ
1 + σ

− dk2 − 1

(1 + σ)
2

2(1− σ)
−1 + σ

1 + σ
− k2

 .

Equation (23) has a nonzero solution if and only if

det (λI − Lk) = 0.

Nextly, the equation can be rewritten as

λ2 − Tkλ+Dk = 0, k = 0, 1, 2, · · · , n, · · ·

where

Tk = − (1 + d) k2,

Dk =

(
k2 − (1− σ)

d(1 + σ)

)
dk2 +

dk2(1− σ)

1 + σ
+ ω2

0 .

Here, T0 = 0, Tk < 0 for all k = 1, 2, · · · , n, · · ·
and D0 = ω2

0 > 0. Then, it follows that for k = 0, the
eigenvalues of L are with zero real parts. We need to proceed
the center manifold reduction. Firstly, if d > 1−σ

1+σ then

Dk > dk2(1−σ)
1+σ + ω2

0 > 0 for all k = 0, 1, 2, · · · , n, · · · .
The stable limit cycle is still stable for system (3). Then,
if m2 < 1−σ

d(1+σ) ≤ (m+ 1)2 and d < D, where D =

min
1≤k≤m

(k2−1)(1−σ)
k2(1−σ+k2(1+σ)) . The stable limit cycle is still stable

for system (3). Furthermore, if m2 < 1−σ
d(1+σ) ≤ (m+ 1)2

and where D = min
1≤k≤m

(k2−1)(1−σ)
k2(1−σ+k2(1+σ)) , then there exists at

least one negative in D1, D2, · · · , Dm.
We choose q = ( 1

2(1+σ) + iw0

2(1−σ) , 1), q∗ = ( (1−σ)
ω0

i, 1
2 −

(1−σ)i
2ω0(1+σ) ), so that Lq = iω0q, L

∗q∗ = −iω0q
∗, 〈q∗, q〉 = 1

and 〈q∗, q̄〉 = 0.

According to the reference [30], we write U = zq+ z̄q̄+
w, z = 〈q∗, U〉 , w = (w1, w2)

T and u1 =
1

2(1 + σ)
(z − z̄) +

iw0

2(1− σ)
(z − z̄) + w1,

u2 = z + z̄ + w2.

The system (16) in (z, w) coordinates can be expressed as

{
ż = iω0z +

〈
q∗, f̃

〉
,

ẇ = Lw +H(z, z̄, w),
(21)

where

f̃ = F (zq + z̄q̄ + w, µ0) ,

H(z, z̄, w) = f̃ −
〈
q∗, f̃

〉
q −

〈
q̄∗, f̃

〉
q̄.

By calculation we have
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f̃ =
1

2
Q(q, q)z2 +Q(q, q̄)zz̄ +

1

2
Q(q̄, q̄)z̄2

+O
(
|z|3, |z| · |w|, |w|2

)
,〈

q∗, f̃
〉

=
1

2
〈q∗, Q(q, q)〉 z2 + 〈q∗, Q(q, q̄)〉 zz̄

+
1

2
〈q∗, Q(q̄, q̄)〉 z̄2 +O

(
|z|3, |z| · |w|, |w|2

)
,〈

q̄∗, f̃
〉

=
1

2
〈q̄∗, Q(q, q)〉 z2 + 〈q̄∗, Q(q, q̄)〉 zz̄

+
1

2
〈q̄∗, Q(q̄, q̄)〉 z̄2 +O

(
|z|3, |z| · |w|, |w|2

)
,

H(z, z̄, w) =
1

2
z2H20 + zz̄H11 +

1

2
z̄2H02

+O
(
|z|3, |z| · |w|, |w|2

)
,

where

 H20 = Q(q, q)− 〈q∗, Q(q, q)〉 q − 〈q̄∗, Q(q, q)〉 q̄,
H11 = Q(q, q̄)− 〈q∗, Q(q, q̄)〉 q − 〈q̄∗, Q(q, q̄)〉 q̄,
H02 = Q(q̄, q̄)− 〈q∗, Q(q̄, q̄))q − 〈q̄∗, Q(q̄, q̄)〉 q̄.

Furthermore,

H20=H11 = H02 = (0, 0)T ,

which implies H(z, z̄, w) = O
(
|z|3, |z| · |w|, |w|2

)
.

The system (21) has a central manifold, which can be
written as

w =
1

2
z2w20 + zz̄w11 +

1

2
z̄2w02 +O

(
|z|3
)
.

Together with Lw + H(z, z̄, w) = ẇ = ∂w
∂z ż + ∂w

∂z̄
˙̄z, we

can get

w20 = [2iω0 − L]
−1
H20 = [2iω0 − J (µ0)]

−1
H20

= (0, 0)T ,
w11 = −L−1H11 = −J−1 (µ0)H11

= (0, 0)T ,

w02 = [−2iω0 − L]
−1
H02 = [−2iω0 − J (µ0)]

−1
H02

= (0, 0)T ,

then, w = O
(
|z|3
)
.

Therefore, the diffusion system restricted to the center
manifold is

ż = iω0z +
〈
q∗, f̃

〉
= iω0z +

∑
2≤i+j≤3

gij
i!j!

ziz̄j +O
(∣∣z4

∣∣)
(22)

where

g20 = 〈q∗, Q(q, q)〉 ,
g11 = 〈q∗, Q(q, q̄)〉 ,
g02 = 〈q∗, Q(q̄, q̄)〉 ,
g21 = 2 〈q∗, Q (w11, q)〉+ 〈q∗, Q (w20, q̄)〉

+ 〈q∗, C(q, q, q̄)〉
= 〈q∗, C(q, q, q̄)〉 .

For the system (21), we know that it is determined by
(22). The Poincaré normal form of (16) can be written as
follows

ż = (α(µ) + iω(µ))z + z
M∑
j=1

cj(µ)(zz̄)j (23)

where z is a complex variable, M ≥ 1, and cj(µ) is a
complex-valued coefficient.

Nextly, we derive the key expression of Turing stability
on the central manifold. According to the reference [30], we
have

c1(µ0) =
g20g11[3α(µ0) + iω(µ0)]

2 [α2(µ0) + ω2(µ0)]
+

|g11|2
α(µ0) + iω(µ0)

+
|g02|2

2[α(µ0) + 3iω(µ0)]
+
g21

2
.

Since α (µ0) = 0 and ω (µ0) = ω0 > 0, it is easy to
obtain that

Re (c1 (µ0)) = Re

[
g20g11

2ω0
i+

g21

2

]
.

Due to

g20 = 〈q∗, Q(q, q)〉 =
i− 3ω0

2(1 + σ)
3
ω0

,

g11 = 〈q∗, Q(q, q̄)〉= −i+ ω0

2(1 + σ)
3
ω0

,

g21 = 〈q∗, C(q, q, q̄)〉 =
(2− σ)i+ ω0(1 + σ)

(1 + σ)
6
ω0

,

then, Re [c1 (µ0)] = −σ
2(1−σ)(1+σ)5

< 0, which implies that
the spatially homogeneous periodic solution is stable.

According to the above analysis, we obtain Theorem 4.

Theorem 4. Assume condition (H3) is satisfied, let

D = min
1≤k≤m

(k2 − 1)(1− σ)

k2(1− σ + k2(1 + σ))
,

the spatially homogeneous periodic solution for system (3)
is stable if condition (H7) or (H8) holds, the spatially
homogeneous periodic solution for system (3) is unstable if
condition (H9) holds.

(H7) d >
1− σ
1 + σ

;

(H8) m2 <
1− σ
d(1 + σ)

≤ (m+ 1)2, d < D;

(H9) m2 <
1− σ
d(1 + σ)

≤ (m+ 1)2, d > D.

Remark 2. It is easy to observe that
min

1≤k≤m
(k2−1)(1−σ)

k2(1−σ+k2(1+σ)) = 0 for k = 1. So, condition

(H8) can’t be satisfied due to d > 0.

IV. NUMERICAL SIMULATION FOR PATTERN FORMATION

In this section, the numerical simulations are employed to
verify the theoretical analysis in section II and section III.

First of all, the Hopf bifurcation curve in parameter space
(σ, µ0) and the supercritical Hopf bifurcation diagram in
three-dimensional space (µ, a, h) of system (5) are shown in
Figure 1 (a) and Figure 1 (b), respectively. The supercritical
Hopf bifurcation diagram illustrates the stable equilibrium
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(black curve), unstable equilibrium (red curve), stable limit
cycles (blue surface) and specific limit cycles (rose red curve)
for µ = 0.6.

Nextly, we choose σ = 0.2, then µ0 = 0.6667 and
(a∗, h∗) = (1.20, 1.44) . In order to illustrate the con-
clusion of Theorem 1, we let µ = 0.68 (µ > µ0) and
µ = 0.64 (µ < µ0) make it satisfy the conditions of (H2)
and (H3) in Theorem 1, respectively. The corresponding
dynamics of the equilibrium of system (5) are shown in
Figure 2. Figure 2 (a) illustrates that equilibrium (a∗, h∗) is
asymptotically stable when µ = 0.68. Figure 2 (b) illustrates
that the equilibrium (a∗, h∗) is unstable and the phase orbit
converges to the stable limit cycle when µ = 0.64.

Furthermore, we adopt numerical simulations to explain
the influences of diffusions on the stability of equilibrium
and the spatial homogeneous periodic solution bifurcating
from Hopf bifurcation. Let σ = 0.2, µ = 0.68, then 1−σ

1+σ =
0.6667. Particularly, let d = 0.68 make the conditions (H2)
and (H4) of Theorem 3 hold. The equilibrium of system
(3) is still stable in the above situations. The patterns are
illustrated in Figure 3 (a) and Figure 3 (b). Let σ = 0.2, µ =
0.68, d = 0.05, then 1−σ

d(1+σ) = 13.333, Dm = 0.0610652,
the conditions (H2) and (H5) of Theorem 3 hold. The
equilibrium of system (3) is still stable illustrated in Figure
4 (a) and Figure 4 (b). Let σ = 0.2, µ = 0.68, d = 0.04,
then 1−σ

d(1+σ) = 16.66667, Dm = 0.03742006, the conditions
(H2) and (H6) of Theorem 3 hold. The stable equilibrium
of system (5) becomes unstable for system (3) in the above
situations, which means that Turing instability occurs. Please
see Figure 5 (a) and Figure 5 (b). It is easy to find the stripe
patterns.

In the following, we illustrate the Turing instability in
homogeneous limit cycles. Let σ = 0.2 and µ = 0.64, then
1−σ
1+σ = 0.6667. Particularly, let d = 0.68 make conditions
(H3) and (H7) of Theorem 4 hold. The stable limit cycle
of system (3) is still stable in the above situations. Please see
Figure 6 (a) and Figure 6 (b). Let σ = 0.2, µ = 0.64 and
d = 0.1, then D = 0, conditions (H3) and (H9) of Theorem
4 hold. The stable limit cycle of system (5) becomes unstable
for system (3) due to the effects of diffusions. Please see
Figure 7 (a) and Figure 7 (b). The Turing patterns of spot
stripe or spot are clearly observed by enlarging Figure 7 (b)
into Figure 8 (a) and Figure 8 (b) respectively.

V. CONCLUSION

Turing patterns dynamics of Gierer-Meinhardt of the
activator-inhibitor model has been theoretically and numeri-
cally studied in this paper. The center manifold theory was
first denoted to analyzing the existence of Hopf bifurcation. It
was found that the system (5) undergoes a supercritical Hopf
bifurcation at the equilibrium (a∗, h∗). Afterward, based on
the normal form and the center manifold reduction, some
conditions of the Turing instability are obtained under the
diffusive effects. Analysis results show that the system (3)
will undergo Turing instability in equilibrium and periodic
solutions, and some spot or stripe patterns will be possibly
formed. In addition to theoretical analysis, the numerical
simulation methods were also employed to verify the con-
clusions of the theoretical analysis. The results indicate that
complex dynamics do happen in Gierer-Meinhardt model.

In particular, it was found that under certain conditions,
diffusion could cause instability of the equilibrium and the
limit cycle, which are otherwise stable without diffusion.
To sum up, the results are conducive to understand the
formation of biological patterns, and the method provides us
with an understanding of the dynamical complexity of space
and time in the activator-inhibitor model. More interesting
and complex behavior about such a model will further be
explored in the future.
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Fig. 1: (a) The supercritical Hopf bifurcation diagram of system (5). (b) The supercritical Hopf bifurcation diagram in
three-dimensional space (µ, a, h) of (5).
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Fig. 2: (a) The phase orbit starting from (a0, h0) = (1.70, 1.94) converges to equilibrium (a∗, h∗) = (1.20, 1.44). (b) The
equilibrium is unstable while phase orbit starting from (a0, h0) = (1.40, 1.64) converges to stable limit cycle.

(a) (b)

Fig. 3: (a) The stable equilibrium (a∗, h∗) = (1.20, 1.44) of system (3) is still stable under conditions (H2) and (H4). (b)
The projection of (a) in (x, t) coordinates.
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(a) (b)

Fig. 4: (a) The stable equilibrium (a∗, h∗) = (1.20, 1.44) of system (3) is still stable under conditions (H2) and (H5). (b)
The projection of (a) in (x, t) coordinates.

(a) (b)

Fig. 5: (a) The stable equilibrium (a∗, h∗) = (1.20, 1.44) becomes unstable for system (3) under conditions (H2) and (H6).
(b) The projection of (a) in (x, t) coordinates.

(a) (b)

Fig. 6: (a) The stable limit cycle of system (5) is still stable for system (3) under conditions (H3) and (H7). (b) The
projection of (a) in (x, t) coordinates.
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(a) (b)

Fig. 7: (a) The stable limit cycle becomes unstable for system (3) under conditions (H3) and (H9). (b) The projection of
(a) in (x, t) coordinates.

(a) (b)

Fig. 8: The local enlargement of Fig. 7(b).

[22] J.-C. Wei and M. Winter, “Existence of Spikes for the Gierer-
Meinhardt System in One Dimension,” in Mathematical Aspects of
Pattern Formation in Biological Systems, vol. 189, London, UK:
Springer, 2014, pp. 13–39.

[23] F. A. dos S. Silva, R. L. Viana and S. R. Lopes, “Pattern formation
and Turing instability in an activator-inhibitor system with power-law
coupling,” Physica A, vol. 419, pp. 487-497, Feb. 2015.

[24] A. Madzvamuse, H. S. Ndakwo and R. Barreira, “Cross-diffusion-
driven instability for reaction-diffusion systems: analysis and simula-
tions,” J. Math. Biol, vol. 70, no. 4, pp. 709-743, Mar. 2015.

[25] X.-P. Yan, Y.-J. Ding and C.-H. Zhang, “Dynamics Analysis in a
Gierer-Meinhardt Reaction-Diffusion Model with Homogeneous Neu-
mann Boundary Condition,” Internat. J. Bifur. Chaos, vol. 29, no. 9,
pp. 19300251-26, Feb. 2019.

[26] A. J. Koch and H. Meinhardt, “Biological Pattern-Formation-From
basic mechanisms to complex structures,” Rev. mod. phys, vol. 66, no.
4, pp. 1481-1507, Oct. 1994.

[27] S. Wiggins, Introduction to applied nonlinear dynamical systems and
chaos. New York, NY, USA: Springer-Verlag, 1990, pp. 5–19.

[28] J. E. Marsden and M. McCracken, The Hopf bifurcation and its
applications. New York, NY, USA: Springer-Verlag, 1976, pp. 1–26.

[29] M. G. Crandall and P. H. Rabinowitz, “The Hopf bifurcation theorem
in infinite dimensions,” Arch. Ration. Mech. An, vol. 67, no. 1, pp.
53-72, Mar. 1977.

[30] B.D. Hassard, N.D. Kazarinoff and Y.-H. Wan, Theory and Application
of Hopf Bifurcation. New York, USA: Cambridge University Press,
1981, pp. 14–71.

Lianchao Gu is currently pursuing the master’s degree with the College
of Science, Beijing Forestry University. Her research interests include
dynamical systems, stability analysis, data processing, and mathematical
modeling.

Shihong Zhong is currently pursuing the Ph.D. degree with the School of
Mathematics Sciences, Beihang University. Her research interests include
differential equation and dynamical system, pattern formation and Turing
instability.

Peiliang Gong is currently pursuing the master’s degree with the School
of Computer and Information Technology, Beijing Jiaotong University. His
research interests include numerical simulation, data mining, and machine
learning and cognitive computing.

Bo Wang is senior engineer. His research interests include renewable energy
power forecasting, resource assessment, and numerical weather forecasting.

Hongqing Wang received his B.Sc. degree in 1995 from ShanXi Normal
University received his M.Sc. degree in 2002 from Yamagata University of
Japan, received his Ph.D. degree in 2007 from Yamagata university of Japan,
now he is the associate professor in Beijing Forestry University. His main
research interests include chaotic dynamics, data mining and processing.

Engineering Letters, 28:4, EL_28_4_07

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 


	Introduction
	Existence of Hopf bifurcation
	Turing Instability of the Equilibrium and Limit Cycles
	Turing Instability of the Equilibrium
	Turing Instability of the Limit Cycle

	Numerical Simulation for Pattern formation
	Conclusion
	References
	Biographies
	Lianchao Gu
	Shihong Zhong
	Peiliang Gong
	Bo Wang
	Hongqing Wang




