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Abstract—This paper studies the optimal reinsurance and
investment problem for insurance companies (insurers) with
a fractional power utility function. Assuming that the insurer
surplus process is approximated by Brownian motion with drift,
the insurer may purchase reinsurance and invest the capital in
a financial market consisting of risk-free asset and risk asset
whose price is modeled by constant elasticity variance (CEV)
model. The insurer’s objective is to maximize the expected
fractional power utility from terminal wealth. The explicit
expressions for optimal reinsurance-investment strategy and
value function are determined by the stochastic approach, which
uses the equations of Hamilton-Jacobi-Bellman. Finally, the
numerical simulations are presented to show the effects of model
parameters on the insurer’s optimal reinsurance and investment
strategies.

Index Terms—Constant elasticity variance, fractional power
utility, Hamilton-Jacobi-Bellman equation, reinsurance, insurer,
surplus process, stochastic approach.

I. INTRODUCTION

THE reinsurance and investment problem in the insur-
ance business have recently become more relevant,

attracting great interest. For example, Li [1] studied the
optimal reinsurance and investment problem of the maximum
expected two exponential utility function whose claim pro-
cess modeled as Brownian motion with drift. Mwanakatwe
[2] used an investment model that followed the Hull and
White SV model and obtained a reinsurance and investment
strategy to maximize expected utility function. Li and Gu [3]
discussed the problem of maximizing expected exponential
utility function to both proportional reinsurance and invest-
ment. Lin and Li [4], and Wang et al. [5] studied an insurer
investment strategy of exponential utility maximation with
the jump-diffusion process. Gu [6], Li and Gu [7] focused
the optimal Excess-of-Loss reinsurance and investment with
maximizing exponential utility. Sheng [8] and Lhedioha [9]
considered the optimal reinsurance and investment problem
of maximizing the expected power utility function. Deng
[10] studied constructs a reinsurance-investment optimization
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problem with bounded memory. Li et al. in [11] and [12] dis-
cussed the problem of ruin probability minimization, the ruin
probability for the insurer, and maximizing the exponential
utility function. Gao [13] discussed the optimal investment
strategy for annuity contracts with CRRA and CARA utility
functions. Chunxiang et al. [14] studied optimal excess of
loss reinsurance and investment problem with delay and
jump-diffusion risk. Li et al. [15] discussed time consistent
reinsuranceinvestment strategy for an insurer and a reinsurer
with mean-variance criterion. Xiao J et al. [16] used the
Legendre transformdual solution for annuity contracts, and
Wang et al. [17] focused on the optimal investment problem
with consumption.

The CEV model with stochastic volatility is more prac-
tical than the Black-Scholes (BS) model. The CEV model
proposed by Cox and Ross [18] is a natural extension of the
BS model. We focus on an optimal problem for the insurer.
In this paper, we construct again the model basic claim
process which assumed based on Brownian motion with
drift, and the insurer can purchase a proportional reinsurance
contract from the reinsurer. The insurer is permitted to invest
a risk asset and a risk-free asset in the financial market
whose price process follows the CEV model. The objective
is to maximize the expected utility fractional power utility
function of terminal wealth. Using stochastic control theory,
we establish the corresponding Hamilton Jacobi Bellman
(HJB) equation, optimal reinsurance-investment strategies,
and the value function of the optimization. Moreover, the
novelty of this paper is different from those of [1]-[8], [11],
and [13]-[17], in which the CEV model is used to study the
optimal investment strategy with a fractional power utility
function. For good references for studies about the optimal
investment can be seen in [19] and [20] .

This paper is organized as follows. We introduce the
model formulation for the insurer’s wealth process model
with reinsurance proportion and investment in section II. In
section III, we propose an optimal strategy for the insurer
and using the HJB equation to find explicit solution propor-
tional reinsurance and investment with maximizing expected
fractional power utility function. In section IV, the numerical
experimets are presented to illustrate our results. Conclusions
are given in section V.

II. MODEL FORMULATION

In this section, we derived the insurance risk model with
reinsurance and investment. The model surplus process via
the Classical Cramer-Lundberg model, and an insurer can
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invest in some risky assets by the CEV model. We finish
this section by presenting the wealth process model.

A. The Surplus Process

In this subsection, we formulate a form of the surplus
process of the insurer. In insurance, the surplus process is
the process of accumulation of wealth. To derive the surplus
process, we need the claim process. Following the framework
of [12] and [21], we model the claim process C(t) matching
to a Brownian motion with drift as

dC(t) = adt− bdW (t) (1)

where a and b are positive constant, and W (t) is a standard
Brownian motion defined on the complete probability space
(Ω,F , (Ft), P ). According to the expected value principle
[22], the premium rate of insurer is c = (1 + θ)a and θ > 0
is the safety loading of insurer. In this paper, we assume a
classical Cramer-Lundberg model for surplus process [22] as

R(t) = x0 + ct− C(t), t ≥ 0

where R(t) and x0 are the insurers capital at time t and
initial capital R(0) = x0, respectively. According to (1), the
surplus process for the insurer is given as

dR(t) = cdt− dC(t) = aθdt+ bdW (t).

Furthermore, the insurer can buy reinsurance contract to
reduce risk. Suppose the insurer pays reinsurance premium
continuously at rate c1 = (1 + η)a, where η > θ > 0 is the
safety loading of the reinsurer. So, the surplus process R1(t)
associated with reinsurance of the insurer follows

R1(t) = cdt− (1− p(t))dC(t)− c1p(t)dt
= cdt− (1− p(t))(adt− bdW (t))−

(1 + η)ap(t)dt

= (θ − ηp(t))adt+ b(1− p(t))dW (t) (2)

where p(t) is proportion reinsurance at time t.

B. The Financial Market

In practice, an insurer can invest part of its capital in
a financial market. We assume that the financial market
consists of a risk-free asset and risk asset. Example risk
free asset like an obligation and a bank account, risky asset
like a stock and option. Suppose insurer invest some part
of its capital into risk-free asset at time t with prices S0(t)
satisfying

dS0(t) = rS0(t)dt (3)

where r > 0 is interest rate for free risk asset. Assume that
the price of risky asset S(t) is described by the CEV ([1],
[2], [4]-[8], [11], and [13]-[17]) model as

dS(t) = µS(t)dt+ σS(t)β+1dW1(t)

= S(t)(µdt+ σS(t)βdW1(t)) (4)

where µ > 0, σS(t)β ,r > µ and β < 0 are the expected
return rate, the instantaneous volatility and the elasticity
parameters of the risky asset, respectively. W1(t) is a stan-
dard Brownian motion independent of W (t) defined on the
complete probability space (Ω,F , (Ft), P ).

C. The Wealth Process

The amount of wealth of insurer invested on risk asset at
time t denoted by π(t) and X(t) represents the wealth of the
insurer. So, the remainder X(t) − π(t) invested in risk-free
asset. Therefore, from (2), (3), and (4), the wealth processes
model of the insurer to follow stochastic differential equation
as

dX(t) = dR1(t) + π(t)
dS(t)

dt
+ (X(t)− π(t))

dS0(t)

dt
= (θ − ηp(t))adt+ b(1− p(t))dW (t) +

π(t)[µdt+ σS(t)βdW1(t)] + (X(t)− π(t))rdt

= [rX(t) + π(t)(µ− r) + (θ − ηp(t))a]dt

+b(1− p(t))dW (t) + π(t)σS(t)βdW1(t). (5)

Based on the explanation above for the insurer, then
reinsurance-investment strategy γ is described by a pair
γ = (p(t), π(t)). The pair γ called admissible if it is (Ft)-
progressively measurable and satisfies 0 ≤ p(t) ≤ 1 ,[∫ T

0
π2(t)dt <∞

]
with t ∈ [0, T ].

Suppose the insurer has a fractional power utility function
is defined as [8]

U(x) = xα , 0 < α < 1 (6)

where x is the wealth level of an insurer and α is constant
relative risk aversion.

In this paper, we will find the optimal reinsurance and
investment strategy by maximizing expected fractional power
utility (constant relative risk aversion) function of terminal
wealth. The objective of the problem can be written as:

max
γ

E[U(X(T ))] (7)

with constraint (5).

III. OPTIMAL STRATEGY FOR THE INSURER

In this section, we will find the optimal strategy γ∗ =
(p∗, π∗) for the optimization problem (7), where p∗ is called
the optimal reinsurance strategy and π∗ is called the optimal
investment strategy. For strategy γ, the value function at the
time t is defined as

M(t, x, s) = sup
γ
E[U(X(T ))|X(t) = x, S(t) = s]

with boundary condition M(T, x, s) = U(x).
We propose the optimal reinsurance and investment strat-

egy of the insurer who aims to maximize the expected
fractional power utility of terminal wealth in the following
theorem.

Theorem 1. For the optimal problem (7), assume that the
objective is to maximize (6) of terminal wealth, at the fixed
terminal time T then the optimal reinsurance strategy is
given by

p∗ = 1 +
ηax

b2(α− 1)

and the optimal investment strategy is

π∗ =
x(−αr(T − t)σ2 + (r − µ)s−2β)

σ2(α− 1)
.
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The optimal value function is

M(t, x, s) = exp

[
− 1

6xσ2b2(α− 1)

([
3b2(αr2 −

2µa(r − µ

2
))xs−2β + (ασ2b2r2x(T − t)2s2β +

(3b2r2s(T − t)α− 3b2sµ(T − t) + 3a2η2)x−

6b2a((θ − η)α− θ − η))σ2α

]
(T − t)

)
− αr(T − t)

]
xα

Proof: To get the optimal strategy (p∗, π∗), we use
the Hamilton Jacobi Bellman equation. The Hamilton Jacobi
Bellman equation associated with the problem is

Mt + sup
γ

([rx+ π(µ− r) + (θ − ηp)a]Mx +

µsMs +
1

2
(π2σ2s2β + b2(1− p)2)Mxx +

1

2
σ2s2β+2Mss + πσ2s2β+1Mxs) = 0. (8)

Differentiating (8) with respect to π, we have

(µ− r)Mx + πσ2s2βMxx + σ2s2β+1Mxs = 0

⇐⇒ πσ2s2βMxx = −((µ− r)Mx + σ2s2β+1Mxs)

⇐⇒ π∗ = − (µ− r)Mx + σ2s2β+1Mxs

σ2s2βMxx
.

Putting π∗ to (8), we obtain

Mt +

(
rx−

(
(µ− r)Mx + σ2s2β+1Mxs

)
(µ− r)

σ2s2βMxx

+(θ − ηp)a

)
Mx + µsMs +

1

2

(
((µ− r)Mx + σ2s2β+1Mxs)

2

σ2s2βMxx
+ b2(1− p)2

)
Mxx

+
1

2
(σ2s2β+2)Mss −

1

Mxx
((µ− r)Mx + σ2s2β+1Mxs)sMxs = 0.

Differentiating equation above respect to p, we have

−ηaMx − b2(1− p)Mxx = 0

⇐⇒ (−b2 + b2p)Mxx − ηaMx = 0

⇐⇒ b2pMxx = ηaMx + b2Mxx

p∗ =
ηaMx + b2Mxx

b2Mxx
= 1 +

ηaMx

b2Mxx

Substitution π∗ and p∗ into (8), we obtain

Mt +

[
rx−

(
(µ− r)Mx + σ2s2β+1Mxs

)
(µ− r)

σ2s2βMxx

+

(
θ −

(
1 +

ηaMx

b2Mxx

)
η

)
a

]
Mx + µsMs

+
1

2

[(
(µ− r)Mx + σ2s2β+1Mxs

)2
σ2s2βM2

xx

+
η2a2M2

x

b2M2
xx

]
Mxx

+
1

2
σ2s2β+2Mss

−
(
(µ− r)Mx + σ2s2β+1Mxs

)
s2β+1Mxs

s2βMxx
= 0. (9)

According to the fractional power utility function described
by equation (6), we try to find the solution (9). Suppose value
function in this problem by (see [8])

M(t, x, s) = f(t)eh(t)sxα

with f(T ) = 1 and h(T ) = 0. The derivatives of the
M(t, x, s) with respect to t, x, s, respectively,

Mx = αxα−1eh(t)sf(t)

Mxx = α(α− 1)xα−2eh(t)sf(t)

Mt = xα(f(t)h
′
(t)eh(t)ss+ eh(t)sf

′
(t))

Ms = f(t)h(t)eh(t)sxα

Mxs = αxaα−1eh(t)sf(t)h(t)

Mss = f(t)h(t)2eh(t)sxα.

Plugging these derivatives into the HJB equation (9), we
obtain

− (eh(t)sσ2s2β+2f(t)(h(t))2xα)

2(α− 1)
− eh(t)saα2f(t)xαη

x(α− 1)

+
eh(t)saα2f(t)xαθ

x(α− 1)
+
eh(t)saαf(t)xαη

x(α− 1

−e
h(t)saαf(t)xαθ

x(α− 1
− eh(t)sαf(t)xαµ2

2σ2(α− 1)s2β
+
eh(t)sαf(t)xαµr

σ2(α− 1)s2β

−e
h(t)sαf(t)xαr2

2σ2(α− 1)s2β
+
eh(t)sxααf(t)h(t)rs

α− 1

−e
h(t)sxαα2η2f(t)

2(α− 1)b2
+
eh(t)sxαα2f(t)r

α− 1

+
eh(t)sxαaαf(t)h

′
(t)s

α− 1
− eh(t)sxαf(t)h(t)µs

α− 1

−e
h(t)sxααf(t)r

α− 1
− eh(t)sxαf(t)h

′
(t)s

α− 1

+
eh(t)sαxαf

′
(t)

α− 1
− eh(t)sxαf

′
(t)

α− 1
= 0

⇐⇒

(
aα2η

x
+
aα2θ

x
+
aαη

x
− aαθ

x
− αµ2

2σ2s2β

+
αµr

σ2s2β
− αr

2σ2s2β
− a2αη2

2b2
+ α2r − αr

)
f(t)

+(α− 1)f
′
(t) + (αs− s)f(t)h

′
(t)

+(−µs+ αrs)f(t)h(t)− 1

2
σ2s2β+2f(t)h2(t) = 0.

Splitting into two equations (see [8])

(α2r − αr)f(t) + (αs− s)f(t)h
′
(t) = 0

⇐⇒ αr(α− 1)f(t) + s(α− 1)f(t)h
′
(t) = 0

⇐⇒ (α− 1)f(t)(αr + sh
′
(t)) = 0,

i.e.,

αr + sh
′
(t) = 0, h(T ) = 0 (10)
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and [
−aα

2η

x
+
aα2θ

x
+
aαη

x
− aαθ

x
− αµ2

2σ2s2β
+

αµr

σ2s2β
− αr

2σ2s2β
− a2αη2

2b2

]
f(t) + (α− 1)f

′
(t)

+(−µs+ αrs)f(t)h(t)

−1

2
σ2s2β+2f(t)h2(t) = 0 , f(T ) = 1. (11)

The solution of (10) is

h(t) = −αr
s

(T − t).

Substitution h(t) above into (11), we have[
−aα

2η

x
+
aα2θ

x
+
aαη

x
− aαθ

x
− αµ2

2σ2s2β
+

αµr

σ2s2β
− αr

2σ2s2β
− a2αη2

2b2

]
f(t) +

(α− 1)f
′
(t)− (−µs+ αrs)

αr

s
(T − t)f(t)−

σ2s2β+2α2r2(T − t)2

2s2
f(t) = 0 f(T ) = 1.

⇐⇒ f
′
(t) +

1

α− 1

[
−aα

2η

x
+
aα2θ

x
+
aαη

x
−

aαθ

x
− αµ2

2σ2s2β
+

αµr

σ2s2β
− αr

2σ2s2β
− a2αη2

2b2
+

(µ− αr)(T − t)αr1

2
(σsβα(T − t))2

]
f(t) = 0

, f(T ) = 1.

Solution of the above ordinary differential equation is

f(t) = exp

[
− 1

6xσ2b2(α− 1)([
3b2(αr2 − 2µa(r − µ

2
))xs−2β +

(ασ2b2r2x(T − t)2s2β +

(3b2r2s(T − t)α− 3b2sµ(T − t) + 3a2η2)x−

6b2a((θ − η)α− θ − η))σ2α

]
(T − t)

)]
.

We obtain the value function as follows

M(t, x, s) = exp

[
− 1

6xσ2b2(α− 1)

([
3b2(αr2 −

2µa(r − µ

2
))xs−2β + (ασ2b2r2x(T − t)2s2β +

(3b2r2s(T − t)α− 3b2sµ(T − t) + 3a2η2)x−

6b2a((θ − η)α− θ − η))σ2α

]
(T − t)

)
− αr(T − t)

]
xα

and optimal strategy γ∗ = (p∗, π∗) is

p∗ = 1 +
ηax

b2(α− 1)

and

π∗ =
x(−αr(T − t)σ2 + (r − µ)s−2β)

σ2(α− 1)
.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to
show the relationship between the optimal reinsurance and
investment strategies with the parameters in our model. The
basic parameters for the numerical analysis are as follows:

η = 2, µ = 0.5, b = 1, T = 10, σ = 1, a = 1.5,

r = 0.3, s = 10, α = 0.5, x = 0.1.

Fig. 1: The effect η of on the optimal reinsurance proportion
p∗

From Figure 1, we see the effect between safety loading
η and reinsurance proportion p∗, the greater the value of the
reinsurer safety loading η will yields a smaller of the p∗. So,
to maintain a stable income, the insurer would prefer buying
less reinsurance.

Fig. 2: The effect β of on the optimal reinsurance proportion
π∗

From Figure 2, we see the effect of the elasticity coef-
ficient β on the investment strategy π∗. There is a positive
relation between β and π∗. This can be interpreted as a more
negative β leads to a decrease in greater volatility and the
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possibility of an increase in bad movements on the price of
risky assets. So, the insurer will invest less in risk assets
because β is reduced.

Fig. 3: The effect µ of on the optimal reinsurance proportion
π∗

Figure 3, illustrates the effect of the risky assets return µ
on the investment strategy π∗. There is a positive relation
between µ and π∗. This implies that risky assets will be
more attractive in the future. Therefore, the optimal amount
invested in risk assets is increasing at this time.

Fig. 4: The effect r of on the optimal reinsurance proportion
π∗

Figure 4, illustrates the effect of interest rate risk-free asset
r on the investment strategy π∗. There is a negative relation
between r and π∗. This implies that risk-free assets will not
be attractive in the future. Therefore, the optimal amount
invested in risk-free assets is decreasing at this time.

V. CONCLUSION

In this paper, we focus on the optimal investment problem
for insurance companies. The basic claim process is assumed
to follow Brown’s motion with drift, and the insurance com-
pany can buy proportional reinsurance. Insurers are allowed
to invest in risk-free assets and risk assets, whose prices are
described as a constant elasticity variance (CEV) model. The

value function and explicit solutions to maximize expected
fractional power utility function are obtained by solving
the corresponding Hamilton-Jacobi-Bellman (HJB) equation.
Finally, the numerical experiments are presented to show
the effects of model parameters on the insurer’s optimal
reinsurance and investment strategies.
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