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Learning Graph-based Embedding from EHRs for
Time-aware Patient Similarity

Hua Jiang, Dan Yang

Abstract—With the wide application of electronic health
records (EHRs), the research on mining effective medical
knowledge from EHRs and supporting clinical decision-making
has become an important research field, and patient similarity
analysis is an important research direction. In this paper, we
propose a time-aware patient similarity framework from EHRs,
named T-PS. Specially, T-PS first constructs a high-quality
temporal medical entity association graph from EHRs by
converting the patient profile. The patient profile includes the
diagnoses, medicines and procedures. Then the medical entities
in the temporal medical entity association graph can be
projected into a low-dimensional vector space. In the process of
network representation learning, the time decay function is
combined with the medical entity representations to obtain the
temporal patients’ representations. Finally, the patient
similarity can be calculated by the cosine similarity among the
patient representations. Experiments based on real-world ICU
dataset MIMIC-III demonstrate the effectiveness and
correctness of T-PS.

Index Terms—Patient Similarity, Time-Aware Information,
Electronic Health Records, Network Representation Learning

I. INTRODUCTION

ith the continuous development of hospital health
\;\/ information systems and health websites, medical data

such as medical activities, medical researches, and
health information behaviors are increasingly abundant.
Medical data are important resources to construct
quantitative analysis model of patients. Patient similarity
studies have been identified as one of the key technologies
in medical reform. Patient similarity is based on the general
distance evaluation between patients and obtains the general
rules of diseases from a great deal of clinical practice data,
which provides the possibility for computer-aided clinical
decision support applications and personalized diagnosis
and treatment using the general framework. Patient
similarity has been applied to target patient retrieval [1], and
clinical pathway analysis [3]. Although it is very significant,
there are few types of research on patient similarity learning
at present. Electronic Health Records (EHRs) [4] contain a
large number of available medical data such as medications,
diagnoses, procedures, lab results, etc. The medical data are
diverse storage forms, sparse and high-dimensional, which
have become the most important challenges in EHRs
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applications. Many studies have attempted to address the
challenges inherent to EHRs. Therefore, deriving effective
and robust representations for EHRs are a critical step for
making various healthcare applications possible. In recent
years, network representation learning [5-8] develops
rapidly. Network embedding learns the node representation
in the network, in which every node is mapped into
low-dimensional vector space. Network embedding methods
are further used for patient feature analysis and other
applications [9-10]. Some studies show that the effect of
embedding relies upon vector operations to represent
learned word similarities [44]. Another study compounded
medical embedding with human-selected features to
enhance clinical representation [6]. Similarly, [45] designed
a model for statistical script learning by using long
short-term memory method. The model has been proved to
work well in some artificial intelligence tasks. Though these
studies have shown the improved performance on varies
clinical tasks. To our best knowledge, there is no model that
addresses all the mentioned questions earlier. Considering
all the above challenges, we design a novel framework
time-aware patient similarity base on network embedding
from EHRs, named T-PS. This paper has three contributions,
which can be summarized as follows:

1) We extract patient related information, including
diagnoses, medicines and procedures from the EHRs and
create temporal medical entity association graph to capture
the associated medical entities for patients. Meanwhile, we
use network embedding method, and fully consider the
network structure information to learn the effective medical
entity representations and patient representations. The
patient representations can be used to calculate patient
similarity.

2) We extract medical entities from EHRs and preserve
temporal information. When we use different time interval
medical entity, the medical entity and patient representations
can as time change.

3) We evaluate the effectiveness of the T-PS on

real-world ICU dataset MIMIC-III. Experimental results
show that the performance of T-PS is better than other
contrast methods.
The remaining sections of this paper are organized as
follows. We introduce related works in Section 2. The
preliminary is presented in Section 3. Details about our
temporal medical entity association graph embedding
framework in Section 4. Section 5 shows the experimental
results. Finally, Section 6 summarizes the conclusions and
future work.

II. RELATED WORK

A.Patient Similarity

In recent years, patient similarity as a fundamental
problem has attracted great attention in the field of health
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T-PS: Framework of time-aware patient similarity from EHRs. We firstly construct the patient profile according to patient-related medical

entity records for each patient. Next, we construct temporal medical entity association graph, Grues. Then, we leverage network embedding to
obtain the medical entities vectors. At the same time, all the medical entities vectors are added according to time-decay function to get patients
vectors. Finally, we use patients vectors as the input of cosine similarity to compute the similarity.

care. The patient similarity has the potential to aid clinical
decision-making. For example, [1] used the generalized
Mahalanobis measure method to calculate patient similarity.
[2] proposed a novel algorithm based on support vector
machine to measure the similarity. [3] mapped medical
events to a low-dimensional vector space and extracted the
patient representations to analyze the patient similarity. In
[4], an adjustable time-decay fusion scheme based on CNN
to extract features is proposed. [11] designed a personalized
integration model to provide cures and medicines for similar
patients. [24] proposed a convolution matrix decomposition
approach to detect temporal patterns. [25] used k-means
method to determine the similar patients’ groups. [26]
proposed a disease classification model based on three-layer
deep learning method. There are many statistical and
machine learning methods are proposed to analyze patient
similarity. At present, may studies have proved that their
methods are effective. However, the focus has primarily
been on applying diagnosis data from EHRs for the learning
task.

In this paper, we adopt a more holistic view of the patient
and consider different sources of patient’s information from
EHRs, including diagnoses, medicines and procedures to
develop a temporal medical entity association graph. We
adopt network embedding to map medical entities into
vectors and represent a patient by adding its associated
medical entities. Finally, we use a patient similarity function
to calculate patient similarity.

B.Network Representation Learning

Network representation learning is applied in many
practical aspects. There are many researches focus on
designing new embedding methods. Works in network
embedding mainly consist of three categories: (1) Models
based on matrix factorization; (2)Techniques based on
random walk; (3) Deep learning methods enhance the ability
of the model to gain non-linearity information in the
network. According to whether the types of node and edge
are the same, the information network can be divided into
homogeneous network and heterogeneous network. Most of
the existing homogeneous information networks use the
existed depth models and combine the network features to

learn the node representations and edge representations.
LINE [12] tried to approximately factorize the adjacency
matrix and captured first-proximity and second-proximity
neighborhood nodes respectively to learn the node
representations. DeepWalk [13] used truncated random
walks to capture the context information for each node and
utilized word2vec to learning node representations.
Node2vec [14] explored different context nodes by using a
biased random walks. In short, it can be regarded as an
extension of DeepWalk, which combined DFS and BFS
random walks. Heterogeneous information network
representation learning has arisen and developed rapidly in
recent years. Due to the complexity of content and structure
information, heterogeneous information networks are
difficult to obtain useful information. Metapath2vec [16]
used meta-path random walks in heterogeneous networks to
extract node structure information and used skip-gram [17]
algorithm to learn node representations. HINE [18]
calculated the similarity between nodes based on meta-path
random walks. The model extracted the nonlinear features of
the network structure using a deep automatic encoder. In
addition to use the topology information of the network
structure, there are also many methods to learn more
accurate entity representation by using the content
information or other auxiliary information of entities. HNE
[19] extracted features from text and image data through
CNN and MLP, and used transfer matrix to map different
kinds of data into the low-dimensional vector space. As
more and more node attribute information is observed and
recorded in real life, how to extract useful information from
network structure and several attributes information to
learning a unified low-dimensional vector representation has
become an important research topic. Attribute network
representation learning arises at the historic moment. LANE
[20] integrated tag information into attribute network
representation learning, calculated similarity matrix between
nodes, and took covariance as the measurement of matrix
correlation. DANE [21] used a combination of an offline
algorithm and an online algorithm to reduce the time
required to learn dynamic attribute network representation.
SNEA [22] solved the problem of symbol and node attribute
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information fusion based on the structural balance theory in
social psychology. In the framework of matrix factorization,
TADW [23] integrated node text features into network
representation learning.

III. PRELIMINARIES

Before we focus on the patient similarity problem, we
first give some definitions.

Definition 1 (Patient Related Medical Entity Record).
EHR contains medical entities such as diagnoses, medicines
and procedures, from which we extract these data to
generate a patient related medical entity record. Each record
is represented as a triple r, =<p, e, >, the triple means that
patient p related medical entity e during time span ¢ [#, ],
where 1, and t. are the begin time and end time of the time
span ;, respectively.

Definition 2 (Patient Profile). For patient p, the patient
profile Dp is a set of patient p’ related medical entity records,
Dp={ 1!y, 1%, ..., ¥» } (n>1). These data are sorted by begin
time #.

Definition 3 (Temporal Medical Entity Association Graph,
Grumeq). Gruea 1s denoted as Grues= (V, E). V is a set of
medical entities. We use v to represent each medical entity
node. The set of medical entity type denoted as Vipe.
Vipe={Diagnosis, Medicine, Procedure}. They represent
medical entities diagnoses, medicines and procedures,
respectively. E is a set of edges between medical entities,
and e;(vi, v;) is an edge between node v; and v;. The set of
edge type denoted as Eppe. Eppe={medicine—medicine,
medicine—diagnosis, medicine—procedure,
diagnosis—diagnosis, diagnosis—procedure,
procedure—procedure}, they represent the co-relationships
of medicines, diagnoses and procedures.

We use the patient profile to construct temporal medical
entity association graph. Since each patient has multiple
patient related medical entity records 7, in the patient profile,
we combine the records of the patient in pairs. Given a time
interval AT, for each patient related medical entity record
pair{(ry’, &' ), (r/, t )}, if 0<| t'-ty |<AT, the medical
entities in the r,’ and r/ co-occurring, and there is an edge
between the two medical entities. The weight w; of edge
represents the medical entities co-occurrences number
within AT. For each patient in the patient profile, we find the
co-occurrence of the medical entities according to the above
description and finally form a temporal medical entity
association graph. A simple example of generating temporal
medical entity association graph from the patient profile is

Patient_1: <pa}ient_1, diaglj [2164-10-30,2164-10-30]> diagl
<patient 1, medicinel, [2164-10-30,2164-10-31]>

<patient_1, prol, 2164-10-30,2164-11-2> 1
medicinel

Patient 2: < patient 2, diagl, [2165-1-2,2165-1-2]> prol

< patient 2, medicinel, [ 2165-1-2,2165-1-18]> !
< patient2, prol, [2165-3-2,2165-3-7]> 1

Patient_3: <patient_3, diag2, [2164-4-10,2164-4-10]>  medicine4
<patient_3, medicinel, [2164-4-10,2164-4-13]>
<patient_3, medicine4, [2164-4-13,2164-4-15]>

<patient_3, prol, [2164-7-12,2164-7-17]>
(b) Temporal Medical Entity
Association Graph, Grve4

! diag2

(a) Patient Profile

Fig. 2. An example of generating Temporal Medical Entity
Association Graph, Grues from the patient profile (A7=30 days).
Notes: patient data is de-privatized.

shown in Fig.2.

With the above definitions, we can construct the temporal
medical entity association graph, Grumes and obtain the
medical entity representations. Because of the diagnoses
given by doctors, the medicines are taken by patients, and
the treatments received during hospitalization are dynamic
and have a temporal relationship. The goal of constructing
temporal medical entity association graph is to describe each
patient with the corresponding medical entities.

IV. TEMPORAL MEDICAL ENTITY ASSOCIATION GRAPH
NETWORK EMBEDDING

The next section will explain in detail how to learn
medical entity representations and time-aware patient
representations.

A. Temporal Medical Entity Association Graph Network
Embedding

Given a temporal medical entity association graph, Gr.yz4.
It is very important to make fully use of the latent
information in Grues. According to the second-order
proximity, we can assume that the more information shared
between nodes, the more similar they will be. Network
representation learning is to project the nodes’ information
and the relationship into a low-dimensional vector space.
Each node v; represents: 1) the node itself; and 2) the
contexts of other nodes. For example, m;, m’; represent the
node representations of the node v; in two different roles,
respectively.

For each edge ej(v,v;) in the graph, we study how to
define the probability of "context" v; generated by node v;.
The probability can be calculated as follows:

exp(m'" -m])

V1 ' T
Zkzlexp( m; -m;)
In (1), |V] is the number of context entity nodes, P(.|vi)

represents the conditional probability of the context of all
nodes v; in the temporal medical entity association graph.

(1

pv;lv)=

The empirical distribution p (v|v) is defined as:

Wi

2

P(v;|vi)=
sum ;
where wy is the weight of the ej(vi,v)), sum= X revpwir 18
the medical entity node v;’s out-degree summation, V(i) is
the v; s neighbor nodes set.
We select KL-divergence [27] as a distance function to

calculate the P(.|v;) and AW distance.
OGT—MEA = Zj'ld(P( | Vl')')P(' | Vi))
vieV
where A; can be replaced by the degree of node v; in the

graph. In formula (3), some constants are omitted, and the
objective function is as follows:

O6raen =— Y, wj log P(v; | v)

(vi,vj)eE

(€))

“4)

Due to the second-order similarity between the calculated
nodes, the denominator calculation of the softmax function
needs to traverse all nodes, which is very inefficient. The
optimization is realized by using the technique of negative
sampling [28]-[29]. We adopt negative sampling approach
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to reduce computation complexity when computing
formula(4). So the objective function can be calculated as
formula (5):
K
6, =~ T wyllogr(ni] -m)+ X B, 7 ollogotni -m)} (5)
(A k=1
where, o(x) is the sigmoid function. The value of noisy
node distribution Zn(v) is set to Zn(v) o< sum,”* | where sum,
is the entity node v’s out-degree. K denotes the negative
edges size.
Finally, we apply the asynchronous stochastic gradient
algorithm (ASGD) to optimize formula (5).

B. Time-aware Patient Embedding

Since the diagnoses, medicines taken and treatments
received by the patient during hospitalization are changing
over time, recent medical entities related to the patient only
indicate the patients’ recent physical conditions. In the
previous related work, many works did not consider the time
information when carrying out patient representation
learning. In order to catch the time features on patient
embedding representation, we consider the time information
when learning the patient embedding representation, and use
the time-decay function to obtain the patient embedding
representation.

Given time-aware patient vector representation p'i; we
can calculate p';; based on patient p; before time ¢ related
medical entity representations. We can use formula (6) to
obtain the time-aware patient representation:

ph= D0G-u,)Dp,  ©

((pisej,tj)eDpi)n(ts;<t)

where p;, is the vector representation of medical entity ;.

J
6(-) is some time decay function [30]-[32]. 8(A?) increases
as the Ar decreases. 6(-) ensures that the medical entities
appear later have larger weights.
We use medical entity representations and time decay
function to achieve patient representations. The time decay
function used in T-PS is as follows:

Jiar) - ;—[l+cos( A;J)] if At<o (7
0 otherwise

C. Utilizing Patient Embedding for Patient Similarity

In this section, we will describe how to utilize patient
vector representations to calculate patient similarity. Given
an embedding representation of patient p; at time f, we
calculate patient’s score against other patients. We use the
formula (8) to measure the patient similarity:

e T ®
a5 P )

where p[,, is the patient representation of pi, and p'¢;

represents the queried patient representation for patient p?; .

Once the embedding vector of the patient is obtained, we
can obtain the patient of the former top-k nearest to the
query patient according to the ranking.

V. EXPERIMENTS AND EVALUATION

In this section, we will use the patient representations to

analyze patient similarity. After obtaining the vector
representations of the patients, we use t-SNE [33-34] to
cluster and visualize the patient representations, and then
evaluate three different network embedding methods. At the
same time, we choose cosine similarity function as patient
similarity function to calculate patient similarity.

A. Dataset

MIMIC-III [35] is real-world EHRs data from the ICU
of Beth Israel Deaconess Medical Center. Meanwhile, it
contains distinct 46,520 patients, 650,987 diagnoses and
1,527,702 prescription records that associated with 6,985
distinct diseases and 4,525 medicines. Each record of ICU
patient has detailed time information. From dataset, we took
out prescriptions, drgcodes and cptevents three tables which
associated with patient’s medicines, diagnoses and
procedures, respectively. In these tables, different medical
entities are represented using the International Classification
of Diseases (ICD-9) [36], the Program Information Code
(CPT) [37], the Diagnostic Related Information Group Code
(DRG) [38], and the Drug Information Code (NDC) [39],
respectively.

When using the dataset for experiments, preprocessing
should be carried out first. If a patient with missing values,
we will remove it. Then, we collect diagnoses, medicines,
procedures of patients from EHRs to construct a patent
profile. The patient profile is then used to build a temporal
medical entity association graph.

B. Running Environment

The running environment is shown in Table I.

TABLE I
RUNNING ENVIRONMENT
Parameters Configuration
CPU Intel(R) Xeon(R) E5-2620 v4 @
2.10GHz
Memory Size 4G
Operating System Windows 7
Development language Python 3.6

Development framework TensorFlow 1.14

C. Evaluation Metrics

Firstly, the patient representations are used to calculate the
patient similarity. Then, we can obtain the most similar
patients for the test patient. Exactly, we measure the patient
similarity using four popular criteria: SSE, Purity,
normalized mutual information (NMI) and hospital
readmission rate (HRR). The four evaluation indicators are
defined as follows:
1) Sum Of Squared Error (SSE)
SSE [40] is used for cluster analysis. It is defined as
follows:
SSE =X, LW =0 -0l o
where u® represents the center of the j cluster.
2) Purity
Purity is also used in data clustering. We compute (10)
as defined in [41]:

Purity(X,Y) = %Zmaxh[ N y,~| (10)
& J
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Where X={x,, x2, ..., xx} is the cluster partition, and Y
={y1, y2, ...,yj} is the real class partition. N is the total
number of samples,.

3)Normalized Mutual Information (NMI)

NMI can be used as a measure of clustering similarity[42].
The range of NMI is [0,1]. The closer NMI is to 1, the more
similar the cluster results are to the real data set. NMI can be
defined as follows:

NMI(X,Y)= [X.7)

[H(X)+H(Y)/2]

where / (X, Y) is mutual information, it can be calculated as
follows:

I(X,Y)= Zzp(xy) og——————

1)

p(x,y)
P(x)p(y)

where p(x, y) is joint distribution, p(x)(y) is product

(12)

distribution.

H(X) is the information entropy of divided objects, it is
defined as follows:
H(X)=-3 p(x;)log p(x) (3)
4)The Hospital Readmission Rate (HRR)

We assume that X={x;,x5,...x,} is the set of readmission
statues of P patients and Y={y'er,y'e,..., ¥'ep} is the set of
readmission statues of the most similar patient of P patients.
We calculate HRR[43] as follows:

HRR = ia)(X[i], Y[i])

i=1

(14)

v 0, X[i]# Y[i]

HRR is used to measure overall consistency and HRR €0,

1]. Generally, the greatest patient similarity has an HRR of 1,
and the smallest patient similarity has HRR close to 0.

1s)

D. Results and Discussion
1) Representation Learning Based On Gr-me4
We use LINE, DeepWalk and node2vec to learn the
representation of the temporal medical entity association
graph. The parameters are set as follows.
® LINE: The epoch is 5000. The mini-batch size of the
stochastic gradient descent is 1 for the network embedding
method. The number of negative samples K is 5. Meanwhile,
we set the time interval to 30 days and ois 50.
® DeepWalk: DeepWalk uses truncated random walks to
obtain network structure information and employs word2vec
to learn node representations. In this experiment, the

window size w is 5, and walk length ¢ is 40. Hierarchical
softmax is used as the optimization function.

® node2vec: we set the network is the same in [14].

The node embedding dimension of the above network
embedding methods are set to 128.

2)Visualization

Fig.3 provides visualization results. In the study of
embedding representation of patients, we select 1340
patients’ related medical entities, i.e., diagnoses, medicines,
procedures. We randomly choose patients with nine diseases,
namely, Liver Diseases, Heart Failure, Atherosclerosis,
Intestinal Diseases, Kidney Failure, Septicemia, Pneumonia,
Gastritis and Respiratory Failure. Then, we use t-SNE to
cluster patients. It can be seen from the results that the
separation of these nine diseases is better.

oin
0.7 | cep Walk n0d62vec
0.6
os
0.4
63
as
0.1
00

LINE Deepwalk

o= — ML
.07 Dee Walk

ooe P node2vec

0.05 \

o:04
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o.02

o1

606

LINE DeepWalk node2vec

4000 SSE
3500 eepWalk node2vec
S50
25004
S50
15001
1000

s

Bl

LINE DeepWalk node2vec

Pu!iry

nodezvec

i

SSE

Fig. 4. Performance of different network embedding methods

We evaluate the clustering performance of the three
embedding representations. We use 1340 patients and their
associated medical entities as experimental data. As you can
see from Fig.4, LINE outperforms the other two methods.
The LINE achieves SSE of 3792, comparing with the
node2vec and the DeepWalk is 4015 and 4032, respectively.
The Purity and NMI are 0.854 and 0.077, respectively.
node2vec and DeepWalk achieve 0.848, 0.844 and 0.075,
0.076, respectively.

3)Top-K Most Similar Patients

We run three network embedding methods to obtain

patient representations. We randomly selected the total nine

- Pneumonia
HeartFailure

- KidneyFailure

- IntestinalDiseases

60

+  LverDiseases a0
- Gastritis

50 P by Septicemia

«  RespiratoryFailure
Atherosclerosis

100
- Pneumonia

HeartFailure
75 - KidneyFailure
- IntestinalDiseases

- Pneumonia

- HeartFailure

- KidneyFailure

-+ IntestinalDiseases

- LiverDiseases

- Gastritis
Septicemia

- RespiratoryFailure
Atherosclerosis

-+ LiverDiseases 50

- Gastritis

- Septicemia

- RespiratoryFailure
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(b)DeepWalk

40 60 80 —-40 =20 o 20 40 60 80 100

(c)node2vec

Fig. 3. Visualization of patients. Each dot indicates one patient. Color of a dot indicates the disease of the patient.
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patients from nine diseases (choose one patient for each
disease) to test. Table II, III and IV show top-k (k=3) similar
patients in each patient nearest neighbor. From these tables,
the results of the LINE and DeepWalk to find similar
patients of the top-k of the nine test patients are consistent.
However, except for three diseases (Heart Failure, Intestinal
Diseases and Atherosclerosis), node2vec finds the same
nearest neighbor as LINE and DeepWalk. For Heart Failure,
the patient ID 782 is the second nearest neighbor in
node2vec, but in the other two methods patient ID 782 is the
nearest neighbor. For Atherosclerosis, the patient ID 595 in
node2vec is the nearest neighbor, but in the other methods
patient ID 595 is the second neighbor. For Intestinal Disease,
it is not consistent with the patients obtained by the other
two methods. This result might be due to the fact that they
both utilize network representation learning method to learn
the medical entity representations.

TABLE 1I
NEAREST NEIGHBOR FOR PATIENT EMBEDDING (LINE)
Patient Nearest 2nd 3rd Disease
(ID) Neighbor ~ Nearest Nearest (Label)
(ID) Neighbor  Neighbor
dD) (ID)
105 120 1167 389 Pneumonia
125 782 348 1083 Heart Failure
243 291 1255 825 Kidney Failure
389 289 36 1097 Intestinal Diseases
480 686 965 181 Liver Diseases
528 777 1056 158 Gastritis
605 1161 278 726 Septicemia
4913 1254 275 477 Respiratory Failure
6234 916 595 88 Atherosclerosis
TABLE III
NEAREST NEIGHBOR FOR PATIENT EMBEDDING (NODE2VEC)
Patient Nearest 2nd 3rd Disease
(ID) Neighbor Nearest Nearest (Label)
(ID) Neighbor  Neighbor
(D) dD)
105 120 669 1167 Pneumonia
125 348 782 255 Heart Failure
243 291 125 686 Kidney Failure
389 182 575 1191 Intestinal Diseases
480 686 965 181 Liver Diseases
528 765 158 777 Gastritis
605 1161 726 278 Septicemia
4913 1254 938 275 Respiratory Failure
6234 595 468 343 Atherosclerosis
TABLE IV
NEAREST NEIGHBOR FOR PATIENT EMBEDDING (DEEPWALK)
Patient Nearest 2nd 3rd Disease
(ID) Neighbor Nearest Nearest (Label)
(ID) Neighbor  Neighbor
(D) dD)
105 120 1167 389 Pneumonia
125 782 348 1083 Heart Failure
243 291 1255 825 Kidney Failure
389 289 36 1097 Intestinal Diseases
480 686 965 181 Liver Diseases
528 777 1056 158 Gastritis
605 1161 278 726 Septicemia
4913 1254 275 477 Respiratory Failure
6234 916 595 88 Atherosclerosis

4)The Performance of Patient Similarity

We use HRR to measure the performance of patient
similarity. We randomly select 1500 patients and pick the
most similar patient of each selected patient, and then
evaluated the performance of our proposed framework with

HRR value. Table V shows the value of HRR, as can be seen
from Table V, LINE is superior to the other methods for
measuring patient similarity. The HRR of LINE is 0.672,
which is the best performance. Comparing to best
performance, DeepWalk achieves the second best
performance in HRR, which is 0.562, and node2vec achieves
the lowest performance in HRR.

TABLE V
HOSPITAL READMISSION RATE(HRR)
Method Technique HRR
DeepWalk Random Walk +Skip-gram 0.562
node2vec Random Walk based on DFS and BFS 0.557
LINE First-order and second-order 0.672

Proximity+Negative sampling

LINE is obviously superior to the other two network
embedding methods. Next, we use LINE to do comparative
experiments.

5)Comparisons with Other Patient Similarity Methods

In the following experiments, LINE is used for network
embedding. To evaluate the correctness and effectiveness of
our method T-PS, we compare our method with the
following baselines:

® baseline 1: This method considers the co-occurrence

baseline2

baselipel

0.8 A

0.6 baseline3
baseline4

Purity

0.4

0.2 1

baseline2 baseline3 baseline4
Comparison methods

baselinel

baselinel baseline2 .. baseline3 2 S5E

5000
4000 A

3000

SSE

2000 A

1000

baselinel baseline2 baseline3 baselined4 T-PS

Comparison methods

] - NMI
baselinel

baseline2
T-PS\

baseline4

baseline3

= 0.04
0.03
0.02
0.01
0.00
baselinel baseline2 baseline3 baseline4 T-PS
Comparison methods
Fig.5. Performance of different methods

relationships between medicines when constructing the
temporal medical entity association graph, and describes
patients through medicines.

® baseline 2: This method considers the co-occurrence
relationship between medicines and diagnoses when
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TABLE VI
DISEASE CLASSIFICATION RESULTS
Time Decay Function Time Decay Function Formula Macro-AUC Accuracy ~ Macro-F1
. - At2
Guassian Kernel [ (A7) = exp { PP } 0.514 0.792 0.457
o

1 if At <
Passage Kernel r(at) = i = 0.608 0.698 0.426

0 otherwise

. I(At) = %[HCOS( ANT)] if At<o

Cosine Kernel g otherwise 0.759 0.862 0.534

constructing the temporal medical entity association
graph.

® baseline 3: This method does not consider timeliness
and uses medicines, diagnoses and procedures to describe
patients.

® baseline 4: Code Sum based Matching(CSM) [46]
obtains the patient representations by adding all medical
codes vectors. Firstly, CSM uses Word2Vec to learn
medical codes vectors. Then, it sums up the medical

codes vectors of the patient to retrieve a single embedding.

Finally, the patient similarity score is calculated by cosine

similarity.

We summarize the results on the clustering task in Fig.5.
The results of T-PS exhibit better performance. The CSM
achieves the worst performance. A possible reason could be
that the CSM method applies word embedding algorithm
and ignores the latent information on the dataset. Our
method represents the dataset as a graph and the learned

patient representations are more accurate.

6)Impact of Time Decay Function

In order to evaluate the influence of different time decay
functions on the experimental results, the Gaussian kernel
and Passage kernel are selected and compared with T-PS. A
disease classification task was performed to compare the
effects of different function. The vectors of patients with
different time decay functions are obtained. Then apply
MLP classification[48] on the learned patients’ vectors in
order to correctly diagnose the disease suffered by the
patients. In addition, we use Macro-F1, Macro-AUC and
accuracy to evaluate the performance of disease
classification task, and use 10-fold cross-validation[49] to
evaluate the results of the remaining samples without label
information, randomly selected 80% of the data for learning,
and 20% of the data for MLP classification test.

Comparative results of different time decay functions for
disease classification are shown in Table VI. We observe
that our method achieves Macro-AUC of 0.759, the

10 0.08
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09 0.06
>
i1 60001 £ 0s LS £ 004
a
4000 | ] 0.021
‘ ‘ ‘ T T 06— ‘ ‘ ‘ T 0.00 1~ T ‘ ‘ ‘
1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
Negative_ratio Negative ratio Negative_ratio
(@) (b) (c)
9000 0.86 0.028
8500 ¢ * + 4
i 2 0.854 _"“"--5. = 0.026 4
a 8000 5 %
£ 0.84+ 0.0244
7500 1
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Fig 6. The performance of change embedding dimensions, the number of cluster and negative radio. (a), (b), (c) together show the
performance of changing negative radio  on clustering performance. (d), (e), (f) together show the effect of embedding dimension d on
clustering performance. (g), (h), (i) measure the efficacy of variation on the number of cluster k.
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accuracy of 0.862, and Macro-F1 of 0.534, which
outperforms all the other methods, and Gaussian kernel
achieves the second highest performance. Thus, the patient
representations are obtained by T-PS can enhance the
performance of disease cohort classification. In general, our
proposed T-PS is a good choice in practice for disease
classification task due to its good performance.
7) Parameter Analysis

We study the parameter sensitivity of embedding
dimension d, cluster number £ and negative ratio r. Fig.6
shows the performances when altering different parameters.
The other parameters remain unchanged. We set &=9 to
observe the effect of embedding dimensions on the
results. d=32 is the smallest SSE. Purity decreases with the
increase of embedding dimension d, and NMI is the largest
at d=128. Meanwhile, when we change the number of
clusters k, the change trend of SSE, Purity and NMI for
different embedding dimensions d is consistent, d=128 SSE
is the smallest, =64 Purity is the best, and /=9 NMI is the
largest. When we change negative ratio r, Purity remains
unchanged. When =5, NMI achieves a maximum value of
0.077. The value of SSE decreases first and then increases,
and =5 is the optimal value.

VI. CONCLUSIONS AND FUTURE WORK

Patient similarity is an important problem for various
healthcare  applications. = However, due to the
high-dimensional and sparse characteristics of medical data,
the study of patient similarity faces many challenges. We
propose a novel time-aware patient similarity framework
T-PS. The framework exploits comprehensive medical
information in EHRs to construct a high-quality temporal
medical entity association graph. Leveraging graph-based
embedding, T-PS obtain more semantic and lower
dimensional patient representations to calculate patient
similarity. Experimental results show that our method obtain
better representations than other baselines. For future work,
we will pursue to construct medical heterogeneous
information network from EHRs and find more complex
semantics in the network for patient similarity.
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