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Abstract—In this paper, we study the application of deep
learning in highway road safety prediction. The road safety
model is implemented by LSTM and transfer learning. First,
using the existing highway road data with known safety levels
the training data set is established for supervised learning. We
further proposed a novel anisotropic cost function in order
to reduce the risks in misclassification. Second, GAN is used
to expand the data set in order to provide enough data to
train deep model and improve the accuracy of the safety
level classification. Third, in order to adapt to different road
situations, transfer learning framework is used to share the
common knowledge in road safety prediction, which improves
the generalization ability of the proposed classification method.
Finally, the experimental results show that the proposed method
outperformed the conventional method and has a good practical
value to improve traffic safety.

Index Terms—road safety level, GAN, transfer learning.

I. INTRODUCTION

With the increase of highway and urban road construc-
tion scale, the problem of road traffic safety has become
increasingly important. The systematic improvement of road
safety level is of great significance. Conventionally, the road
safety assessment depends on the experience of human ex-
perts. Recently, the automatic road safety level classification
using machine learning algorithms have shown promising
results[1]. Machine learning technologies can help to reduce
the number of road traffic accidents, reduce economic losses,
and improve the passenger transportation safety.

Automatic road safety level classification has drawn wide
attentions. In Europe, in order to reduce the traffic accidents,
UK has made specific regulations on the scope, steps and
processes of road risk assessment. In New Zealand, the
safety assessment has been established for each stage of road
planning, design, construction, operation and maintenance.
The automatic road safety evaluation system can assess the
risks of the road through on-site inspection according to the
characteristics of the road, and can regularly track the safety
status[2], [3].

At present, road risk data is still difficult to achieve and
traffic accident data can not be published publicly. Databases
are indispensable to many machine learning studies[4], [5],
and small data size is often challenging for data modeling[6].
Therefore studying the methods of database enhancement
and simulation is of great importance to automatic road
safety classification[7].

In order to better solve the road safety problem in highway,
we use GAN to enhance the dataset. Transfer learning is used
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Fig. 1. Structure of LSTM network

to train a novel highway risk classification model which is
based on the similarity of feature structure from the existing
highway data. Deep neural network is adopted to bring
enhanced performance with a novel anisotropic cost function
that we proposed for the road safety classification. The rest
of the paper is organized as follows. In Sec.2, the algorithms
used in our safety level classification is described. In Sec.3,
the experimental results are given and the classification
results are analysed and compared. Finally, the conclusions
are given in Sec.4.

II. ALGORITHM DESCRIPTION

The highway road safety level depends on two types
of factors. First factor is that the facilities and road con-
ditions of a certain section of highway. Second factor is
that the neighbouring road sections that may influence the
road safety. Therefore, this paper regards the road safety
level classification as as sequential modeling problem. Var-
ious neural network and deep learning methods have been
proposed with successful applications [8], [9], [10], [11],
[12], [13]. Bustami et al.[12], applied a fundamental neural
network to water level prediction. Hashida et al.[13], pro-
posed to use convolutional neural networks to model natural
language in social media. On sequential modeling problem,
LSTM (Long-short term memory) network is a fundamental
approach to model the contextual information[14].

A. LSTM

LSTM is an improvement of recurrent neural net-
work(RNN). The difference between RNN and traditional
deep neural network is that the neurons in the hidden layer
are connected, and each neuron has two inputs: input of
input layer and output of previous sequence. This structure
enables RNN to better process and predict sequential data.
The structure of LSTM gates is shown in Fig.1.
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The problem of gradient disappearance and gradient ex-
plosion exists in RNN network, which makes it difficult
to deal with long-term dependence in practical application.
Long-short-term memory (LSTM) network is a special RNN
network, LSTM solves the long-term dependence problem
that RNN is difficult to handle, long term dependency can
be learned from training data [15], [16], [17].

The circulating neuron of LSTM is also called cell unit,
and its internal structure is shown in Fig.1, different from
the internal structure of RNN, LSTM adds a “processor” to
determine whether the information is useful, the processor
contains three gates that control information is retained and
forgotten, they are called input gate, forgetting gate and
output gate respectively.

(1) Forgetting gate The forgetting gate of LSTM deter-
mines which historical information is forgotten from cell
state. The output of forgetting gate is shown in Eq.1

ft = θ(Wfxt + Ufht−1 + bf ) (1)

where, W is the weight parameter matrix between the
input layer and the hidden layer, U is the self cycling
parameter matrix between two hidden layers, and b is the
offset parameter, ft is the output value of forgetting gate,
activation function is sigmoid function.

(2) Input gate The input gate of LSTM determines what
kind of new information is updated in the cell state. The
implementation consists of two parts. The information to be
updated is determined by the sigmoid layer.

it = θ(Wixi + Uiht−1 + bi) (2)

The other part is the candidate updates generated by tanh
layer.

C̃t = tanh(Wcxt + Ucht−1 + bc) (3)

As shown in Fig.1, the forgetting gate and the input jointly
control the update of cell state CT . When the forgetting gate
ft comes to space, it forgets how much historical information
CT is saved by the input gate.

The input sequence is composed of index parameters of
highway, including speed limit, slope, curvature of curve,
height of isolation belt, number of lanes, width of road,
whether or not to fork road, etc. according to the coordinates
of each road section, the surrounding road condition index
parameters are determined to form the observation feature
sequence. The output sequence is the safety level of the
highway, which is divided into five levels corresponding to
discrete values.

(3) Output gate The output gate ot of the LSTM deter-
mines which part of the cell state CT information to output.
The cell state CT is processed through the tanh layer before
passing through the output gate.

Ot = θ(Woxt + Uoht−1 + bo) (4)

ht = ottanh(Ct) (5)

TABLE I
EVALUATION OF MISCLASSIFICATION CONSEQUENCE (COST) BY

LINGUISTIC VALUES.

Risk Levels Predict 1 Predict 2 Predict 3 Predict 4 Predict 5

Level 1 VL L M H VH
Level 2 H VL L M H
Level 3 VH H VL L M
Level 4 VH VH H VL L
Level 5 VH VH VH H VL

Fig. 2. Triangular membership functions for linguistic values.

B. Anisotropic cost function for road safety

The classification of road safety (risk) level is considered
as a typical classification problem. The metrics of risk level
classification are defined upon the measurement of an error:

Error = Prediction(obsroad)− Label(obsroad) (6)

The observation obsroad of a certain location of a road,
consists of various factors, such as speed limit, curvature,
etc. The error can be defined as the difference between the
label (known ground-truth) and the prediction of a classifier.

However the above definition in Eq.6 has not take the
nature of traffic accidents into account. A misclassification of
high risk road to low risk one can be very dangerous. On the
other hand, prediction of higher level of risk (e.g. misclassify
risk level 3 to risk level 41) is in fact less dangerous.

In this paper, we propose a new anisotropic cost function
(ACF) for our road risk level classification model.

Erroraniso = F{Prediction(obsroad)− Label(obsroad)}
(7)

The function F is defined as a mapping from conventional
Error to anisotropic Erroraniso. When Error is positive,
the mapping decreases the cost. When Error is negative,
the mapping increases the cost in order to prevent high risk
level being misclassified into low risk level. When Error is
zero, the output remains zero.

The degree of increasement or decreasement in our
anisotropic cost function is based on fuzzy set theory to
process the knowledges from road safety experts. The conse-
quences of misclassifications are evaluated by human experts,
by linguistic values, including very high (VH), high(H),
medium(M), low(L), very low(VL) and zero(Z). An example
of such evaluation is shown in Tab.I

Taking the triangular membership function, we can map
the linguistic values to fuzzy members, as shown in Fig.2.

1the higher the number of the risk level is, the higher the road risk is,
e.g. risk level 5 is the highest risk road, and risk level 1 is the lowest risk
road.
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Fig. 3. GAN algorithm flow chart

The mean values of membership function are taken as the
costs, {0, 0.25, 0.5, 0.75, 1}, for VL, L, M, H, VH.

C. Data augmentation on small sample

The number of road condition samples related to safety
level is limited. Due to the confidentiality of traffic accidents
data, the road information and accident information disclosed
in practice are not enough to train a deep network. In machine
learning applications, database is fundamental for solving
learning and modeling problems[18], [19], [20], [21]. At
present, a lot of work is devoted to solve the problem of
small samples, that is, using limited and rare data to train an
efficient model. In this paper, we use Generative adversarial
networks (GAN) to generate additional training data.

The generative adversarial network (GAN) is a kind of
deep learning model [22]. GAN consists of the generative
network G (generator) and the discriminant network D (dis-
criminator). The structure of the countermeasure network is
shown in Fig.3. In the iterative training process, the goal of
generative network G is to cheat network D, while the goal
of discriminant network D is to distinguish the authenticity
of the input data. Through training, G and D finally reach the
Nash equilibrium point. At this time, the trained generative
network G can transform a random vector to a certain
distribution into a sample similar to the training set.

In the current highway data analysis, in order to train the
safety level model of a specific road section, it is necessary
to collect the highway index data of the road section, such as
speed limit, slope, etc. In the actual road safety data analysis,
we often do not have enough training samples to complete the
complex and large-scale deep network training. Therefore,
we adopt the CycleGAN[23] for sample enhancement. By
using this data enhancement method, we can generate a large
number of reliable and high-quality training data to improve
the accuracy of the model.

The principle of CycleGAN can be summarized as follows:
there are two sample spaces X and Y, which map the samples
in X space to the samples in Y space. The goal of CycleGAN
is to learn the mapping from X to Y. CycleGAN structure
is shown in Fig.4. In the road safety data, X represents the
sample of safe road, Y represents the sample of risky road
section. Through CycleGAN, safe samples and risky samples
can be transformed into each other, so that a large number of
safe samples can be used to generate specific risky samples
to make up for the deficiency in data quantity.

In Fig.4, the mapping from X to Y is F, which can convert
the data x in X space to the data F (x) in Y space; The
mapping from Y to X is G, which can convert the data y
in Y space to the data G(y) in X space. CycleGAN learns
the mapping of F and G at the same time, and requires

Fig. 4. Depiction of CycleGAN structure

G(F (x)) ≈ x, and F (G(y)) ≈ y, that is, after the data
in X space is converted to the data in Y space, it can
also be converted back. According to G(F (x)) ≈ x and
F (G(y)) ≈ y, cycle consistency loss can be defined. We
can define CycleGAN loss according to Eq.8.

LCycleGAN (G,Dx, X, Y ) =LGAN (F,DY , X, Y )+

LGAN (G,DX , X, Y )

+ λLcycle−consis(F,G,X, Y )
(8)

It should be pointed out that the number of data generated
by CycleGan is limited. Because the input and output of the
generation model trained by CycleGAN is a 1:1 mapping
relationship, the number of input data of CycleGAN keeps
a 1:1 relationship with the number of its generation. Cycle-
GAN needs more human intervention to generate road data,
such as adjusting models, manually filtering data, etc., in
order to obtain satisfactory data sets.

D. Transfer Learning

The goal of transfer learning(TL) is to use the knowl-
edge learned from one domain to help solving tasks in a
new domain[24], [25], [26]. In our road safety analysis,
TL helps to transfer the established model from old road
database to new roads. Conventionally researchers adopt
various optimization methods to adapt the feautures and
model parameters[27], [28], [29], [30].

There are several advantages to apply transfer learning.
First, it can reuse the existing models. Second, it doesn’t
require collecting and labelling a huge amount of data. Third,
it can quickly apply the learned knowledge to a new field and
save time and costs.

Transfer learning can be applied to supervised learning,
unsupervised learning or reinforcement learning[31], [32].
We can achieve the shared representation through multi-
task learning. Through the joint learning of multiple source
domain tasks, we can extract the shared knowledge suitable
for other similar tasks. The general knowledge extracted in
the process of multi-task learning in various fields can not be
achieved by single task learning. The generalization ability
is also improved.

Engineering Letters, 28:4, EL_28_4_37

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



Fig. 5. Framework of shared knowledge learning

Current transfer learning approaches can be grouped
into four categories: feature-based transfer learning, model-
based transfer learning, instance-based transfer learning and
relation-based transfer learning. Among them, feature-based
transfer learning and model-based transfer learning can be
combined with deep learning model.

Feature-based Transfer Learning refers to the transfer in
feature space, that is, learning a good feature representation
through the source domain, and then transferring knowledge
from the source domain to the target domain through feature
coding, so as to improve the performance in the target
domain. The common method is to observe the common
features between the source domain and the target domain,
then project the features of the source domain and the target
domain into the same feature space, and finally transfer the
common features automatically.

Model-based Transfer Learning , also known as parameter
transfer learning, refers to the application of the whole
model in the source domain to the target domain. Model-
based transfer can be used to apply the original model to
a new domain. In the new domain, only a small amount of
annotated data is needed to fine tune the parameters, which
can achieve improved results.

Instance-based Transfer Learning is simply to evaluate the
samples and assign a larger weight to the more important
samples. First, find the data similar to the target domain in
the data set of the source domain, and then match the data
of the target domain.

Relation-based Transfer Learning refers to the knowledge
transfer between related fields, which assumes that the data
in the source and target fields have the same relationship.

In the classification road safety level, it is often necessary
to consider the differences of geographical factors. In differ-
ent provinces and different geographical environments, there
may be great differences in highway safety characteristics.
For example, in mountainous areas, the slope is large, and in
urban areas, traffic congestion and lane change bring risks.
Therefore, in the actual deployment of safety classification
model, we need to improve the generalization ability of the
model.

The method proposed in this paper falls into the model-
transfer category, which improves the road safety prediction.
First, using the road section with known risks, a specific
domain model can be trained. Second, using a shared model,
it can be transferred to the target road with unknown factors.

E. The shared knowledge learning for traffic data

Based on the method of model transfer, we adopt the
shared knowledge learning proposed in [33] to train the
model S(xi; θs) as shared knowledge and transfer to new
domain. The output of the new domain data in the shared
model is znew, as shown in Eq.9.

znew = S(xnew; θs) (9)

where xnew represents the input data of the new domain,
and θs represents the parameters of the shared model. As
shown in Fig.5, the original domain model is trained on a
large collection of traffic data with labels indicating the road
safety levels. LSTM is used as generator and the multi-layer
neural network as discriminator. The output of the shared
knowledge learning model is used as a part of the feature
vector combined with domain-specific features. By learning
the common knowledge for traffic data, the transferred model
is used for the new input data. With a small amount of fine
tuning data the model can be applied to new domains.

h(znew) = θ(wsznew + b) (10)

where znew represents the output vector of the new domain
data in the shared model, and ws represents the shared
parameter. The cross entropy is used as loss function:

Li = −log(
ey(i)new∑
j e

h(z(j)new)
) (11)

where ynew indicates the risk level label of the new domain
data xnew.

III. EXPERIMENTAL RESULTS

A. Experiment setup

In this experiment, three-layer LSTM network structure
is adopted, five neuron nodes are set in the output layer,
and the probability distribution of output samples in five
risk levels is achieved through softmax function.In order
to improve the generalization ability of the network, the
dropout layer is acquired in each layer of LSTM network
layer. The parameter is 0.3. The neural network initialization
adopts the gloot uniform distribution initialization method,
the loss function adopts the cross entropy loss function,
and the training adopts the Adam optimization algorithm,
learning rate = 0.01, batch size = 128, epochs = 2000.
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Fig. 6. Search for optimal data set expansion

The experimental data set adopts the road data set col-
lected locally, including 10 roads, 1200 km road section
length, 21 public reported traffic accidents, and 12 road
condition parameters. After the data enhancement of the
generated countermeasure network, the above seed data
is expanded to a larger training and verification data set,
including comparison of data volume expansion for different
scales.

B. Data expansion and comparison experiment

In this experiment, CycleGAN is used to expand the data
set. Here, test set and training set are expanded in different
scales to get the effect of expansion scale on accuracy and
find the most suitable expansion scale.In this experiment,
the neural network model of pre-training weight is used
for transfer learning. Figure 6 shows the effect of different
expansion scales on the experimental results. It can be seen
from the figure that the accuracy of the data expansion scale
is significantly improved when sample size grow from 32
times to 1024 times. When the data is expanded to 2048
times, its accuracy rate is stable (around 92.1%).

C. Results and analysis

In this experiment, accuracy is used as the evaluation
standard of domain discriminator. The accuracy rate repre-
sents the ratio between the number of correct samples in the
prediction results and the number of all test samples. The
larger the ratio is, the higher the accuracy rate is.

Table II is the classification accuracy results of our algo-
rithm and Gaussian mixture models(GMM)[34], [35], stan-
dard LSTM[14], [36] without transfer learning, SVM[37],
XGBoost[38], AlexNet[39], AutoEncoder[40] and DBN[41].
In GMM training, the mixture number is adjusted and set to
16. The initialization algorithm for EM parameter training
is K-means with K=16. In SVM experiment, the kernel is
tested among “RBF”, “Linear”, “Poly” and “Sigmod”, and
the first kernel RBF(Gaussian Kernel) has the best result on
road safety data. For XGBoost algorithm, we set tree depth
to 5, and learning rate to 0.02. AlexNet is a typical example
of convolutional neural netowrk, we use “ReLU” as its
activation function. It has five convolutional layers and three
fully connected layers. AutoEncoder is used to encode the
input road parameters and the load safety level, as described

in reference[40], the predicted safety level can be obtained
by minimizing a fitness function of the network. DBN is
used as a simple example of deep neural network. Restricted
Boltzmann Machine (RBM) is used for its initialization.

As can be seen from the table, the accuracy rate of the
proposed method is higher than that of other conventional
methods. We also plotted the confusion matrix in Fig.7 for
further comparison and analysis. It can be concluded from
the results in the table that the proposed model in this paper
is superior to the other traditional algorithms.

In conventional neural network structures, the cost func-
tion (loss function) is defined based on the error between
the predictions and the labels(known ground-truth). The
error form is generally isotropic, which means whether the
prediction is larger or smaller than the label is identical for
error measurement. However, if we consider the actual risk of
misclassification in road safety, we can see that anisotropic
error form has a clear advantage in practice. As we have
discussed in Sec.II-B, we extend our methods to the case of
ACF cases and use a more accurate metric to evaluate the
experimental results for road safety classification.

Mean Anisotropic Errors(MAEs) with ACF2 over different
algorithms are shown in Fig.8 together with Mean Isotropic
Errors(MIEs). Compared with various existing algorithms,
our proposed algorithm outperform the rest at a considerable
margin.

In order to exam the significance of our proposed model,
T-Test is carried out on the classification results by compar-
ing each pair of algorithms. The significance (p-value) of
our proposed algorithm is shown in Tab.III. “ACF” stands
for anisotropic cost function and “ICF” stands for isotropic
cost function. From the results we can see that the proposed
model is significantly better than the conventional models in
road safety classification.

IV. CONCLUSION

In this paper, the application of deep neural network in
road safety data modeling is studied. CycleGAN is used to
enhance the data set, and a large-scale data sample expansion
is carried out on a small amount of actual road accident data,
so as to meet the training requirements of deep network. Due
to the complexity of highway safety problems, the method
of transfer learning is adopted to improve the generalization
ability on different highway conditions. The experimental
results show that the proposed anisotropic cost function is
suitable for road safety classification and the proposed model
can be adapted to various highway safety data and achieves
satisfactory results.

REFERENCES

[1] T. Jinhua, Research on road risk management, Beijing: Tsinghua
University, 2011.

[2] S. P. Miaou, J. J. Song, “Bayesian ranking of sites for engineering safety
improvements: Decision parameter, treatability concept, statistical crite-
rion, and spatial dependence,” Accident Analysis and Prevention, vol.37,
no.4, pp.699-720, 2005.

[3] E. Hermans, F. Van den Bossehe, G. Wets, “Combining road safety
information in a performance index,” Accident Analysis and Prevention,
vol.40, no.4, pp.1337-1344, 2008.

[4] Y. Jin, Y. Zhao, C. Huang and L. Zhao, “The design and establishment
of a Chinese whispered speech emotion database,” Technical Acoustics,
vol.29, no.1, pp.63-68, 2010.

2Error is defined in Eq.7

Engineering Letters, 28:4, EL_28_4_37

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p
u
t(

lo
g
 s

c
a
le

)

-4

-3

-2

-1

(a) The Proposed method

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p
u
t(

lo
g
 s

c
a
le

)

-4

-3

-2

-1

(b) GMM

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p

u
t(

lo
g

 s
c
a

le
)

-4

-3

-2

-1

(c) LSTM

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p
u
t(

lo
g
 s

c
a
le

)

-4

-3

-2

-1

(d) SVM

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p

u
t(

lo
g

 s
c
a

le
)

-4

-3

-2

-1

(e) XGBoost

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p
u
t(

lo
g
 s

c
a
le

)

-4

-3

-2

-1

(f) AlexNet

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p

u
t(

lo
g

 s
c
a

le
)

-4

-3

-2

-1

(g) AutoEncoder

1 2 3 4 5

response(log scale)

1

2

3

4

5

in
p

u
t(

lo
g

 s
c
a

le
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

(h) DBN

Fig. 7. Results on the confusion matrics using the proposed method and conventional methods

Proposed GMM LSTM SVM XGBoost AlexNet AutoEncoder DBN

0

0.2

0.4

2.9 · 10−2

9.8 · 10−2
0.14

9 · 10−2
8.2 · 10−2

0.13 0.14
0.19

0.1

0.31

0.4

0.3 0.28

0.41 0.42 0.44

M
ea

n
E

rr
or

s

Anisotropic Error Isotropic Error

Fig. 8. Comparing mean anisotropic errors and mean isotropic errors over different algorithms.

Engineering Letters, 28:4, EL_28_4_37

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



TABLE II
ACCURACY COMPARISON

Risk level Proposed model GMM LSTM SVM XGBoost AlexNet AutoEncoder DBN

1 0.953 0.831 0.778 0.839 0.851 0.823 0.802 0.796
2 0.945 0.849 0.771 0.835 0.833 0.801 0.778 0.773
3 0.944 0.843 0.744 0.871 0.856 0.803 0.798 0.753
4 0.937 0.823 0.807 0.854 0.891 0.792 0.812 0.776
5 0.970 0.860 0.792 0.891 0.889 0.786 0.823 0.801

TABLE III
P-VALUES OF LEFT-TAILORED T-TEST WITH 0.05 SIGNIFICANCE LEVEL

Models to Compare with ACF with ICF

(Proposed,GMM) 3.02e-205 1.01e-111
(Proposed,LSTM) 8.79e-299 6.34e-288
(Proposed,SVM) 5.61e-110 9.89e-56
(Proposed,XGBoost) 8.83e-38 6.34e-11
(Proposed,AlexNet) 6.90e-155 7.88e-89
(Proposed,AutoEncoder) 1.12e-164 1.76e-155
(Proposed,DBN) 1.56e-201 3.48e-301

[5] C. Huang and H. Jiang, “Image indexing and content analysis in
children’s picture books using a large-scale database,” Multimedia Tools
and Applications, vol.78, no.15, pp.20679-20695, 2019.

[6] Z. Qiao, L. Zhou, J. Z. Huang, “Sparse Linear Discriminant Analy-
sis with Applications to High Dimensional Low Sample Size Data,”
International Journal of Applied Mathematics, vol.39, no.1, pp.48-60,
2009.

[7] A. Doniec, R. Mandiau, S. Piechowiak and S. Espie, “A behavioral
multi-agent model for road traffic simulation,” Engineering Applications
of Artificial Intelligence, vol.21, no.8, pp.1443-1454, 2008.

[8] X. Wei, H. Xia and L. Zhou, “Broad Forest: A Non-Neural Network
Style Broad Model for Streaming Video QoE Evaluation,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol.30, no.4,
pp.632-645, 2020.

[9] J. Liu, Q. Zhang and Z. Luo, “Dynamical analysis of fuzzy cellular
neural networks with periodic coefficients and time-varying delays,”
IAENG International Journal of Applied Mathematics, vol.46, no.3,
pp.298-304, 2016.

[10] H. Zhang, M. Du and W. Bu, “Sliding mode controller with RBF neu-
ral network for manipulator trajectory tracking,” IAENG International
Journal of Applied Mathematics, vol.45, no.4, pp.334-342, 2015.

[11] P. Wanda and H. J. Jie, “DeepSentiment: Finding Malicious Sentiment
in Online Social Network based on Dynamic Deep Learning,” IAENG
International Journal of Computer Science, vol.46, no.4, pp.616-627,
2019.

[12] R. Bustami, N. Bessaih, C. Bong, S. Suhaili, “Artificial Neural
Network for Precipitation and Water Level Predictions of Bedup River,”
IAENG International Journal of computer science, vol.34, no.2, pp.228-
233, 2007.

[13] S. Hashida, K. Tamura and T. Sakai T, “Classifying Tweets using
Convolutional Neural Networks with Multi-Channel Distributed Repre-
sentation,” IAENG International Journal of Computer Science, vol.46,
no.1, pp.68-75, 2019.

[14] L. Zaman, S. Sumpeno, M. Hariadi, Y. Kristian, E. Setyati and
K. Kondo, “Modeling Basic Movements of Indonesian Traditional
Dance Using Generative Long Short-Term Memory Network,” IAENG
International Journal of Computer Science, vol.47, no.2, pp.262-270,
2020.

[15] K. Greff, R. K. Srivastava, J. Koutnı́k, et al., “LSTM: A Search Space
Odyssey,” IEEE Transactions on Neural Networks & Learning Systems,
vol.28, no.10, pp.2222-2232, 2015.

[16] F. A. Gers, N. N. Schraudolph and J. Schmidhuber, “Learning Precise
Timing with LSTM Recurrent Networks,” Journal of Machine Learning
Research, vol.3, no.1, pp.115-143, 2003.

[17] J. Wang, Y. Yang, J. Mao,et al., “CNN-RNN: A Unified Framework
for Multi-label Image Classification,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp.2285-2294, 2016.

[18] L. Zhao, C. Huang, “Key technologies in practical speech emotion
recognition,” Journal of Data Acquisition and Processing, vol.29, no.2,
pp.157-170, 2014.

[19] C. Huang, Y. Jin, Y. Zhao, Y. Yu and L. Zhao, “Recognition of practical
emotion from elicited speech,” In Proc. First International Conference
on Information Science and Engineering, pp.639-642, 2009.

[20] C. Huang and H. Jiang, “Image indexing and content analysis in
children’s picture books using a large-scale database,”, Multimedia Tools
and Applications, vol.78, no.15, pp.20679-20695, 2019.

[21] Y. Jin, Y. Zhao, C. Huang, et al., “The design and establishment of
a Chinese whispered speech emotion database,” Technical Acoustics,
vol.29, no.1, pp.63-68, 2010.

[22] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Net-
works.”, Conference and Workshop on Neural Information Processing
Systems, pp.1-10, 2016.

[23] J. Y. Zhu, T. Park, P. Isola, et al., “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” 2017 IEEE International
Conference on Computer Vision (ICCV), pp.2242-2251, 2017.

[24] I. Guyon, G. Dror, V. Lemaire, et al., “Unsupervised and transfer
learning challenge,” International Joint Conference on Neural Networks
(IJCNN), pp.793-800, 2011.

[25] J. Yosinski, J. Clune, Y. Bengio Y, et al., “How transferable are
features in deep neural networks?” International Conference on Neural
Information Processing Systems, pp.3320-3328, 2014.

[26] S. J. Pan, Q. Yang, “A Survey on Transfer Learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol.22, no.10, pp.1345-
1359, 2010.

[27] X. Zhang, C. Huang, L. Zhao and C. Zou, “Recognition of practi-
cal speech emotion using improved shuffled frog leaping algorithm,”
Chinese Journal of Acoustics, vol.33, no.4, pp.441-441, 2014.

[28] C. Huang, Y. Jin, Y. Zhao, Y. Yu and L. Zhao, “Speech emotion
recognition based on re-composition of two-class classifiers,” In Proc.
3rd International Conference on Affective Computing and Intelligent
(ACII), pp.1-3, 2009.

[29] C. Zou, C. Huang, D. Han, et al. “Detecting practical speech emotion
in a cognitive task,” In Proc. of IEEE 2011 20th International Confer-
ence on Computer Communications and Networks, Lahaina, HI, USA,
pp.1-5, 2011.

[30] C. Wu, C. Huang and H. Chen, “Text-independent speech emotion
recognition using frequency adaptive features,” Multimedia Tools and
Applications, vol.77, no.18, pp.24353-24363, 2018.

[31] R. Liang,Z. Liang, J. Cheng, Y. Xie and Q. Wang, “Transfer learning
algorithm for enhancing the unlabeled speech”, IEEE Access, no.8,
pp.13833-13844, 2020.

[32] X. Wei, J. Zhao, L. Zhou and Y. Qian, “Broad Reinforcement Learning
for Supporting Fast Autonomous IoT,” IEEE Internet of Things Journal,
vol.7, no.8, pp.7010-7020, 2020.

[33] X. Duan, The research and application of sentiment classification based
on transfer learning, Master’s Thesis, School of Computer Science,
Beijing University of Posts and Telecommunications, June 4, 2019.

[34] C. Huang, B. Song and L. Zhao, “Emotional speech feature normal-
ization and recognition based on speaker-sensitive feature clustering,”
International Journal of Speech Technology, vol.19, no.4, pp.805-816,
2016.

[35] Chengwei Huang, et al., “Cascaded projection of Gaussian mixture
model for emotion recognition in speech and ECG signals,” Journal of
Southeast University (English Edition), no.03, pp.320-326, 2015.

[36] Yue Xie, Ruiyu Liang, Zhenlin Liang, Chengwei Huang, Cairong Zou,
Björn Schuller, “Speech emotion classification using attention-based
LSTM,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vo.27, no.11, pp.1675-1685, 2019.

[37] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol.9, no.3, pp.293-300, 1999.

[38] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
Proceedings of the 22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pp.785-794, 2016.

[39] S. Lu, et al., “Pathological brain detection based on AlexNet and
transfer learning,” Journal of computational science, no.30, pp.41-47,
2019.

[40] B. Betechuoh, T. Marwala and T. Tettey, “Autoencoder networks for
HIV classification,” Current Science, pp.1467-1473, 2006.

[41] G. Hinton, S. Osindero and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol.18, no.7, pp.1527-1554, 2006.

Engineering Letters, 28:4, EL_28_4_37

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



Zhihua Hu received his Masters Degree and Ph.D. from Huazhong Uni-
versity of Science & Technology and Wuhan University. He is currently a
professor in Huanggang Normal University. His research interests include
information security and data mining.

Dr. Hu is a member of China Computer Federation and a member of
Operations Research Society of China.

Xiaoming Zhu received his Bachelor’s Degree and Ph.D. from Tsinghua
University and The University of California, Berkeley, respectively. He is
currently a professor in Huanggang Normal University. His research interests
include wireless communication, data mining and artificial intelligence.

Engineering Letters, 28:4, EL_28_4_37

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 




