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Abstract—The paper suggests a new approach to pricing
barrier options under pure non-Gaussian Lévy processes with
jumps of finite variation. The key idea behind the method is
to represent the process under consideration as a difference
between subordinators (increasing Lévy processes). Such split-
ting rule applied to the process at exponentially distributed
randomized time points gives us the possibility to find the option
price by analytically solving simple Wiener-Hopf equations.

Index Terms—Wiener-Hopf factorization, numerical meth-
ods, option pricing, Lévy processes

I. INTRODUCTION

LAST two decades, researchers give more and more
attention to stochastic models of financial markets that

depart from the traditional Black-Scholes model. At this
moment, a wide range of models is available. We confine
ourselves to the class of one-factor non-Gaussian exponential
Lévy processes. These models are prevalent in financial
markets because Lévy models provide a better fit to empirical
asset price distributions that typically have fatter tails than
Gaussian ones. Additionally, Lévy models can reproduce the
well-known volatility smile phenomena and admit jumps in
asset prices. For an introduction to these models applied in
finance, we refer to [1].

The problem of pricing exotic options in stochastic mod-
els is crucial for mathematical finance. Exotic derivatives
include path-dependent options such as lookback, one-touch,
or barrier options that differ from the classic American
and European call or put options. The value of an exotic
derivative depends on the path of the underlying asset and
the monitoring policy.

Recall that a barrier option is a contract which pays the
specified amount at the terminal date T , provided during
its lifetime, the price of the stock does not cross a fixed
constant barrier H from above (down-and-out barrier op-
tions) or from below (up-and-out barrier options). When
the underlying price crosses the barrier, the option expires
worthless, or the option owner is entitled to some rebate.
We concentrate on continuously monitored barrier options.

From a probabilistic viewpoint, one can express exotic
options prices in terms of the conditional expectation of a
payoff function that depends on the underlying stochastic
process and its extrema. In analytical terms, a barrier deriva-
tive’s value is the solution to the Kolmogorov backward
equation of a specific type subject to appropriate initial and
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boundary conditions. In the case of Lévy models, one needs
to solve complex partial integrodifferential equations. In the
financial industry, traders need efficient algorithms for option
pricing to perform a fast model calibration to option values.
We refer the readers to [1]–[3] for modern approaches to fit
model parameters.

By now, there exist several large groups of relatively
universal numerical methods for pricing barrier options under
exponential Lévy processes. The number of publications is
vast, and, therefore, the full list is impossible.

Existing numerical methods in literature can be catego-
rized into three main groups: Monte Carlo simulation (see
e.g. [4]–[6]), backward induction methods (see e.g. [7]–
[10]), and numerical methods for solving integro-differential
equations (see e.g. [11]–[18]). We will consider the last
group.

As a theoretical background behind the procedure, meth-
ods of the third group use the algorithm of horizontal
lines [19], which includes a time discretization while a
space variable remains continuous. In [20], Carr suggested
a meaningful probabilistic interpretation of this technique,
which we call time randomization or Carr’s randomization.

After the time discretization, a cascade of stationary
boundary problems for integrodifferential equations on a
half-line arises. To solve them, one may apply either finite-
difference methods like in [12], [21] or Wiener-Hopf factor-
ization method (see, for example, [14], [16], [17]). In the case
of continuously monitored options, one can also reduce the
initial Kolmogorov backward equation to the Wiener-Hopf
one applying the Laplace transform in time variable (see,
e.g., [13], [16], [22]). One can show (see, e.g., [15], [24]) that
Carr’s randomization is equivalent to the Laplace transform
inversion in the Post-Widder formula. One can treat a discrete
monitoring case analogously using z-transform (see, e.g.,
[25], [26]).

A Wiener-Hopf method is a universal tool for solving
integrodifferential equations with convolution-type kernels
on a half-line. In application to finance, researchers widely
use the Wiener-Hopf method to solve 2-dimensional initial
boundary value problems for pricing path-dependent options
under Lévy processes. However, in the case of general
Lévy models, the Wiener-Hopf factors are not available in
a closed form and should be approximated by using special
numerical tricks. In particular, an approximate Wiener-Hopf
factorization was suggested in [14] as the main ingredient of
the fast, accurate, and universal numerical method for pricing
barrier options under Lévy models. We will refer to that
method as the “Fast Wiener-Hopf factorization method” (the
FWHF-method). The paper [16] generalized the approximate
factorization introduced in [14] and suggested an acceleration
of the method convergence. Alternative methods that use
various complicated approximate techniques for the Wiener-
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Hopf factorization presented in [13], [22], [25], [27], among
others. Therefore, pricing exotic options in exponential Lévy
models remains a computational challenge.

The goal of the current paper is to suggest a new, easy,
and effective algorithm to price barrier options under pure
non-Gaussian Lévy processes with jumps of finite variation.
The main advantage of the method is applying explicit
Wiener-Hopf factorization formulas. The key idea behind our
approach is to represent the process under consideration as
a difference between two subordinators. Such splitting rule
applied to the process at exponentially distributed random-
ized time points gives us the possibility to find the option
price by analytically solving simple Wiener-Hopf equations
in sequence.

II. THEORETICAL BACKGROUND

A. Lévy processes: basic facts

A Lévy process is a stochastically continuous process
with stationary independent increments (for general defini-
tions, see, e.g., [28]). A Lévy model may have a Gaussian
component, a pure jump component, or both. The second
component is characterized by the Lévy measure, which
describes the distribution of jumps. A Lévy process Xt can
be completely specified by its characteristic exponent, ψ,
definable from the equality E[eiξX(t)] = e−tψ(ξ) (we confine
ourselves to the one-dimensional case).

The Lévy-Khintchine formula gives the characteristic ex-
ponent:

ψ(ξ) =
σ2

2
ξ2− iµξ+

∫ +∞

−∞
(1−eiξy+ iξy1[−1;1](y))F (dy),

(1)
where σ2 ≥ 0 is the variance of the Gaussian component, 1A
is the indicator function of the set A, and the Lévy measure
F (dy) satisfies∫

R\{0}
min{1, y2}F (dy) < +∞.

If the jump component is a process of finite variation, that
is equivalent to∫

R\{0}
min{1, |y|}F (dy) < +∞, (2)

then (1) can be simplified

ψ(ξ) =
σ2

2
ξ2 − iµξ +

∫ +∞

−∞
(1− eiξy)F (dy), (3)

with a different µ, and the new µ is the drift of the Gaussian
component.

In the current paper, the method we suggest uses a partic-
ular class of Lévy processes named as subordinators. Recall,
that a subordinator is a Lévy process with almost surely non-
decreasing sample paths. According to [1, Proposition 3.10],
a subordinator has no diffusion component, only positive
jumps of finite variation and a non-negative drift. It follows
that the characteristic exponent of a subordinator has the
following form:

ψ(ξ) = −iµξ +

∫ +∞

0

(1− eiξy)F (dy), (4)

where µ ≥ 0, and its Lévy measure satisfies (2). It is easy to
show that if a Lévy process has almost surely non-increasing
trajectories, then its characteristic exponent reads

ψ(ξ) = −iµξ +

∫ 0

−∞
(1− eiξy)F (dy), (5)

with µ ≤ 0, and Lévy measure satisfying (2).
Assume that the riskless rate r is constant, and, under a

risk-neutral measure chosen by the market, the underlying
evolves as St = S0e

Xt , where Xt is a Lévy process. Then
we must have E[eXt ] < +∞, and, therefore, ψ must admit
the analytic continuation into the strip =ξ ∈ (−1, 0) and
continuous continuation into the closed strip =ξ ∈ [−1, 0].

Further, if d ≥ 0 is the constant dividend yield on the
underlying asset, then the following condition (the EMM-
requirement) must hold: E[eXt ] = e(r−d)t. Equivalently,

r − d+ ψ(−i) = 0, (6)

which can be used to express the drift µ via the other
parameters of the Lévy process:

µ = r − d− σ2

2
+

∫ +∞

−∞
(1− ey + y1[−1;1](y))F (dy). (7)

In the examples below, we list some popular classes of
Lévy processes in empirical studies of financial markets.

Example 1. [Tempered stable Lévy processes] The char-
acteristic exponent of a pure jump KoBoL process of order
ν ∈ (0, 2), ν 6= 1 is given by

ψ(ξ) = −iµξ + cΓ(−ν)[λν+ − (λ+ + iξ)ν ] (8)
+cΓ(−ν)[(−λ−)ν − (−λ− − iξ)ν ],

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+. The
characteristic exponent (8) is derived in [29] from the Lévy-
Khintchine formula with the Lévy densities of negative and
positive jumps, F∓(dy), given by

F∓(dy) = ceλ±y|y|−ν−1dy; (9)

in the first two papers, the name extended Koponen family
was used. Later, the same class of processes was used in
[30] under the name CGMY-model. The following relations
between parameters of KoBoL model and C,G,M, Y pa-
rameters of CGMY-model is valid:

C = c, Y = ν, G = λ+, M = −λ−.

More general version with c± instead of c, and the different
exponents ν± is known as a Tempered Stable Lévy model
[1]. In this case, we have for ν+, ν− ∈ (0, 2), ν+, ν− 6= 1

ψ(ξ) = −iµξ + c+Γ(−ν+)[λ
ν+

+ − (λ+ + iξ)ν+ ] (10)
+c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ],

where c+, c− > 0, µ ∈ R, and λ− < −1 < 0 < λ+.

Example 2. [Variance Gamma processes] The Lévy density
of a Variance Gamma process is of the form (9) with ν = 0,
and the characteristic exponent is given by (see [31])

ψ(ξ) = −iµξ+c[ln(λ++iξ)−lnλ++ln(−λ−−iξ)−ln(−λ−)],
(11)

where c > 0, µ ∈ R, and λ− < −1 < 0 < λ+.
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Example 3. [Kou model] If F∓(dy) are given by exponential
functions on negative and positive axis, respectively:

F∓(dy) = c±(±λ±)eλ±y,

where c± ≥ 0 and λ− < 0 < λ+, then we obtain Kou model.
The characteristic exponent of the process is of the form

ψ(ξ) =
σ2

2
ξ2 − iµξ +

ic+ξ

λ+ + iξ
+

ic−ξ

λ− + iξ
. (12)

The two-sided version was introduced in [32].

B. Wiener-Hopf factorization

There are several forms of the Wiener-Hopf factorization.
The Wiener-Hopf factorization formula used in probability
reads:

E[eiξXTq ] = E[eiξXTq ]E[e
iξXTq ], ∀ ξ ∈ R, (13)

where Tq ∼ Exp q is an exponentially distributed random
variable independent of X , and Xt = sup0≤s≤tXs and
Xt = inf0≤s≤tXs are the supremum and infimum processes.
Notice, that for all t > 0 the following useful relations hold
(see details in [28]):

Xt ∼ Xt −Xt (14)
Xt ∼ Xt −Xt. (15)

Introducing the notation

φ+
q (ξ) = qE

[∫ ∞
0

e−qteiξXtdt

]
= E

[
eiξXTq

]
, (16)

φ−q (ξ) = qE

[∫ ∞
0

e−qteiξXtdt

]
= E

[
e
iξXTq

]
, (17)

and taking into account that

E
[
eiξXTq

]
= qE

[∫ ∞
0

e−qteiξXtdt

]
=

q

q + ψ(ξ)
, (18)

we can write (13) as
q

q + ψ(ξ)
= φ+

q (ξ)φ−q (ξ), ∀ ξ ∈ R. (19)

It follows from (16)-(18) that φ+
q (ξ), φ−q (ξ), q

q+ψ(ξ)
are the characteristic functions of the random variables
XTq

, XTq
, XTq

, respectively.
Recall that a function φ(ξ) of a real argument ξ defined

by the formula
φ(ξ) = E

[
eiξY

]
,

is called the characteristic function (ch.f.) of the random
variable Y . There exists one-to-one correspondence between
distributions of random variables and their characteristic
functions. Due the definition of ch.f., for a wide class of
functions u(x) and random variables with probability density
the following useful relation holds

E[u(x+ Y )] =
1

2π

∫ +∞

−∞
eixξφ(ξ)û(ξ)dξ, (20)

where û is the Fourier transform of a function u:

û(ξ) =

∫ +∞

−∞
e−ixξu(x)dx.

Introduce the normalized resolvent of X or the expected
present value operator (EPV–operator) under X defined for
a function u(x) as

Equ(x) = E[u(x+XTq )]. (21)

The name (see e.g. [33]) is due to the observation that, for
a stream u(Xt),

Eqg(x) = E

[∫ +∞

0

qe−qtu(Xt)dt | X0 = x

]
. (22)

Replacing in (22) process X with the supremum and infimum
processes X and X , we obtain the EPV operators E±q under
supremum and infimum process. Equivalently,

E+
q u(x) = E[u(x+XTq

)], (23)

E−q u(x) = E[u(x+XTq
)]. (24)

The operator form of the Wiener-Hopf factorization is
written as follows (see details in [33]):

Eq = E+
q E−q = E−q E+

q . (25)

Note that we understand (25) as equalities for operators
in appropriate function spaces, for instance, in the space of
semi-bounded Borel functions. Under appropriate conditions
on the characteristic exponent, we can define the EPV-
operators as operators in spaces of functions of exponential
growth at infinity, and (25) will hold in these spaces.

Finally, we note that (19) is the Wiener-Hopf factorization
of the symbol of a pseudo-differential operator (PDO). Set
D = −i ddx and recall that a PDO A = a(D) with symbol a
acts as follows:

Au(x) =
1

2π

∫ +∞

−∞
eixξa(ξ)û(ξ)dξ = F−1

ξ→xa(ξ)Fx→ξu.

Notice that D = F−1
ξ→xξFx→ξ, where F is the Fourier

transform. It follows that a differential operator is a special
case of a PDO with a polynomial symbol. In the case of Lévy
processes, the EPV-operator Eq is the PDO q(q + ψ(D))−1

with the symbol q/(q + ψ(ξ)).
Taking into account (16), (17), (20), we easily see that

E±q = φ±q (D). Hence, one can rewrite (23)-(24) as

E+
q u = F−1

ξ→xφ
+
q (ξ)Fx→ξu (26)

E−q u = F−1
ξ→xφ

−
q (ξ)Fx→ξu. (27)

If we know φ±q (ξ) explicitly, then we can numerically
implement the operators on the rightmost part of (26) and
(27) using the Fast Fourier Transform (FFT).

However, in the case of general Lévy models, the char-
acteristic functions φ±q (ξ) are not available in closed form.
Numerical evaluations of the Wiener-Hopf factors φ±q (ξ) are
rather involved. It makes it challenging to implement pow-
erful tools of the Wiener-Hopf method for a wide range of
researchers. In the next section, we suggest a new approach
that substantially simplifies the factorization technique.

III. SPLITTING RULE AND WIENER-HOPF
FACTORIZATION

A. The problem setup and general pricing formulas

Let T,K,H be the maturity, strike and barrier, and the
stock price St = S0e

Xt under a chosen risk-neutral measure

Engineering Letters, 28:4, EL_28_4_40

Volume 28, Issue 4: December 2020

 
______________________________________________________________________________________ 



(see (6)) is an exponential Lévy process which has no
diffusion component (σ = 0) and only jumps of finite
variation (see (2)). As a basic example to illustrate our
method, we consider pricing continuously monitored down-
and-out put options without rebate under the Tempered Stable
Lévy model with jumps of finite variation (see Example 1).
The condition on jumps implies that the parameters ν+ and
ν−, which characterize the activity of jumps should satisfy
the following inequalities:

0 < ν+ < 1, 0 < ν− < 1. (28)

The riskless rate r, and the dividend rate d are assumed to
be constant. Set h = lnH/S0.

Consider the no-arbitrage price of the barrier option at the
beginning of a period under consideration (t = 0), see, e.g.
[14]:

V (T, x) = Ex
[
e−rTG(XT )1XT>h

]
, (29)

where T is the final date, and G(x) = (K − S0e
x)+ is

the payoff at time T . The short-hand notation Ex[·] means
that we take the expectation conditioned on the event X0 =
X0 = X0 = x.

Denote by V̂ (q, x) the Laplace transform of V (T, x)
w.r.t. T . Applying Fubini’s theorem, we obtain that V̂ (q, x)
is the discounted expected value of the payoff function
G(Xt)1X

t
>h at exponentially distributed time Tq+r:

V̂ (q, x) =

∫ +∞

0

e−qtEx
[
e−rtG(Xt)1X

t
>h

]
dt

= Ex
[∫ +∞

0

e−(q+r)tG(Xt)1Xt>h
dt

]
(30)

=
1

q + r
Ex
[
G(XTq+r

)1X
Tq+r

>h

]
. (31)

Once we develop a method for computing the expectations
in (31) for appropriate values of q, we may recover V (T, x)
by using the Post-Widder formula. If f(t) is a non-negative
function of a real variable t, and it’s Laplace transform
f̃(q) =

∫∞
0
e−qtf(t) dt, is known, then the approximate

Post-Widder formula for f(t) reads as follows (see e.g. [34])

f(t) = lim
N→∞

fN (t);

fN (t) :=
(−1)N

N !

(
N

t

)N+1

f̃ (N)

(
N

t

)
,

where f̃ (N)(q) – N th derivative of f̃ at the point q.
Differentiating n− 1 times the expression (30) w.r.t q and

multiplying it by (−1)n−1qn

(n−1)! , we obtain

vn(q, x) :=
(−1)n−1qn

(n− 1)!
∂n−1
q V̂ (q, x) (32)

=
qn

(n− 1)!

∫ +∞

0

tn−1e−(q+r)tEx
[
G(Xt)1X

t
>h

]
dt

=
1

(1 + r/q)n
Ex[G(XΓ(n,q+r))1XΓ(n,q+r)>h

], (33)

where Γ(n, q) is a Gamma random variable with the shape
parameter n > 0 and the rate parameter q > 0.

Using the relation Γ(n, q) ∼ Γ(n− 1, q) + Tq , and taking
into account that

1XΓ(n,q+r)>h
= 1XTq+r

+XΓ(n−1,q+r)>h
1XTq+r

>h,

we conclude that for n = 1, 2, . . .

vn(q, x) =
1

(1 + r/q)
Ex[vn−1(q,XTq+r )1X

Tq+r
>h], (34)

where v0(q, x) = G(x).
Hence, we see that due the Post-Widder formula, for a

fixed x, vN (N/T, x) converges to V (T, x) as N → +∞.
The procedure (34) with q = N/T is equivalent to Carr’s

randomization, introduced in [20] for the case of American
call options. Later it was generalized for a wider class of
stochastic control problems in the paper [35].

Recall that Carr’s randomization means assuming that the
maturity time is random. If we suppose that the maturity date
of the barrier option is Gamma distributed with the shape
parameter N and the rate parameter N/T , then we obtain a
randomized analog of (29):

V ′(T, x) ≈ Ex
[
e−rΓ(N,q)G(XΓ(N,q))1XΓ(N,q)>h

]
, (35)

where q = N/T . Notice that the choice of the randomized
time is due the fact that Γ(N, q) converges in quadratic
mean to T as N → +∞, since E[Γ(N, q)] = T and
V ar[Γ(N, q)] = T 2/N .

It is easy to show that vN (q, x) defined by (33) is
exactly the right hand side of (35). Hence, we see that the
randomized option price V ′(T, x) converges to V (T, x) as
N → +∞ as well.

The methods developed in [14], [17] demonstrated the
successful use of the time randomization for pricing barrier
options in Lévy models. Proofs of the Carr’s randomization
convergence in the case of similar problems for Lévy pro-
cesses are presented in [15], [24]. Notice that in the current
paper, we applied a different technique.

B. Splitting procedure

The state-of-art implementation of the Wiener-Hopf
method in option pricing (see e.g. [13], [14], [17], [22]) leads
to the factorization (19) of (q+r)/(q+r+ψ(ξ)), where ψ(ξ)
is the characteristic exponent of the Lévy process Xt. Then
using (14)-(15) and (21)-(24) one can calculate the sequence
(34) with q = N/T as follows: for n = 1, . . . , N

vn(q, x) =
1

(1 + r/q)
·

Ex[vn−1(q, (XTq+r −XTq+r
) +XTq+r

)1X
Tq+r

>h]

=
1

(1 + r/q)
Ex[E+

q+rvn−1(q,XTq+r
)1XTq+r

>h]

=
1

(1 + r/q)
·

E[E+
q+rvn−1(q, x+XTq+r

)1(h,+∞)(x+XTq+r
)]

=
1

(1 + r/q)
E−q+r1(h,+∞)E+

q+rvn−1(q, x). (36)

Recall that according to (14) and (23),

Ex[vn−1(q, (XTq+r
−XTq+r

) = Ex[vn−1(q,XTq+r
)]

= E[vn−1(q, x+XTq+r )] = E+
q+rvn−1(q, x).

Alternatively, we can write the Laplace transform V̂ (q, x) by
the formula (31), and calculate it similar to (36) at a number
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of points q specified by a numerical algorithm of the Laplace
transform inversion:

V̂ (q, x) =
1

(q + r)
E−q+r1(h,+∞)E+

q+rG(x). (37)

Then we can recover V (T, x) from (37) using the chosen
algorithm of the inversion.

As we mentioned above, the main computational chal-
lenge in (36) is to implement the Wiener-Hopf operators
numerically. The most straightforward approach involves the
Fourier integral transform technique (26)-(27) provided the
factors φ±(ξ) are known, see also (20). Most Lévy models,
including Tempered Stable Lévy processes, do not admit
explicit Wiener-Hopf factorization (19). The numerical tricks
for approximating the functions φ±(ξ) can be found in [14]–
[17], [22], [23].

Before describing the proposed method, we consider par-
ticular cases of Lévy models, which allow a trivial Wiener-
Hopf factorization. At first, we suppose that the log-price
Xt moves by upward jumps of finite variation or positive
linear drift only. It follows that Xt is a subordinator with
the characteristic exponent of the form (4), Xt = Xt and
Xt = X0. Then we can rewrite the formula (34) as follows:

vn(q, x) =
1(h,+∞)(x)

(1 + r/q)
E[vn−1(q, x+XTq+r

)]

=
1(h,+∞)(x)

(1 + r/q)
E+
q+rvn−1(q, x).

Notice that in this particular case, according to (16)-(18), the
characteristic functions of XTq+r and XTq+r

are

φ+
q+r(ξ) = (q + r)/(q + r + ψ(ξ)) and φ−q+r(ξ) = 1, (38)

respectively. Then we take into account (20), and we obtain

vn(q, x) =
1(h,+∞)(x)

(1 + r/q)
× (39)

(2π)−1

∫ +∞

−∞
eixξ(q + r)/(q + r + ψ(ξ))v̂n−1(q, ξ)dξ,

where v̂n−1(q, ξ) is the Fourier transform of the function
vn−1(q, x) w.r.t. x.

As the second example of a trivial factorization identity
in (19), we consider the log-price Xt having only downward
jumps of finite variation under negative drift. Hence, Xt has
the characteristic exponent of the form (5), Xt = X0 and
Xt = Xt. Then we represent vn(q, x) in (34) as

1

(1 + r/q)
E[vn−1(q, x+XTq+r

)1(h,+∞)(x+XTq+r
)]

=
1

(1 + r/q)
E−q+r1(h,+∞)vn−1(q, x).

Analogously to the previous case, the characteristic functions
of XTq+r

and XTq+r
are trivial:

φ+
q+r(ξ) = 1 and φ−q+r(ξ) = (q + r)/(q + r + ψ(ξ)). (40)

Then we have

vn(q, x) =
1

(1 + r/q)
× (41)

(2π)−1

∫ +∞

−∞
eixξ(q + r)/(q + r + ψ(ξ))v̂+

n−1(q, ξ)dξ,

where v̂+
n−1(q, ξ) is the Fourier transform of the function

v+
n−1(q, ξ)(= 1(h,+∞)(x) · vn−1(q, x)) w.r.t. x. It follows

from the definition of E−q+r (see (24)) that vn(q, x) = 0 as
x ≤ h. Hence, v+

n (q, ξ) = vn(q, x) for n > 0.
Thus, in the case when Xt or −Xt is subordinator, the

implementation of the Wiener-Hopf factorization method is
rather simple. We are going to use these considerations in
the construction of our method.

Let the characteristic exponent ψ(ξ) of the Tempered Sta-
ble Lévy model Xt is defined by (10) and the parameters ν±
satisfy (28). The new approach to calculating (34) requires
the following steps. First, we represent Xt as a difference
between two subordinators X+

t and −X−t :

Xt = X+
t − (−X−t ).

Let X+
t and X−t be Lévy processes with the characteristic

exponent ψ+(ξ) and ψ−(ξ), respectively. If µ ≥ 0 we define
ψ+(ξ) and ψ−(ξ) as follows

ψ+(ξ) = −iµξ + c+Γ(−ν+)[λ
ν+

+ − (λ+ + iξ)ν+ ],

ψ−(ξ) = c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ],

otherwise

ψ+(ξ) = c+Γ(−ν+)[λ
ν+

+ − (λ+ + iξ)ν+ ],

ψ−(ξ) = −iµξ + c−Γ(−ν−)[(−λ−)ν− − (−λ− − iξ)ν− ].

Notice that X−t has almost surely non-increasing sample
paths. Hence we have that

X
+

t = X+
t , (42)

X−t = X−t . (43)

Let X+,1
t and X+,2

t be Lévy processes with the same
characteristic exponent ψ+(ξ), i.e. X+,1

t ∼ X+
t and X+,2

t ∼
X+
t . Due the property of increments of a Lévy process

to be stationary independent, we conclude that Xt and
X+,1
t/2 +X−t +X+,2

t/2 are identically distributed. It means that
for a fixed t > 0 the current position of Xt with starting
point x has the same distribution as the final position of the
process (Y ts , 0 ≤ s ≤ 2t) with the following dynamics:
• Y t0 = x;
• Y ts = x + X+,1

s – an upward movement as the time s
varies from s = 0 to s = t/2;

• Y ts = Y tt/2 + X−s−t/2 – a downward movement as the
time s varies from s = t/2 to s = 3t/2;

• Y ts = Y t3t/2 + X+,2
s−3t/2 – an upward movement as the

time s varies from s = 3t/2 till s = 2t.
Further, in the paper, we omit the upper index of Y t2t for ease
of notation.

For a short time period [0, t], we may approximate the
value of X and X at a given time t by the correspondent
supremum and infimum processes of Y t at the time s = 2t.
Notice that extrema of Y t can be easily defined as follows:

Y 2t = min{x, x+X+,1
t/2 +X−t }, (44)

Y 2t = max{x, x+X+,1
t/2 , x+X+,1

t/2 +X−t +X+,2
t/2 }.

Let a natural number N is sufficiently large and q = N/T .
As explained in Subsection A of Section III, vN (N/T, x)
defined iteratively by (34) gives an approximate price of the
barrier option V (T, x) (see (29)). Since the randomized time
Tq+r converges in quadratic mean to 0 as N → +∞, we may
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approximate XTq+r in (34) with Y2Tq+r . Notice that in this
case, the following relations hold

Y2Tq+r
= x+X+,1

Tq+r/2
+X−Tq+r

+X+,2
Tq+r/2

; (45)

1Y
2Tq+r

>h = 1(h,+∞)(x)× (46)

1(h,+∞)(x+X+,1
Tq+r/2

+X−Tq+r
).

In some sense, we may consider such approximation as an
analog to the operator splitting method suggested in [7],
where the backward jump-diffusion PIDE for option prices is
solved by splitting the related operator into the differential,
positive and negative jump parts. Recall that the fundamental
idea behind the approach in [7] involves representing a jump
operator as a PDO with subsequent transforming into the
correspondent matrix exponential.

Introduce the following operators:

E+u(x) = E[u(x+X
+

Tq+r/2)], (47)

E−u(x) = E[u(x+X−Tq+r
)]. (48)

Notice that Tq+r/2 is also an exponentially distributed
random variable but with the intensity parameter equal to
2(q + r).

Set

φ+(ξ) = E[e
iξX+

T2(q+r) ],

φ−(ξ) = E[e
iξX

−
Tq+r ].

Taking into account (42)-(43), we obtain that X+
T2(q+r)

and −X−Tq+r
admit trivial factorizations described above

in the subsection. Hence, we have (see (38) and (40) for
clarifications):

φ+(ξ) = E[e
iξX+

T2(q+r) ]

=
2(q + r)

2(q + r) + ψ+(ξ)
; (49)

φ−(ξ) = E[e
iξX−

Tq+r ]

=
q + r

q + r + ψ−(ξ)
. (50)

Thus, we can rewrite the operators E+ and E− in (47)-(48)
as PDOs with symbols (49) and (50) as follows

E+u(x) = E[u(x+X+
T2(q+r)

)]

= F−1
ξ→xφ+(ξ)Fx→ξu(x)

= F−1
ξ→x

2(q + r)

2(q + r) + ψ+(ξ)
Fx→ξu(x);

E−u(x) = E[u(x+X−Tq+r
)]

= F−1
ξ→xφ−(ξ)Fx→ξu(x)

= F−1
ξ→x

q + r

q + r + ψ−(ξ)
Fx→ξu(x).

Let Z and W be short notations for X+,1
Tq+r/2

+X−Tq+r
and

X+,1
Tq+r/2

, respectively. Now, using the relations (45) and (46)

we may approximate vn(q, x) in (34) as follows:

vn(q, x) ≈ 1

(1 + r/q)
Ex[vn−1(q, Y2Tq+r

)1Y 2Tq+r
>h]

=
1(h,+∞)(x)

(1 + r/q)
Ex[vn−1(q, Z +X+,2

Tq+r/2
)1(h,+∞)(Z)]

=
1(h,+∞)(x)

(1 + r/q)
Ex[vn−1(q, Z +X+

2Tq+r
)1(h,+∞)(Z)]

=
1(h,+∞)(x)

(1 + r/q)
×

Ex[1(h,+∞)(W +X−Tq+r
)E+vn−1(q,W +X−Tq+r

)]

=
1(h,+∞)(x)

(1 + r/q)
×

Ex[E−1(h,+∞)(X
+,1
Tq+r/2

)E+vn−1(q,X+,1
Tq+r/2

)]

=
1(h,+∞)(x)

(1 + r/q)
×

E[E−1(h,+∞)(x+X+
2Tq+r

)E+vn−1(q, x+X+
2Tq+r

)]

=
1(h,+∞)(x)

(1 + r/q)
E+E−1(h,+∞)E+vn−1(q, x). (51)

Summing up, we conclude that the formula (51) leads to
consecutive evaluations of simple Fourier integrals similar
to (39) or (41).

The EPV-operators E− and E+ can be efficiently imple-
mented by using the Fast Fourier Transform (FFT) for real-
valued functions. Recall that the discrete Fourier transform
(DFT) is defined by

Fl = DFT [f ](l) =
M−1∑
k=0

fke
2πikl/M , l = 0, ...,M − 1.

The inverse DFT recovers the set of fk’s exactly from Gl’s.
The correspondent formula reads:

fk = iDFT [F ](k) =
1

M

M−1∑
l=0

Fle
−2πikl/M , k = 0, ...,M−1.

If the data consist of a real-valued array {fk}Mk=0, then the
resulting transform satisfies FM−l = F̄l. Since F0 and FM/2

are real, the transformed complex-valued array has the same
“degrees of freedom” as the original real data set {fl}. In
this case, it is efficient to use FFT algorithm for real-valued
functions (see [36] for technical details). To distinguish the
DFT of real functions, we will use notation RDFT.

Fix the spatial step h > 0 and the number of the space
points M = 2m. Define the partitions of the normalized
log-price domain [−Mh

2 ; Mh
2 ) by points xk = −Mh

2 + kh,
k = 0, ...,M − 1, and the frequency domain [−πh ; πh ] by
points ξl = 2πl

hM , l = −M/2, ...,M/2. Then the Fourier
transform of a function u on the real line can be approx-
imated as follows:

û(ξl) ≈ h(−1)lRDFT [u](l), l = 0, ...,M/2.

Here and below, z denotes the complex conjugate of z. Using
the notation (49)-(50), we can approximate E± as follows:

(E±u)(xk) = iRDFT [φ±.∗RDFT [u]](k), k = 0, ...,M−1,

where .∗ is the element-wise multiplication of arrays that
represent the functions.
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The main parameters of the algorithm for evaluating the
function V (T, x) are the number of time steps N , the step h
of the mesh, and the localization interval (−L ln(2);L ln(2)),
where L is the scaling factor (for more details about the
choice of the corresponding parameters of the algorithm, see
[16], [14]).

Thus, our approach uses constructions from trivial factor-
izations only. In this context, we will refer to the developed
method as the “Simple Wiener-Hopf factorization method”
(the SWHF-method).

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the sug-
gested SWHF-method and other numerical pricing methods.
As a basic example, we consider the down-and-out put option
with strike K, barrier H and time to expiry T . To illustrate
our method, we take the KoBoL (CGMY) model of order
ν ∈ (0, 1) (see Example 1), with the parameters ν = 0.5,
λ+ = 9, λ− = −8, c = 1 . We choose the instantaneous
interest rate r = 0.072310, the time to expiry T = 0.5 year,
the strike price K = 100 and the barrier H = 90. In this
case, the drift parameter µ is approximately zero.

In numerical examples, we implemented the algorithm
of the SFWH–method described in Section III. For com-
parison, we choose a Monte Carlo method (MC-method),
a finite difference scheme (FDS-method), and an approx-
imate Wiener-Hopf factorization method (FWHF-method).
The clue parameters of the Monte Carlo algorithm are
the number of monitoring dates N (for observing barrier
crossing events) and the number of sample paths Z. Then the
method’s complexity is O(NZ). The FDS-method and the
FWHF-method have the same parameters as our new SFWH–
method. For a fixed number of the time steps N and space
step h, the numerical complexity of all three algorithms is
similar and equal to O(NM logM), where M is the number
of spatial points. Notice that the parameter h fixes M for a
given localization domain.

In Table I, we present the option prices obtained by the
SFWH–method at 5 spot levels (S = 91, 101, 111, 121, 131))
and by those methods as reported in Table 1, [14].

We use the prices calculated by the MC-method with 500,
000 paths simulations as the benchmark. In Table II, the
sample mean values are compared with the prices computed
by FDS, FWHF and SWHF-methods. The results show
a general agreement between the Monte Carlo simulation
results and those computed by the other methods, including
the new one.

The SFWH-prices converge very fast, and the relative
errors reported in Table II are less than the Monte Carlo
errors (MC errors). Notice that the MC errors indicate the
ratio between the half-width of the 95% confidence interval
and the sample mean.

Numerical experiments show that the same algorithm’s
parameters for the FWHF and SWHF-methods lead to close
results. It follows that both methods have similar compu-
tational efficiency. However, the SWHF-method suggests a
much more simple and straightforward construction of an
approximate Wiener-Hopf factorization then its competitor.

TABLE I
PRICES: DOWN-AND-OUT PUT IN KOBOL (CGMY) MODEL,

ν+ = ν− = 0.5

MC FDS FWHF SWHF

h 10−4 10−3 10−3

N 105 1600 800 800

S = 91 0.23650 0.23587 0.23649 0.23652

S = 101 0.56997 0.56691 0.56777 0.56571

S = 111 0.38399 0.38498 0.38556 0.38388

S = 121 0.20949 0.20809 0.20841 0.20974

S = 131 0.10836 0.10726 0.10752 0.10805

KoBoL parameters: ν = 0.5, λ+ = 9, λ− = −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, d = 0, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps, S –
spot price.
Option prices are calculated by using MC, FDS, FWHF and SWHF
methods.

TABLE II
RELATIVE ERRORS W.R.T. MC: DOWN-AND-OUT PUT IN KOBOL

(CGMY) MODEL, ν+ = ν− = 0.5

MC FDS FWHF SWHF

h 10−4 10−3 10−3

N 105 1600 800 800

S = 91 1.3% -0.27% 0.00% 0.008%
S = 101 0.8% -0.54% -0.39% -0.747%
S = 111 1.0% 0.26% 0.41% -0.029%
S = 121 1.4% -0.67% -0.52% 0.119%
S = 131 1.9% -1.01% -0.78% -0.286%

KoBoL parameters: ν = 0.5, λ+ = 9, λ− = −8, c = 1, µ ≈ 0.
Option parameters: K = 100, H = 90, r = 0.072310, d = 0, T = 0.5.
Algorithm parameters: h – space step, N – number of time steps, S –
spot price.
Option prices are calculated by using MC, FDS, FWHF and SWHF
methods.

V. CONCLUSION

In the paper, we suggested a new approach for pricing
options whose payoff depends on the infimum or supremum
of Lévy processes at expiry. The method suggested makes it
easy to implement such a complicated tool as the Wiener-
Hopf factorization for general Lévy models with jumps
of finite variation. In future research, we plan to develop
our approach in the following directions. The efficiency of
the method can be improved by increasing the number or
changing the order of terms in the splitting rule. We also
consider extending our approach to the problems of pricing
double barrier options. Finally, the Wiener-Hopf factorization
procedure can be generalized for Lévy models with jumps
of infinite variation.
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