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Abstract—In the event of an emergency, the efficient and 

reasonable scheduling of emergency rescue workers in the 

initial stage of the emergency rescue process can considerably 

reduce the associated loss. In this regard, this paper proposes a 

bi-level game scheduling model for emergency rescue workers 

under the condition of limited rationality, primarily considering 

the demand game for limited emergency rescue workers in 

multiple disaster areas and the limited rational behavior of 

victims in the game process. Based on the proposed model, a 

Shuffled Frog Leaping Algorithm (SFLA) is designed to solve 

the problem. Finally, the rationality of the model is verified 

through a case study. The results indicate that the model of the 

emergency rescue workers scheduling (ERWS) proposed in this 

paper can take into account both the fairness of the scheduling 

while ensuring a satisfactory basic rescue effect, thereby 

considerably improving the satisfaction of the victims and 

reducing the loss resulting from the emergency. The findings 

can provide further emergency decision-making reference for 

decision-makers. 

 
Index Terms—emergency rescue workers scheduling, limited 

rationality, non-cooperative game, bi-level programming 

 

I.INTRODUCTION 

any uncertain disaster factors, such as the evolution of 

regional climate, the deterioration of environmental 

ecology, and the complexity of social system have shown 

extremely complex evolutionary trends, while emergencies 

triggered by these factors indicate a trend of spatial spread 

and intensification. Additionally, various natural disasters 

such as the Wenchuan Earthquake, the Southern Snowstorm, 

as well as other shocking emergencies such as the 

COVID-19 epidemic, SARS epidemic, and the Tianjin Port 

explosion, not only severely damaged social stability, 

hindered economic development, wounded people ’s lives 

and property, but also seriously challenged the social 
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carrying capacity and the emergency response capability. In 

the event of such emergencies occur, the government must 

take corresponding emergency measures to control the 

adverse influence caused by the emergency to the greatest 

extent. However, ERWS is inseparable from the 

implementation of emergency measures. The rescue effect 

will be greatly reduced if ERWS is unreasonable. Therefore, 

it is necessary to study how to schedule emergency rescue 

workers efficiently and reasonably to minimize the loss 

caused by emergencies.  

At present, although some scholars have started to study 

emergency resource scheduling (ERS), almost no researches 

on ERWS have been carried out. The existing researches are 

mainly focused on the emergency materials scheduling 

(EMS), emergency vehicles scheduling (EVS) and the 

selection of emergency routes, etc. Most scholars mainly 

construct single-objective and multi-objective planning 

models to solve these problems, while a few scholars have 

provided some practical emergency resource scheduling 

schemes for the emergency rescue system by establishing a 

bi-level programming model. In terms of single-objective 

planning, an emergency warehouse location model with the 

goal of maximizing the coverage is proposed in [1]. The 

emergency resource scheduling schemes with single 

objective function have been studied in [2][3], and the goals 

of them are to minimize the time cost. Aiming at the resource 

allocation problem of elastic application in multi-path 

network, an optimal resource allocation scheme for 

multi-path networks based on Particle Swarm Optimization 

(PSO) is proposed in [4]. In terms of multi-objective 

planning, a multi-objective programming model with 

consideration of time satisfaction and demand satisfaction is 

constructed to obtain the optimal schemes of EMS [5][6]. 

The multi-objective programming model for multi-period 

dynamic ERS is proposed in [7][8], which is on the premise 

of the number of emergency resources is sufficient. [9] 

developed a heuristic resource allocation algorithm based on 

multi-objective programming to solve the resource allocation 

problem of heterogeneous services in peer-to-peer networks. 

[10] proposed an optimal model of vehicle routing for 

emergency cold chain logistics under the condition of 

minimum loss, and designed a heuristic algorithm to solve 

the model based on the idea of network optimization and 

Baidu Map API. In terms of bi-level programming, the 

bi-level model of EMS for multiple suppliers is proposed in 

[11][12], where the heuristic algorithm is used to solve the 

model. The two-layer emergency logistics system is 
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developed to provide auxiliary decision-making for EMS 

[13][14]. [15] proposed a robust bi-level optimization model 

for the emergency rescue network (ERN) under uncertainty 

in demand and supply parameters. 

In fact, emergency rescue workers play an important role 

in emergency rescue work. The efficient and reasonable 

ERWS is bound to make emergency rescue more effective. 

However, most of the existing researches are on the problem 

of EMS, and only a few scholars have conducted relevant 

researches on the ERWS. For example, Several rescue task 

assignment schemes for rescuers have been studied in 

[16][17]. Targeting at the volunteer assignment problem, [18] 

proposed a multi-objective programming model with 

consideration of two major factors for volunteer preference 

and demand matching to minimize the mismatched demand 

and maximize the volunteer preference. However, the above 

researches on emergency rescue workers scheduling are all 

on condition that the number of emergency rescue workers is 

sufficient, ignoring that the number of emergency rescue 

workers is usually limited in the initial stage of emergency 

rescue, and there must be a game of demand for limited 

emergency rescue workers in multiple disaster areas. 

Moreover, all the above studies assume that the 

decision-maker is completely rational, ignoring that the 

decision-maker is often limited rational in the actual 

decision-making. Therefore, this paper focuses on the ERWS 

in the initial stage of emergency rescue with the 

consideration of decision behavior of decision-maker under 

limited rationality and the game of demand for limited 

emergency resource workers in multiple disaster areas. 

The main contributions of this paper are as follows: (1) 

The ERWS in the initial stage of emergency rescue is 

divided into two stages: the first scheduling and the 

rescheduling. We can find that none of those bi-level 

scheduling models for emergency materials proposed in 

[11][12][13][14] have taken the perspective of phased 

scheduling into account. However, decision-makers' grasp of 

disaster information must go through a process from 

incomplete to gradually complete in the initial stage of 

emergency rescue. Therefore, the ERWS in the initial stage 

of emergency rescue is divided into two stages: the first 

scheduling and the rescheduling, which complement each 

other. (2) The game of demand for limited emergency rescue 

workers in multiple disaster areas is considered in this paper. 

The models of ERWS proposed in [16][17][18] takes 

sufficient emergency rescue workers as a prerequisite, which 

means those models ignore the universality of scarcity of 

emergency rescue workers in the initial stage of emergency 

rescue, and there must be a game of demand for limited 

emergency rescue workers in multiple disaster areas. 

Therefore, this competition is expressed as a 

non-cooperative game model under the condition of limited 

rationality, which depicts the participation mechanism of 

victims in the decision-making process of ERWS more 

vividly. (3) The prospect theory is introduced to portray the 

limited rational behavior of the victims in the game process. 

The models of ERWS proposed in [16][17][18] are on 

condition that decision-makers are completely rational, but 

disaster areas, as players in the game, usually show the 

behavior of limited rationality in decision-making. Therefore, 

this paper uses the value function of prospect theory to 

describe the perceived satisfaction of victims to the ERWS, 

which not only makes the measure of satisfaction more 

suitable for people's actual psychology but also reflects the 

influence of limited rationality of victims on emergency 

rescue decision-making.   

The rest of this paper is summarized as follows: We 

describe the problems studied in this paper in Section Ⅱ, and 

a bi-level game scheduling model for emergency rescue 

workers under the condition of limited rationality is 

formulated in this section. Based on the proposed model, the 

SFLA is designed to solve the problem in Section Ⅲ. Then 

we verify the rationality of the model by a case study in 

Section Ⅳ, and the influence of parameter changes on the 

results is also analyzed in this section. Finally, the 

conclusion of this paper is in Section Ⅴ. 

II.MATHEMATICAL MODELING 

In the event of large-scale emergencies, ERWS is one of 

the issues that decision-makers attach great importance to. 

The decision-maker's access to disaster information has to go 

through a process from incomplete to gradually complete in 

the initial stage of emergency rescue. Therefore, this paper 

divides ERWS in the initial stage of emergency rescue into 

two stages, namely scheduling and rescheduling. Scheduling 

and rescheduling complement each other, so the ERWS in 

the initial stage of the emergency rescue process is a typical 

bi-level programming problem [19]. Considering that 

disaster information is not comprehensive enough in the first 

scheduling stage, and victims are more sensitive to rescue 

time at this time, so the upper level is to maximize the basic 

rescue effect. However, as the decision-makers have a more 

comprehensive access to disaster information, they pay more 

attention to the subjective feelings of victims for ERWS in 

the rescheduling stage, so the lower-level is to maximize the 

perceived satisfaction of victims.  

A. Upper Level Modeling 

A.1 Upper Objective Function 

The upper model is to maximize the basic rescue effect. 

The emergency rescue responding time, the emergency 

rescue competence, and the number of emergency rescue 

workers scheduled are the main factors influencing the 

emergency rescue effect, so the upper objective function can 

be expressed as 

1max
1 1440

ijik
ijk ik

i I j J k K

t
F x u



  

 
    

 
     (1) 

Where
1

ijkx denotes the k-th rescue team from rescue point i is 

scheduled to disaster area j for emergency rescue in the first 

scheduling stage. iku is the competence of the k-th rescue 

team from rescue point i for rescue missions,   

0 1iku  and 1 ,ik

k K

u i I k K


   . ik is the number of 

the k-th rescue team at rescue point i . ijt is the emergency 

rescue responding time of rescue point i to disaster j . 

In order to simplify the calculation, dimensionless method 

[20] is introduced to make the number of emergency rescue 
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workers and emergency rescue responding time have the 

same dimension. 

A.2 Upper Constraints 

1 , ,ijk ik i

j J k K

x n i I k K
 

             (2) 

1 0 ,ijk ik j

i I k K

x Q j J
 

              (3) 

1

ij ijk jt x                  (4) 

   

1

1

0 , 1
, ,

0, 0

ik ijk

ik ijk

x
i I j J k K

x





  
   

 

     (5) 

Constraints (2) ensure that the total number of 

emergency rescue workers can be scheduled, for every 

rescue point, cannot exceed
in (the total number of 

emergency rescue workers at rescue point i ). Constraints 

(3) guarantee that the total number of emergency rescue 

workers scheduled from rescue points B to disaster 

area j must be equal to 0

jQ (the minimum demand of 

disaster area j ). Constraints (4) state the emergency 

rescue responding time satisfies the optimal rescue time 

of every disaster area. Constraints (5) state 1

ijkx is a 0-1 

variable. If rescue point i schedules rescue team k to 

disaster area j for emergency rescue, 1 1ijkx  , otherwise, 

1 0ijkx  . 

TABLE I 

PARAMETERS INVOLVED IN THE PROPOSED MODEL 

Symbol Meaning 

A  Set of disaster areas (  1 2, , ,  jA A A A j J  ) 

B  Set of rescue points (  1 2, , ,  iB B B B i I  ) 

K  Set of rescue teams (  1,2,3, ,  K l k K  ) 

ikP  The k-th rescue team at rescue point i  

jw  The severity of the disaster situation for disaster area j  

'N  
The number of emergency rescue workers remaining for 

rescheduling after the first scheduling process. 

 

B. Lower Level Modeling 

B.1 Game Theory and Prospect Theory 

The lower model is to maximize perceived satisfaction of 

the victims in every disaster area, and the competition for 

limited emergency rescue workers among multiple disaster 

areas is expressed as a non-cooperative game model under 

limited rationality [21]. The standard form of this model is 

defined as follows: 

    = , ,j jG A S U                (6) 

Strategy set: disaster areas are regarded as players in a 

game, where  1 2 3, , , , ,jA A A A A j J  is the set 

of j players. 
        1 2 3, , , , ,

j j j j

j mjS S S S S j J  denotes a 

set of limited strategies for disaster area jA , and in order to 

highlight the strategies of the j-th player, we define it 

as  ,j jS S S , where jS denotes the strategies taken by all 

players in the game except player j , jU denotes the 

payment function of the disaster area jA .  

Payment function: The value function of prospect theory 

[22] is introduced to describe the perceived satisfaction of 

victims to ERWS in this paper. We take the weighted utility 

of time reference point and demand reference point as the 

reference point of the value function. Then we assume that 

the value of the reference points for all disaster areas is the 

same, which is defined as
0V , and 0OV  , so the value 

function of the reference point for disaster area jA is 

 0

0jV V                     (7) 

According to the literature [23], the curve of value 

function of the disaster area jA about the scheme of ERWS 

is shown in Fig. 1, and the calculation formula is 

 
Fig. 1. Value function curve of disaster area j 
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      (8) 

where  is the parameter of risk aversion,  is the 

parameter of risk seeking, and  is the parameter of 

sensitivity of decision-maker to loss. Usually, 

0= =0.88 =2.25 0.5V   ， ， .  

The utility function of the disaster area j is given as 

follows:  

     1j j jf T f R              (9) 

where  is the weight of time perceived satisfaction, 

0 1  . 

 jf T is the satisfactory degree function for time, which 

is defined as: 

 
 

2
0.5

0,                          0

1,                      0<

,        
j j j

j

j j j

T

j j

T

f T T

e T
 




  
 





 

 

        (10) 

where j is the optimal rescue time of disaster area j . 

jT denotes the time when all rescue teams arrive at the 

disaster area j . 

 2

,
max ,j ijk ij

i I k K
T x t j J

 
             (12) 
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where
2

ijkx denotes the k-th rescue team from rescue point i is 

scheduled to disaster area j for emergency rescue in the 

rescheduling stage. 

 jf R is the satisfactory degree function for demand, 

which is defined as: 

 j j jf R R d               (12) 

where jR denotes the actual number of emergency rescue 

workers scheduled to disaster area j in the rescheduling stage, 
2

j ijk ik

i I k K

R x 
 

  . jd is the number of emergency rescue 

workers needed by disaster area j . 

The utility function of the reference point is given as 

follows: 

     0 0 01j j jf T f R            (13) 

where
0

jT is time reference point, 
0

jR is demand reference 

point. 
0

j ij

i I

T t m


              (14) 

0

j j i j

i I j J

R d n d
 

 
  

 
          (15) 

The payment function of every disaster area not only 

depends on the benefits generated by the number of 

emergency rescue workers it obtained in the game, but also 

depends on the losses of other disaster areas that lose these 

rescue workers in the game. Therefore, we use
1

jU to indicate 

that the benefits obtained by player jA for obtaining 

emergency rescue workers scheduled from the rescue 

point iB , and use
2

jU to indicate the losses other players 

suffered for abandoning these emergency rescue workers. 

 1 2

j ijk ik j j

k K

U x f V 


           (16) 

   2 2'j iqk ik j q

q j k K

U N x f V 
 

        (17) 

In (16) and (17) , jf represents the potential loss caused 

by rescuing the disaster area j with the emergency rescue 

workers of different rescue points, the more potential loss is, 

the greater severity of the disaster situation will be, therefore, 

jf can be replaced by jw .  

In summary, the payment function that player jA selects 

strategy jS is 

     

   

2

2'

ijk ik j jjr j m j
k K

iqk ik j q

q j k K

U x w V

N x w V

 

 



 

   

    




    (18) 

B.2 Lower objective function 

Def 1 Strategy combination X  is a Nash equilibrium 

solution of J-player non-cooperative game, if X  satisfies the 

following formula: 

     , 1,2, ,
j

j m jU X s U X j J       (19) 

where
 j
mX s

indicates that player jA in the game replaces 

his own strategy in strategy combination X  with  j
ms , and the 

strategies of other players remain unchanged.  

In the lower model, there must be a demand game for 

limited emergency rescue workers among multiple disaster 

areas, player jA , at this time, selects a strategy from his own 

strategy set jS to form a strategy combination X of the 

J-player game.  

According to the definition of Nash equilibrium [24], the 

lower objective function is defined as: 

     min max ,0 1,2, ,
j

j m j

j J

f U X s U X m l


   (20) 

When strategy combination X  is a Nash equilibrium 

solution, for each player jA , no more benefits can be 

obtained if the strategy is changed 

to
   1,2, ,

j

ms m l separately. At this time, the objective 

function takes the minimum value 0. 

B.3 Lower constraints  
1 2 0ijk ijk

i I j J k K i I j J k K

x x
     

         (21) 

2

2

0, 1
, ,

0, 0

ik ijk

ik ijk

x
i I j J k K

x





  
   

 

     (22) 

Constraints (21) guarantee that each rescue team can be 

scheduled only once. Constraints (22) state
2

ijkx is a 0-1 

variable. If rescue point i schedules rescue team k to 

disaster area j for emergency rescue, 
2 1ijkx  , otherwise, 

2 0ijkx  . 

III.MODEL SOLUTION 

A.Shuffled Frog Leaping Algorithm 

SFLA is a heuristic algorithm proposed by Eusuff and 

Lansey [25], which has been used in the field of resource 

scheduling by many domestic and foreign scholars, such as 

the problem of workshop job scheduling [26], the problem of 

water resources scheduling [27], etc. Therefore, this paper 

uses the idea of SFLA to solve the problem of ERWS. 

The flow chart of algorithm used to solve the model of 

ERWS is shown in Fig. 2.  

The core of SFLA is the process that updates the local 

worst solution constantly by doing local search, and the 

detailed update methods are shown in Fig. 3 and Fig. 4. 

The first update method is shown in Fig. 3. First, we get a 

new plan according to the method in Fig. 3, and then check 

whether this new plan satisfies the upper constraints, if not, 

we repeat the operation in Fig. 3 until finding a new plan that 

satisfies the upper constraints. Then, it is judged whether the 

benefits obtained by this new plan are better than the benefits 

corresponding to the group worst. If the benefits of new plan 

are not better than the group worst, we will use global best 

and group worst to generate a new plan, which is shown in 

Fig. 4. 

If the benefits of new plan obtained by the second update 

method are still not better than the group worst 

corresponding to, then a new plan is generated randomly, 
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which is used to replace the group worst. As mentioned 

above, we only have finished an update within the group. 

Algorithm start

Set related parameters

Generate initial plan 

Sort the plans in descending order and 

group them

Perform a local search and update the local 

worst solution

 Global shuffle

The most profitable plan?

Output result

Y

N

Algorithm end

 

Fig. 2. Flow chart of algorithm  

 
Fig. 3. First update method 

 
Fig. 4. Second update method 

B.Fitness function building 

The maximum value of objective function in the model is 

converted into the minimum value of the fitness function 

with consideration of the stability of the solution for SFLA 

[29]. The converted fitness function is 

Upper fitness function 

1

1

1

1 1440
ijik

ijk ik

i I j J k K

t
x u



  

 
 
   
 


       (23) 

Lower fitness function 

     2 = max ,0 1,2, ,
j

j m j

j J

U X s U X m l


     (24) 

C.Model solving steps 

The specific steps are as follows: 

Step 1 Define relevant parameters and assign the initial 

schemes.  scheduling schemes are randomly generated in 

the upper search space, and every scheduling scheme 

consists of a  -dimensional decision vector, which is 

denoted by  1 2= , 1,2, ,X X X     ， , thereinto, 

1X represents the upper decision vector, which consists of 

the upper decision variable
1

ijkx , and
2X represents the lower 

decision vector, which consists of the lower decision 

variable
2

ijkx .  

Step 2 The SFLA is used to solve the non-cooperative 

game model in the lower level.  

Step 2.1 The upper decision vector
1X is taken as the 

parameter, and G scheduling schemes are randomly 

generated in the lower search space. Further, the scheduling 

schemes are expressed as  1 2, , 1,2, ,gX X X g G    .  

Step 2.2 According to the fitness function (24), the fitness 

value of every frog's position, namely the benefits of every 

strategy combination, is calculated. Then the frogs are 

grouped in order from the largest to the smallest.  

Step2.3 G frogs search repeatedly in the lower 

constrained domain and the updated strategy of SFLA is 

executed in a loop.  

Step 2.4 Judge whether the scheme obtained at this time 

has the highest perceived satisfaction, if so, output the Nash 

equilibrium solution
2X


of the non-cooperative game model 

in the lower level, otherwise, return to step 2.2.  

Step 3 The upper objective function uses SFLA again to 

solve the global optimal solution.  

Step 3.1 Take  1 2,X X 


as the parameter, repeat step 2.2 

according to the fitness function (23).  

Step 3.2 A deep search is executed in the upper 

constrained domain, then do the same as step 2.2.  

Step 3.3 Judge whether the scheme obtained at this time 

has the largest basic rescue effect. If so, output the global 

optimal solution, namely the optimal scheme of ERWS, 

otherwise, return to step 3.1.  

IV.CASE STUDY  

A.Case background 

Based on the background of the emergency rescue in large 

public events, the rationality of the model proposed in this 

paper is verified by a case study. Suppose that a major public 

health emergency occurred in an area, which led 6 places to 

become major disaster areas. The number of medical rescue 

workers required by every disaster area is shown in Table Ⅱ. 

The government sent 4 rescue points to provide medical 

assistance to these 6 disaster areas, the number of rescue 

teams that every rescue point can provide and the 

competence of every rescue team for this rescue task are 

shown in Table Ⅲ. The emergency rescue responding time 

for different disaster areas is shown in Table Ⅳ. The disaster 

severity and the optimal rescue time of every disaster area 

are shown in Table Ⅴ and Table Ⅵ.  

B.Case solving  

Through many tests, we find that the solving efficiency of 
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the model and the stability of the solution are the best when 

the initial swarm is set to 100, both the frequency of 

evolution within a group and global iterations in the first 

scheduling stage are 15, the frequency of evolution within a 

group and global iterations in the rescheduling stage are 13, 

and the maximum adjustment step size for both scheduling 

and rescheduling is 2. Therefore, the above parameters in 

this case are introduced to the model, and MATLAB is used 

to solve this case. The iterative graph of the algorithm is 

shown in Fig. 5, and the optimal solution, namely the optimal 

scheme of ERWS is shown in Fig. 6. 

TABLE Ⅱ 

DEMAND OF DIFFERENT DISASTER AREAS FOR EMERGENCY RESCUE WORKERS  

jA  jd  0

jQ  

A1 46 10 

A2 57 13 

A3 60 15 

A4 53 12 

A5 57 13 

A6 41 10 

TABLE Ⅲ 

 THE NUMBER OF EMERGENCY RESCUE WORKERS CAN BE SCHEDULED  

AND COMPETENCIES OF RESCUE TEAMS 

iB  
ikP  ik  iku  

1B  

P11 12 0. 223 

P12 20 0. 335 

P13 10 0. 214 

P14 15 0. 228 

2B  

P21 14 0. 431 

P22 13 0. 344 

P23 18 0. 225 

3B  

P31 15 0. 118 

P32 15 0. 104 

P33 12 0. 189 

P34 10 0. 305 

P35 20 0. 284 

4B  

P41 13 0. 134 

P42 10 0. 275 

P43 16 0. 296 

P44 15 0. 102 

P45 11 0. 193 

 

TABLE Ⅳ 

EMERGENCY RESPONDING TIME FOR DIFFERENT DISASTER AREAS 

iB  
ijt

 

A1 A2 A3 A4 A5 A6 

B1 17 14 19 17 11 20 

B2 12 13 10 17 18 11 

B3 20 14 13 14 19 13 

B4 17 19 12 20 13 18 

TABLE Ⅴ  

SEVERITY OF DISASTER SITUATION IN DIFFERENT DISASTER AREAS 

item A1 A2 A3 A4 A5 A6 

j  0. 151 0. 109 0. 233 0. 167 0. 147 0. 193 

TABLE Ⅵ 

OPTIMAL RESCUE TIME FOR DIFFERENT DISASTER AREAS 

item A1 A2 A3 A4 A5 A6 

j  15 19 13 14 18 13 

 

 
Fig. 5. Algorithm iteration diagram 

 
Fig. 6. Scheduling scheme of emergency rescue team 

During the period of emergency rescue, decision-makers 

have high requirements for efficiency on obtaining optimal 

scheme of ERWS. It can be seen from Fig. 5 that the 

convergence rate of SFLA is very fast, and the results have 

basically converged at the completion of 6th iteration. 

Therefore, SFLA is more suitable for the solution of scheme 

for ERWS. 

The number 6 on the Y-axis of Fig. 6 divides the 

scheduling of the emergency rescue team into two stages. 1-6 

denotes the first scheduling scheme of the emergency rescue 

team with incomplete disaster information, and 7-12 denotes 

the rescheduling scheme of the emergency rescue team in the 

case of more complete disaster information. It should be 

noted that the rescue objects in the rescheduling are the same 

as that in the first scheduling.  

The scheduling scheme of the emergency rescue team on 

the upper level (scheduling) is shown in Table Ⅶ, and the 
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scheduling scheme of the emergency rescue team on the 

lower level (rescheduling) is shown in Table Ⅷ.   

TABLE Ⅶ 

 UPPER-LEVEL SCHEDULING SCHEME 

jA  ikP  jR  

A1 P43 16 

A2 P21 14 

A3 P22+P34+P42 45 

A4 P11 12 

A5 P12+P14 35 

A6 P35 20 

TABLE Ⅷ 

LOWER-LEVEL SCHEDULING SCHEME 

jA  ikP  jZ  

A1 P23+P44 33 

A2 P13 10 

A3 P33 12 

A4 P31+P32 30 

A5 P45 11 

A6 P41 13 

From Table Ⅴ and Table Ⅵ, we can find that there is a 

negative correlation between the optimal rescue time of the 

disaster area and the severity of the disaster situation. For 

example, the worst-hit disaster area 3A has the shortest 

optimal rescue time. In addition, we can find that the disaster 

area 3A has the greatest demand for emergency rescue 

workers from Table Ⅱ. Therefore, the number of emergency 

rescue workers obtained by disaster area 3A is the most in the 

first scheduling stage. Although the information of the 

disaster situation is more comprehensive in the rescheduling 

stage, the number of emergency rescue workers is still in 

shortage. Therefore, there must be a competition for limited 

emergency rescue workers among the 6 disaster areas, which 

can be seen from Table Ⅶ and Table Ⅷ. Finally, we can 

find that the number of emergency rescue workers obtained 

by every disaster area is still lower than their needs. 

Obviously, such a scheme of ERWS is more realistic. 

 
Fig. 10. Optimal scheduling scheme 

Through the simulation analysis, we find that the benefits 

of the scheme are the greatest when = =0.88 =0.5  ， . The 

optimal scheme of ERWS is shown in Fig. 10, and the total 

benefits corresponding to the optimal scheme 

is 1 0.0247 40.486totalF   , thereinto, the upper benefits 

is 168.998F  , the lower benefits is 53.314f  . 

C.Parametric analysis in prospect theory 

To quantify the psychological changes that victims 

undergo in the process of ERWS, the prospect theory is 

introduced to the lower level model. As players in the game, 

the subjective reactions of decision-makers are mainly 

influenced by the parameter in the value function. This 

section focuses on the influence of the subjective reactions of 

decision-makers based on the total revenue that caused by 

the parameter values in the prospect theory. The influences 

of and  on the total revenue are shown in Fig. 7. 

 

Fig. 7. Influences of and  on total revenue 

 From Fig. 7, we can find that the larger the value of , 

the higher the total revenue. In other words, the 

decision-maker is more inclined to risk seeking 

as and  increase. The influences of and on the total 

revenue are shown in Fig. 8.  

 

Fig. 8. Influences of and on total revenue 

From Fig. 8, we can find that  more considerably 

influences the total revenue than . When 0.88  , the 

decision-maker is more inclined to risk seeking. To the 

contrary, when 0.88  , the tendency is more on risk 

aversion, and the inclination shifts to the opposite tendency 

only when  0.4,0.6 . The influences of  and on the 

total revenue are shown in Fig. 9. 
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Fig. 9. Influence of  and on total revenue 

From Fig. 9, we can find that  influences the total 

revenue more considerably than . The risk aversion is 

evident when 0.88  , whereas the inclination to risk 

seeking is evident when  0.4,0.6 . By analyzing Figs. 8 

and 9, it can be concluded that  and  have greater 

influences on the total revenue than . In other words, the 

subjective reaction of the decision-maker is more sensitive to 

the changes in the values of and  than . 

Based on the aforementioned analysis, it is obvious that 

the decision-maker is more inclined to risk seeking when 

confronted with a scheme with less expected benefits and 

more actual advantages. On the contrary, the decision-maker 

is more inclined to risk aversion when confronted with a 

scheme with more expected advantages and few actual 

benefits. 

D.Convergence performance analysis 

According to the discussion of the local search and global 

search based on the SFLA in Section III, it is noted that 

convergence performance of the scheme is mainly influenced 

by algorithm parameters, such as swarm size. This section 

presents 10 simulation experiments performed for different 

swarm sizes to analyze the influence of swarm size on the 

convergence performance of the scheme for ERWS. The 

simulation results are summarized in Table IX. 

By comparing the convergence rates of schemes with 

different swarm sizes listed in Table IX, it is concluded that 

the convergence rate of the scheme slightly increases with 

the increase in swarm size. However, the swarm size cannot 

increase indefinitely with the limitation of program running 

time. In other words, the swarm size can be increased to 

improve the convergence rate of the scheme when the 

program running time can accommodate it. 

E.Simulation analysis under different decision modes 

To verify the rationality of the proposed model in this 

paper, we compare the results under three different decision 

modes, but considering the same situation. The first mode 

considers the ERWS from leader’s perspective, involving 

maximizing the basic rescue effect without taking into 

account the subjective feelings of victims. The leader’s 

perspective model is defined by Eqs. (1)–(5). The second 

mode considers the ERWS from follower’s perspective, 

involving maximizing the perceived satisfaction of victims. 

The follower’s perspective model considers the objective 

function defined by Eq. (20) subject to the constraints 

imposed by Eqs. (2)–(4) and (21)–(22). Notice that Eqs. 

(6)–(19) are the formation processes of the objective 

function. The first two modes consider the ERWS from the 

perspectives of different decision-makers and ignoring the 

extreme situations that can occur in a single-perspective 

situation. The third mode considers the ERWS from 

leader–follower perspective, which is defined as a bi-level 

model. Both decision-makers (leader and follower) are taken 

into account to identify the optimal schemes in the proposed 

bi-level model, thereby avoiding the occurrence of extreme 

cases in a single perspective. 
The simulation results considering certain factors under 

the three different perspectives are summarized in Table X. 

The objective function of the upper and lower models are 

denoted by F(x, y) and f(x, y), respectively, and the running 

time of the program is represented by T. 

TABLE IX  

CONVERGENCE PERFORMANCE OF SCHEME WITH DIFFERENT SWARM SIZES 

No. 

Swarm size-50 Swarm size-100 Swarm size-150 

Iterations T/s Iterations T/s Iterations T/s 

1 9 4.813 7 33.271 4 96.589 

2 11 5.121 8 33.349 3 88.364 

3 8 3.279 6 28.358 4 92.175 

4 9 3.826 6 27.736 4 91.434 

5 10 4.797 7 29.121 4 91.106 

6 9 4.115 5 24.790 5 94.897 

7 9 3.782 6 27.556 3 92.316 

8 7 3.011 4 24.293 4 92.721 

9 10 4.052 6 26.861 6 94.899 

10 9 3.997 5 26.319 4 92.394 

AVG 9 4.793 6 28.165 4 92.689 

TABLE X 

RESULTS CONSIDERING CERTAIN FACTORS UNDER THREE DIFFERENT 

PERSPECTIVES 

 F(x, y) f(x, y) T/s 

Leader’s perspective 184.843 50.122 0.227 

Follower’s perspective  149.873 59.027 0.491 

Leader–follower perspective 168.998 53.314 27.556 

The simulation results listed in Table X are obtained 

according to the initial parameter values. As seen from Table 

X, leader bi level followerF F F  , follower bi level leaderf f f  , and 

bi level follower leaderT T T   . The results indicate that (1) the 

single-level model from leader’s perspective obtains the 

ERWS scheme with the largest basic rescue effects in least 

time, however, the perceived satisfaction of the victims is the 

lowest among the three perspectives. (2) The ERWS scheme 

obtained by the single-model from follower’s perspective has 

higher perceived victim satisfaction than others, however, 

the basic rescue effect is the worst. Moreover, the solution 

speed is slightly lower than that of the leader. Evidently, both 
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of these solutions are extremes. (3) The solution derived by 

the bi-level model from the leader–follower perspective, 

which takes into account the goals of both decision-makers, 

is evidently neutral. Therefore, the scheme from this 

perspective can afford further emergency decision-making 

reference for decision-makers.  

To show the advantages of the proposed model in this 

paper, the growth rate formula proposed in [31] is introduced 

to calculate the percentage of decrease in the three schemes 

with different perspectives against the optimal scheme and 

the percentage of increase yielded by the bi-level model, the 

results are summarized in Tables XI and XII, respectively.   

The growth rate formula is given as follows: 

   

 

  
% 

 

Current value Best value
increase

Best value


      (25) 

Two comparisons are listed in Table XI. First, the basic 

rescue effects from the other two perspectives are compared  

with that from the leader’s perspective. Second, by 

considering the perceived satisfaction of victims from the 

follower’s perspective as the highest, the perceived 

satisfaction of the victims from other perspectives is 

compared with that from the follower’s perspective. 

As Table XII shows, the basic rescue effect increases by 

68.548% by selecting the bi-level model instead of the 

single-level model from the leader's perspective. Further, by 

selecting the bi-level model instead of the single-level model 

from the follower’s perspective, the perceived satisfaction of 

the victims also increases by 10.716%. Compared with the 

percentage of decrease in Table ⅩI, the increase is clearly 

more significant than the decrease. Based on the foregoing 

analysis, the scheduling scheme for emergency rescue 

workers obtained in this study, takes into account the 

perceived satisfaction of the victims while ensuring a 

satisfactory basic rescue effect. 

Considering the organization of the table layout, “basic 

rescue effect” is replaced by “E”, and “perceived satisfaction 

of the victims” by “S”.

  
TABLE ⅩI  

PERCENTAGE OF DECREASE IN SCHEMES WITH DIFFERENT PERSPECTIVES 

VERSUS OPTIMAL SCHEME 

 Decrease in E (%) Decrease in S (%) 

Leader’s perspective − 15.086 

Follower’s perspective 18.919 − 

Leader–follower perspective 8.572 9.679 

TABLE XII 

PERCENTAGE OF INCREASE PROVIDED BY BI-LEVEL MODEL 

 Increase in E (%) Increase in S (%) 

Leader’s perspective 68.548 −5.987 

Follower’s perspective −11.317 10.716 

Leader–follower perspective − − 

V.CONCLUSIONS 

This study focuses on the problem of the ERWS in the 

initial stage of the emergency rescue process. A bi-level 

game scheduling model is formulated for emergency rescue 

workers under the condition of limited rationality to 

maximize the basic rescue effect and the perceived 

satisfaction of the victims. The simulation results show that 

the scheme proposed for the ERWS in this paper takes into 

account both the perceived satisfaction of the victims and 

satisfactory basic rescue effect, which is superior to the 

schemes in the other two decision modes. The proposed 

scheme also has satisfactory convergence performance and 

may be applied to the problem of the ERWS at different 

scales. For future work, we will consider the influence of 

dynamic changes in requirements on the ERWS for further 

investigation. 
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