
 

  
Abstract—To solve the problems of the waste of resources 

caused by the small explosion amplitude (even close to 0) of the 
best firework in the conventional fireworks algorithm (FWA), 
and the relatively weak local search ability caused by the 
minimal explosion amplitude check method in the enhanced 
fireworks algorithm (EFWA), this paper proposes two improved 
strategies for FWA. First, based on the heuristic information of 
the distance between the best firework and other fireworks, an 
adaptive explosion amplitude strategy is proposed to search the 
local area accurately at the final phase of the FWA. Second, the 
highly random Lévy flight strategy is adopted instead of the 
Gaussian sparks strategy to generate mutation sparks in the 
EFWA to enhance the diversity of local search. Simulation 
results on 12 standard benchmark functions and their shifted 
functions indicate that the proposed algorithm improves the 
optimization precision and obtains better performance in 
high-dimensional complex optimization problems compared 
with the EFWA, the hybrid fireworks algorithm with 
differential evolution operator (FWADE), and the particle 
swarm optimization algorithm (PSO). 
 

Index Terms—enhanced fireworks algorithm, fireworks 
algorithm, adaptive explosion amplitude, Lévy flight  
 

I. INTRODUCTION 
LOBAL optimization problems are common in 

engineering and other fields. Owing to the complexity of 
search space and the existence of multiple local optimal 
values, global optimization problems are often difficult to 
solve, especially for high-dimensional optimization problems. 
Therefore, in the past 10 years, researchers have proposed a 
series of metaheuristic algorithms based on physical 
phenomena, natural laws or biological populations to solve 
the global optimization problems and have achieved good 
results [1-3].  
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In the fireworks algorithm (FWA), a novel metaheuristic 

algorithm proposed by Tan and Zhu in 2010 [4], a firework is 
regarded as a solution to optimization problems around the 
feasible range and the process of fireworks exploding can be 
regarded as the process of finding the optimal solution. After 
the explosion, the fireworks or sparks are obtained and 
evaluated. The best individual in the population is kept and 
the rest of the individuals are selected by certain strategies for 
the next generation. The algorithm stops when the optimal 
solution is found [5]. The explosion amplitude and the 
number of sparks are the two key parameters that determine 
the performance of FWA, the values of which are taken 
according to the following rules: fireworks with better fitness 
produce more sparks in a smaller explosion amplitude range, 
while fireworks with worse fitness produce fewer sparks in a 
larger explosion amplitude range. Gaussian mutation is also 
used to ensure diversity of the sparks [6]. 

Many scholars have put forward algorithms to improve 
upon FWA. Zheng et al. summarized the shortcomings of the 
FWA and proposed the enhanced fireworks algorithm 
(EFWA) through five strategies: minimal explosion 
amplitude check strategy, explosion sparks strategy, Gaussian 
sparks strategy, mapping strategy, and selection strategy [7]. 
By combining the cultural algorithm and FWA, Gao et al. 
proposed the cultural firework (CF) algorithm to design a 
digital filter and improved the convergence speed [8]. Zhang 
et al. used three other strategies to improve the performance 
of FWA. The first one was, in order to avoid premature 
convergence, a new Gaussian mutation operator that was used 
to enhance information interaction between sparks. The 
second strategy was, in order to enhance information sharing 
among populations, a migration operator that was applied in 
biogeography-based optimization to generate explosion 
sparks. The third was a new selection strategy for retaining 
better fireworks to the next generation with a higher 
probability [9]. By combining the grey wolf optimizer with 
FWA, a hybrid algorithm, FWA-GWO, was developed in 
[10]. Based on the differential evolution (DE), a hybrid FWA 
with differential evolution operator (FWADE) was proposed 
in [11]. Zhao et al. utilized the development from the previous 
best firework to the current best firework to guide the 
evolution of fireworks and proposed a best firework updating 
information guided adaptive fireworks algorithm [12]. Based 
on dynamic search and tournament selection, Han et al. 
proposed an improved FWA [13]. 

Although these algorithms improve the performance of 
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fireworks algorithms to some extent, all of them adopt either 
the explosion amplitude strategy used in the FWA or the 
minimal explosion amplitude check strategy used in the 
EFWA. However, there are some shortcomings in the 
explosion amplitude strategies adopted in FWA and EFWA. 
In the FWA, the explosion amplitude of a firework with best 
fitness usually is very small, even close to zero, so the 
explosion sparks appear at nearly the same position as the 
optimal firework, causing a waste of resources. Therefore, the 
EFWA introduces the minimal explosion amplitude check 
strategy and obtains a better result. However, the increase or 
decrease of explosion amplitude in the EFWA only depends 
on the number of iterations and the fitness value of fireworks 
and does not take into account the heuristic information in the 
convergence process of the EFWA. As a result, the 
performance of the EFWA is sensitive to a pre-defined 
number of iterations. It is also difficult to reduce the explosion 
amplitude to a very small value in the last stage of the EFWA, 
which results in a weak local search ability. 

To solve these problems, we use the distance between the 
current firework and the optimal firework, the minimum 
explosion radius, and maximum explosion radius to construct 
an adaptive dynamic explosion radius updating strategy. This 
strategy not only solves the problem that some explosion 
amplitude can be close to zero in FWA, but also balances the 
global search and local search capabilities of the FWA. 
Furthermore, to improve the diversity of population and 
global search ability, we replace the Gaussian process used in 
FWA and EFWA with Lévy flight with strong randomness to 
generate mutation sparks in the improved algorithm. Finally, 
the simulation results on 12 benchmark functions and their 
shifted functions show that the proposed algorithm improves 
optimization precision and convergence ability in comparison 
with EFWA, FWADE, and particle swarm optimization 
(PSO). 

The rest of the article is structured as follows. Section II 
introduces the principle of the EFWA and analyzes the 
defects of the EFWA. Section III describes the principle of 
the proposed improved enhanced fireworks algorithm. 
Section IV gives the simulation results. Section V summarizes 
the main findings of this study. 

II. PRINCIPLE OF THE EFWA 

A. Explosion Sparks Strategy 
The explosion sparks strategy simulates the process of 

fireworks explosion in the EFWA. To ensure diversity of 
population and balance the global and local searching abilities, 
the EFWA incorporates an automatic procedure, that is, 
fireworks with better fitness have smaller explosion 
amplitudes and generate more explosion sparks than those 
with less fitness. Suppose that the number of fireworks 
is N and the number of dimensions is d , the number of 
explosion sparks is and the explosion amplitude iA  for each 
firework ix  can be defined as: 
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where M is a constant to control the number of explosion 
sparks and A  is also a constant to control the explosion 
amplitude, ( )if x is the fitness of firework ix , 

( )( )maxmax if f= x and ( )( ) minmin if f= x are the fitness of 

the worst firework and the best firework, respectively, in the 
current population for minimization problems. θ  is the 
minimum constant of the computer. 

To avoid the problem of wasting resources caused by the 
explosion amplitude of the best firework approaching zero, 
the EFWA algorithm introduces the minimal explosion 
amplitude check strategy to limit the minimum of the 
explosion amplitude, which can be written as: 
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where initA and finalA are the initial and final explosion 

amplitude, respectively. maxt is the maximum number of 
function evaluations, and t is the current number of function 
evaluations. 

Once we obtain the explosion amplitude from (2) and (3), 
the new sparks can be generated by: 

 
( )1,1k

i iA rand∆ = ⋅ −                                 (5) 
k k k
i i ix x= + ∆                                         (6) 

 
where k

ix is the value of the ith firework in dimension k , and 

( )1,1rand −  is a random vector in [-1, +1]. 

B. Mapping Strategy 
When a new spark position exceeds the search range, the 

new spark will be re-mapped to the feasible space by: 
 

 ( )min max min(0,1)k k k k
ix x rand x x= + ⋅ −            (7) 

 
where min

kx and max
kx stand for the lower and upper boundary 

of the solution space in dimension k , respectively. 

C. Gaussian Sparks Strategy 
To maintain the diversity of population, the Gaussian 

sparks strategy is adopted to generate mutation sparks. 
Therefore, m̂ fireworks can be selected to generate Gaussian 
sparks as: 

 
 ( )k k k k

i i best ix x x x g= + − ⋅                    (8) 

 
where ( )~ 0,1g N , ˆ(1, 2, , )i m=  , and k

bestx  is the position of 

the current best firework in dimension k . 
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D. Selection Strategy 
Since the selection strategy in FWA is based on distance, it 

is necessary to calculate the distance between any two 
fireworks or sparks. Although the selection operator in FWA 
can increase diversity of population, it leads to more 
calculations. To reduce the amount of calculation, the elitism 
random selection (ERP) method is applied in EFWA, that is, 
the best individual with best fitness is selected first and the 
others are selected randomly. 

III. IMPROVED ENHANCED FIREWORKS ALGORITHM 

A. Adaptive Explosion Amplitude Strategy 
From (2), it can be obtained that a firework with better 

fitness owns smaller explosion amplitude, while a firework 
with less fitness owns larger explosion amplitude, by which 
the FWA achieves the balance of exploration and exploitation. 
Although this idea seems reasonable, the explosion amplitude 
of the firework with the best fitness will usually be very small. 
If the explosion amplitude is close to zero, the explosion 
sparks will be located at nearly the same position as the 
firework itself. As a result, the location of the best fireworks 
may not be updated until another firework finds a better 
location. 

By introducing the minimum radius detection strategy 
shown as (3), the EFWA solves this problem to a certain 
extent. However, this detection strategy also has two 
drawbacks: First, at the final phase of EFWA, small explosion 
amplitude is needed to perform accurate search in the local 
area. However, the explosion amplitude reduction method 
shown as (4) in EFWA makes it difficult to reduce the 
amplitude to a very small value, which will weaken local 
search ability. Second, from (4), it can be known that the 
reduction or amplification of the lower bound of explosion 
amplitude depends only on the iterations number. However, 
the heuristic information in the optimization process is not 
used. 

Therefore, we propose to use distance between the best 
firework and current firework to dynamically update the 
explosion amplitude strategy in order to balance the globe and 
local search capabilities. The adaptive explosion strategy can 
be described as: 

 
( )min max mini iA A A A d= + −                         (9) 
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i best
i

x x
d

d
−

=                                   (10) 

 
where ix is the position of the ith firework, bestx  is the position 
of the current best firework, and maxd is the maximum distance 
between the current best firework and any other fireworks. 
Constants maxA and minA  represent the maximum and 
minimum value of explosion amplitude, respectively. 

The explosion amplitude can be dynamically adjusted by (9) 
and (10). When the position of the firework is far away from 
the current best firework, id will increase, which will generate 
big explosion amplitude to improve global search ability. On 
the contrary, when the position of the firework is close to the 

current best firework, id  will decrease, which will generate 
small explosion amplitude to improve local search ability. 
When the firework is the current best firework, 0id =  
and miniA A= . Thus, the improved enhanced fireworks 
algorithm performs careful search by the smallest explosion 
amplitude near the optimal value to improve local search 
ability and convergence accuracy. 

The values of maxA and minA  can influence the performance 
of the improved EFWA. If maxA is too small, the search 
amplitude at the early phase of algorithm will be small, which 
causes the algorithm convergence too fast and falls into local 
minima. If minA is set too large, the search amplitude at the 
final phase will be large, which directly affects the local 
search ability of the algorithm. Through experiments, it can be 
suggested that: 

 
( )max minmax =0.02A X X⋅ −                      (11) 

( )min max min=0.005A X X⋅ −                   (12) 
 

where maxX and minX refer to the lower and upper bounds of 
the search space, respectively. 

B. Lévy Flight Strategy 
Through Gaussian sparks strategy, FWA is easy to find the 

optimal value at the origin of coordinate. Nevertheless, the 
performance of FWA will be poor when the function is shifted. 
To overcome the disadvantage of Gaussian sparks, EFWA 
uses the position of the current global best individual to 
generate Gaussian sparks. To further improve the diversity of 
population and the optimal performance for the shifted 
function, the Lévy flight function with more randomness is 
adopted instead of Gaussian distribution used in EFWA to 
generate the mutation sparks in the proposed algorithm. 

The Lévy flight with strong randomness comes from Paul 
Lévy, a French mathematician [14]. The Lévy flight is a 
random walk method that combines short distance search and 
occasional long-distance walk. Its step length obeys Lévy 
distribution and its direction obeys uniform distribution. In 
addition to the cuckoo search (CS) algorithm, the Lévy flight 
strategy has been successfully applied to many swarm 
intelligence algorithms [15-16]. It realizes the diversity of 
population and has a better jump ability to avoid local minima. 
The simplified form of Lévy distribution can be described as: 

 

( ) 1~ , 0 2L s s β β− − < ≤                   (13) 
 

where s  is random step length of the Lévy flight. Mantegna’s 
algorithm is often used to simulate the random walk behavior 
in Lévy flight [17]. Random step length can be defined as: 

 

 1s
v β

µ
=                                 (14) 

 
 
where µ and v obey normal distribution, i.e., 
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Fig. 1.  Pseudocode of ALEFWA 
 

2~ (0, )N µµ σ                             (15) 

 
2~ (0, )vv N σ                              (16) 
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and β usually equals 1.5. 
The Lévy explosion sparks can be calculated by: 
 

( )i i i i
k k best kx x x x l= + − ⋅                    (19) 

 
where i

kx  denotes the ith element of xk, and l  is the random 
number in Lévy distribution. 

C. ALEFWA Algorithm 
The EFWA based on adaptive explosion amplitude 

strategy and Lévy flight strategy (ALEFWA) is shown in Fig. 
1. 

IV. EXPERIMENTS 

A. Parameter Setting and Simulation Environment 
The numerical efficiency of the ALEFWA developed in 

this article was tested by 12 benchmark functions used in [5]. 
The same parameters as [5] are used, i.e., N =5, M =50, 
A =40, a =0.04, b =0.8, m̂ =5 for ALEFWA, EFWA [7] and 

FWADE [11]. Three more parameters in ALEFWA, β , 

maxA and minA  can take values as follows: β =1.5, 

maxA and minA  are set as (11) and (12). The scaling factor and 
crossover rate in FWADE are configured with 0.5F =  and 

0.9rC = . Furthermore, PSO uses a linearly decreasing 
weight strategy. The parameters of PSO are as follows: 
maximum inertia factor max 0.9w = , minimum inertia 
factor min 0.2w = , learning factors 1 2 2c c= = , and maximum 
speed max 6V = . The experimental platform is MATLAB 
R2012b, running on 64-bit Windows 7 with a 2.5 GHz Intel 
Core i7-3820QM and 6GB RAM. 

 
 

TABLE I 
   STANDARD BENCHMARK FUNCTIONS 

Algorithm: ALEFWA 
Initialize N fireworks: ix , 1, 2, ...,i N=  

for 1i =  to N  do 
Calculate the fitness of each firework ( )if x  

Calculate the number of explosion sparks is  for each firework by (1) 

Calculate the explosion amplitude iA  for each firework by (9) and (10) 
end for 
 
//For each individual, generate is  sparks within amplitude iA  

for 1i =  to N  do 
ˆ i i=x x  

for j=1 to is  do 

    for each dimension of ˆ ix  do 

if ( round(rand(0,1)) 1= = ) ˆ ( 1,1)k
i ix A rand+ = ⋅ −  

if ( ˆk
ix is out of scope) execute mapping operation by (7) 

        end for 
Incorporate ˆ ix  into the population of explosive sparks 

Calculate fitness of ˆ ix  
end for 

end for 
 
//Generate mutation sparks by the Lévy flight strategy 

Set β = 1.5, calculate µσ  by (17) 

for 1i = to m̂  do 
ˆ ix = randomly select firework 

for each dimension of ˆ ix  

if ( round(rand(0,1)) 1= = ) 

                    Calculate ˆrandn(size( iu µs= ⋅x )) and ˆrandn(size( ))iv = x  

Calculate Lévy distribution / ( ) (1 / )l u abs v b∧=  

Calculate Lévy explosion sparks ˆ ˆ ˆ ˆ( )i i i i
k k best kx x x x l= + − ⋅  

                 end if 
if ( ˆ i

kx is out of scope) execute mapping operation by (7) 
end for 
Incorporate ˆ ix  into the population of explosive sparks 

Calculate fitness of ˆ ix  
end for 
 
//Selection 
Keep the best individual and randomly select ( 1)N − individuals for next 
generation 

No. Function Name Search Range Optimal Positions Fitness at the Optimal Position Dimension 

F1 Sphere [±100] 0.0D 0 30 
F2 Schwefel’s Problem 1.2 [±100] 0.0D 0 30 
F3 Generalized Rosenbrock [±30] 1.0D 0 30 
F4 Ackley [±32] 0.0D 0 30 
F5 Generalized Griewank [±600] 

[±5.12] 
0.0D 0 30 

F6 Generalized Rastrigin 0.0D 0 30 
F7 Penalized function P16 [±50] 1.0D 0 30 
F8 Six-hump Camel Back [±5] (-0.09,0.71) (0.09,-0.71) -1.032 2 
F9 Goldsein-Price [±2] (0,-1) 3 2 
F10 Schaffer F6 [±100] 0.0D 0 2 
F11 Axis Parallel Hyper Ellipsoid [±5.12] 0.0D 0 30 
F12 Rotated Hyper Ellipsoid [±65.5] 0.0D 0 30 
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TABLE II 
  SHIFTED INDEX (SI) AND SHIFTED VALUE (SV) 

SI 1 2 3 4 5 6 

SV a0.05 ( / 2)k× ∆  0.1 ( / 2)k× ∆  0.2 ( / 2)k× ∆  0.3 ( / 2)k× ∆  0.5 ( / 2)k× ∆  0.7 ( / 2)k× ∆  
 a

max min
k k kx x∆ = −  

TABLE III    
STATISTICAL RESULTS OF FUNCTIONS 1-6 

SI Alg. 
F1  F2   F3  F4  F5  F6 

Ave Std  Ave Std  Ave Std  Ave Std  Ave Std  Ave Std 

0 

PSO 3.21E-2 2.1E-3  3.21E+0 5.3E-1  7.64E-1 2.3E-2  2.75E+0 7.0E-1  9.80E-1 6.3E-2  1.21E+2 6.5E+1 

EFWA 5.57E-2 3.2E-3  4.28E-1 2.1E-1  3.03E+0 3.1E-1  4.14E+0 8.3E-1  1.67E-1 5.6E-2  1.14E+2 5.6E+1 

FWADE 2.38E-2 5.1E-3  1.92E-1 5.3E-2  6.55E-1 8.5E-1  3.76E+0 2.6E+0  5.61E-2 2.3E-2  2.13E+1 5.6E+0 

ALEFWA 2.38E-2 2.3E-3  1.92E-1 3.4E-2  5.34E-1 3.4E-1  1.21E-1 6.7E-2  3.43E-2 7.8E-3  1.23E+0 4.8E-1 

1 

PSO 3.32E-2 2.5E-2  3.51E+0 5.6E-1  8.62E-1 6.7E-2  3.54E+0 5.2E-1  8.62E-2 3.2E-2  1.46E+2 3.6E+1 

EFWA 5.94E-2 3.5E-2  3.40E-1 2.3E-2  3.31E+0 5.6E-1  7.51E+0 1.1E+0  1.19E-1 6.2E-2  1.34E+2 6.5E+1 

FWADE 2.59E-2 2.3E-2  2.12E-1 3.2E-2  7.87E-1 4.6E-1  4.97E+0 1.3E+0  3.87E-2 2.6E-2  1.59E+1 9.8E+0 

ALEFWA 2.32E-2 2.5E-2  1.93E-1 2.1E-2  7.02E-1 3.5E-1  4.50E-1 7.6E-2  3.45E-2 9.8E-3  2.31E+0 5.6E-1 

2 

PSO 3.69E-2 2.3E-2  3.81E+0 2.3E-1  8.96E-1 1.2E-2  3.78E+0 6.2E-1  8.60E-2 4.2E-2  1.23E+2 6.5E+1 

EFWA 9.42E-2 4.5E-2  2.74E+0 7.5E-2  3.68E+0 9.8E-1  7.93E+0 2.6E+0  9.93E-2 1.2E-2  1.08E+2 7.8E+1 

FWADE 2.97E-2 8.6E-3  2.65E-1 5.6E-2  8.19E-1 6.5E-1  5.28E+0 2.3E+0  5.98E-2 4.2E-2  1.11E+1 5.6E+0 

ALEFWA 2.67E-2 6.7E-3  2.03E-1 3.4E-2  7.45E-1 2.3E-2  5.61E-1 7.8E-2  4.56E-2 3.2E-2  3.51E+0 6.7E-1 

3 

PSO 4.12E-2 2.5E-2  3.91E+0 5.3E-1  9.21E-1 2.3E-2  4.51E+0 6.2E-1  8.9E-2 2.4E-2  8.60E+1 3.6E+0 

EFWA 8.00E-2 4.3E-2  2.57E+1 3.6E-2  4.35E+0 4.7E-1  9.03E+0 2.6E+0  1.31E-1 4.6E-2  9.66E+1 6.5E+0 

FWADE 3.08E-2 2.4E-2  2.16E-1 2.3E-3  9.44E-1 6.5E-1  5.99E+0 1.3E+0  5.46E-2 1.2E-2  1.30E+1 4.6E+0 

ALEFWA 2.78E-2 2.1E-2  2.23E-1 2.3E-3  8.65E-1 1.7E-1  5.80E-1 6.5E-2  4.82E-2 6.3E-2  4.34E+0 7.8E-1 

4 

PSO 3.98E-2 2.7E-2  3.61E+0 5.6E-2  1.02E+0 2.3E-1  5.23E+0 1.5E+0  7.80E-1 2.3E-2  8.46E+1 6.4E+0 

EFWA 8.47E-2 3.5E-2  4.31E+1 3.2E-2  5.17E+0 8.9E-1  1.12E+1 4.6E+0  1.68E-1 6.3E-2  7.46E+1 7.8E+0 

FWADE 2.90E-2 1.2E-2  2.27E-1 5.3E-2  9.54E-1 4.5E-1  6.52E+0 1.3E+0  7.07E-2 4.3E-3  1.60E+1 2.3E+0 

ALEFWA 3.03E-2 1.1E-2  2.32E-1 4.3E-2  8.34E-1 3.6E-2  6.40E-1 5.6E-2  5.63E-2 1.4E-2  5.62E+0 8.9E-1 

5 

PSO 4.01E-2 3.2E-2  4.81E+0 2.3E-1  1.53E+0 8.9E-2  1.11E+1 4.2E+0  9.80E-1 4.3E-3  1.02E+2 5.6E+1 

EFWA 9.41E-2 5.2E-2  2.99E+0 3.2E-2  5.30E+0 5.6E-1  1.15E+1 5.6E+0  1.05E-1 1.2E-2  1.21E+2 3.6E+1 

FWADE 3.20E-2 2.3E-2  2.82E-1 1.2E-2  1.43E+0 7.8E-2  7.03E+0 1.5E+0  8.85E-2 4.2E-2  1.10E+1 6.3E+0 

ALEFWA 3.03E-2 2.1E-2  2.34E-1 2.1E-2  1.12E+0 2.3E-1  6.90E-1 3.2E-2  7.82E-2 6.7E-3  5.64E+0 1.0E+0 

6 

PSO 4.02E-2 3.5E-2  4.91E+0 2.3E-1  1.43E+0 5.6E-1  1.34E+1 3.5E+0  9.80E-1 4.5E-2  1.45E+2 1.2E+1 

EFWA 7.95E-2 4.2E-2  3.13E-1 5.6E-2  5.53E+0 1.6E+0  1.25E+1 5.6E+0  2.55E-1 5.6E-2  1.75E+2 4.6E+1 

FWADE 2.81E-2 3.2E-2  1.44E-1 3.4E-2  2.91E+0 1.5E+0  7.32E+0 2.2E+0  2.23E-1 1.2E-2  9.99E+0 5.6E+0 

ALEFWA 2.98E-2 3.4E-2  2.34E-1 2.3E-2  1.19E+0 6.7E-2  9.20E-1 1.1E-2  2.34E-2 3.4E-3  5.67E+0 1.2E+0 

 
Table I lists the numbers, names, search range, optimal 

positions, fitness at the optimal position, and dimensions of 
12 standard functions. These functions consist of unimodal 
and multimodal functions. The functions F1-F5 are unimodal 
because they have only one global optimum, and allow 
evaluating the exploitation capability of optimization 
algorithms. The functions F6-F12 are multimodal. They have 
many local optima, and the number of local optima increases 
exponentially with increasing the problem size. Therefore, 
they are highly useful in evaluating the exploration capability 
of optimization algorithms. To test the performance of 
ALEFWA for those functions whose optimums are not 
located at the original point, a number of shifted values are 
added to the benchmark functions. The shifted index (SI) and 
shifted value (SV) are shown in Table II, 

where max
kx and min

kx represent the maximum and minimum 
boundaries for search range, respectively.  

B. Analysis of Simulation Results 
The selected 12 benchmark functions and 6 shifted 

benchmark functions were evaluated 5000 times on the PSO, 
EFWA, FWADE, and ALEFWA. Each function was run 30 
times and the mean value and standard deviation of the best 
fitness so far were taken. The final results are presented in 
Tables III and IV. 

From these tables, one can draw several conclusions. PSO 
usually obtains better results than EFWA for small SI. As SI 
increases, the performance of PSO decreases rapidly, and the 
performance of EFWA, FWADE, and ALEFWA deteriorate 
relatively slower than that of PSO. The average best fitness of 
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ALEFWA remains almost unaffected even if the optimum of 
the function is shifted to the edge of the search space. As a 
result, EFWA, FWADE, and ALEFWA obtain better results 

than PSO for large SI. It is worth noting that ALEFWA is 
always significantly better than EFWA, FWADE, and PSO, 
regardless of SI. 

 
TABLE IV 

  AVERAGE BEST FITNESS OF FUNCTIONS 7-12 

SI Alg. 
F7  F8  F9  F10  F11  F12 

Ave Std  Ave Std  Ave Std  Ave Std  Ave Std  Ave Std 

0 

PSO 6.61E-4 2.3E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  3.89E-3 4.9E-3  1.75E-3 2.3E-4  2.31E-1 5.6E-2 

EFWA 3.13E-3 5.6E-4  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  3.89E-3 4.9 E-3  2.75E-3 1.2E-4  4.45E-1 7.8E-2 

FWADE 6.41E-4 7.9E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  2.91E-3 4.6 E-3  9.35E-4 6.3E-5  1.47E-1 3.2E-2 

ALEFWA 5.43E-4 3.4E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.62E-4 3.6E-4  3.45E-4 4.3E-5  4.75E-2 2.4E-3 

1 

PSO 4.61E-4 4.6E-5  -1.03E+0 0.0E+0  3.00E+0 2.10E-3  2.91E-3 4.6E-3  1.21E-3 4.6E-4  2.31E-1 3.2E-2 

EFWA 0.00E+0 0.0E+0  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  4.38E-3 2.3 E-3  2.73E-3 6.3E-4  5.40E-1 5.2E-2 

FWADE 6.12E-4 5.6E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  3.89E-3 4.9 E-3  3.17E-4 3.6E-5  1.06E-1 2.3E-2 

ALEFWA 6,45E-4 6.3E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  6.52E-4 3.2E-4  4.35E-4 4.2E-5  5.67E-2 3.4E-3 

2 

PSO 0.00E+0 0.0E+0  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.83E-3 6.9E-3  1.12E-3 3.6E-4  3.61E-1 3.6E-2 

EFWA 1.62E-3 2.3E-4  -1.03E+0 0.0E+0  3.00E+0 3.2E-3  2.92E-3 1.6 E-3  2.97E-3 4.6E-4  4.36E-1 6.3E-2 

FWADE 8.17E-4 5.6E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  3.89E-3 4.9 E-3  1.05E-3 6.3E-4  1.09E-1 3.6E-2 

ALEFWA 6.78E-4 5.9E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  6.83E-4 4.5E-4  5.67E-4 5.6E-5  6.32E-2 5.6E-3 

3 

PSO 9.21E-4 6.5E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  4.37E-3 3.6E-3  2.32E-3 1.0E-3  3.56E-1 6.3E-2 

EFWA 1.43E-2 4.6E-3  -1.03E+0 0.0E+0  3.00E+0 3.2E-3  2.92E-3 4.6 E-3  3.11E-3 1.1E-3  4.66E-1 2.3E-2 

FWADE 8.46E-4 6.9E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  2.92E-3 4.6 E-3  7.84E-4 6.3E-5  1.49E-1 5.3E-2 

ALEFWA 7.82E-4 7.8E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  7.23E-4 6.3E-4  6.34E-4 6.7E-5  7.45E-2 7.3E-3 

4 

PSO 1.29E-3 5.6E-4  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.83E-3 4.9E-3  5.23E-3 8.9E-4  6.21E-1 1.2E-1 

EFWA 1.39E-2 6.3E-3  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  3.89E-3 4.9 E-3  3.13E-3 5.6E-4  4.07E-1 1.6E-2 

FWADE 8.07E-4 6.4E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  2.92E-3 4.6 E-3  9.04E-4 1.3E-4  1.69E-1 2.3E-2 

ALEFWA 7.98E-4 5.6E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  8.42E-4 7.8E-4  8.79E-4 7.8E-5  7.62E-2 6.7E-3 

5 

PSO 1.35E-3 5.7E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  4.86E-3 5.0E-3  6.31E-3 1.2E-3  7.81E-1 3.6E-2 

EFWA 2.61E-3 6.3E-4  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.34E-3 2.3 E-3  5.37E-3 1.02E-3  4.52E-1 4.3E-2 

FWADE 9.87E-4 4.5E-5  -1.03E+0 0.0E+0  3.00E+0 1.1E-3  2.43E-3 4.3 E-3  5.15E-3 1.02E-4  1.74E-1 4.2E-2 

ALEFWA 8.92E-4 3.4E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  9.22E-4 6.7E-4  9.82E-4 6.5E-5  8.47E-2 4.5E-3 

6 

PSO 4.67E-3 5.6E-4  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  4.86E-3 5.0E-3  5.61E-3 2.3E-3  6.31E-1 2.3E-2 

EFWA 2.41E-3 6.3E-4  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.40E-3 4.8 E-3  2.71E-3 1.03E-3  4.12E-1 6.3E-2 

FWADE 1.88E-3 8.6E-5  -1.03E+0 0.0E+0  3.00E+0 2.1E-3  4.38E-3 3.2 E-3  7.48E-3 2.3E-4  8.78E-2 6.3E-3 

ALEFWA 9,98E-4 3.4E-5  -1.03E+0 0.0E+0  3.00E+0 0.0E+0  5.38E-3 4.2 E-3  9.98E-4 3.4E-5  9.47E-2 8.9E-3 

 

 
(a) EFWA 

 
(b) ALEFWA 

Fig. 2.  Convergence curves of the EFWA and ALEFWA for F2 
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(a) EFWA 

 

 
(b) ALEFWA 

Fig. 3.  Convergence curves of the EFWA and ALEFWA for F4 
 

The convergence curves of EFWA and ALEFWA on 
functions F2, F4, and F5 are shown in Figs. 2–4, which show 
the convergence speeds of ALEFWA and EFWA for different 
SI. It can be seen from these three figures that the 
convergence speeds of EFWA and ALEFWA decline as the 
shifted value of the bench function increases, while the 
convergence speed and optimization accuracy of ALEFWA 
are better than those of EFWA. For function F4, the 
convergence performance of EFWA decreases sharply with 
the increase of the shifted value of bench function, while the 
convergence speed and accuracy of ALEFWA remain 
relatively stable. 

ALEFWA has high optimization precision and local search 
ability, probably because that at the final phase of the 
algorithm, its explosion amplitude reduction mechanism can 
reduce the amplitude to a very small value to perform accurate 
search in the local area, and the Lévy flight strategy gives 
ALEFWA better jumping ability to enhances the diversity of 
population. 

Fig. 5 shows that the convergence curves of PSO, EFWA, 
FWADE, and ALEFWA on the 12 benchmark functions (SI = 
4) averaged over 30 independent runs. 

As shown in Fig. 5, the convergence performance of 
ALEFWA is better than that of PSO, EFWA, and FWADE. 

The main reason for the improvement of convergence 
performance in ALEFWA is because the search process in 
ALEFWA considers the heuristic information in the 
optimization process and adjusts the explosion amplitude 
dynamically, which can balance the local search and global 
search abilities. 
 

 
(a) EFWA 

 

 
(b) ALEFWA 

Fig.4.  Convergence curves of the EFWA and ALEFWA for F5 
 
 

V. CONCLUSION 
A novel adaptive explosion amplitude strategy is proposed 

to balance the local search and global search abilities of the 
EFWA, which can eliminate the waste of resources in FWA 
through the heuristic information in the optimization process. 
Furthermore, the Lévy flight strategy is introduced to 
calculate the positions of mutation sparks in order to enhance 
the diversity of population. Results of simulations on 12 
benchmark functions and their shifted functions show that 
ALEFWA not only improves optimization precision, but it 
also achieves stable results for the shifted benchmark 
functions. ALEFWA also gains better convergence 
performance in solving high-dimensional complex 
optimization problems. 
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(a) Function F1 

 
 
 

 
(b) Function F2 

 
 
 

 
(c) Function F3 

 
 
 
 

 
 

 
(d) Function F4 

 
 
 

 
(e) Function F5 

 
 
 

 
(f) Function F6 
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(g) Function F7 

 
 

 
(h) Function F8 

 
 
 

 
(i) Function F9 

 
 
 
 
 

 
 

 
(j) Function F10 

 
 

 
(k) Function F11 

 
 
 

 
 

(l) Function F12 
Fig. 5.  Results of simulation of ALEFWA, FWADE, EFWA, and PSO 
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