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Abstract—We propose mathematical model of HIV/AIDS
with two different stages of infection subpopulation. The pro-
posed model is more realistic since it establishes the compart-
ment diagram based on data from the Indonesian Ministry of
Health. The model consists of six compartments (susceptible,
infected with and without treatment, AIDS, treatment, and
recovered sub populations). We analyzed the model by proving
the positivity and boundedness of the models solutions. Fur-
thermore, we analyzed local and global stability of the solutions
determined by the basic reproduction number as a threshold of
disease transmission. The disease-free and endemic equilibrium
points are locally asymptotically stable when R0 < 1 and
R0 > 1 respectively. For global stability, we constructed
the Lyapunov function. The results indicate that the disease-
free equilibrium point is globally asymptotically stable when
R0 < 1 and that the endemic equilibrium point is globally
asymptotically stable when R0 > 1. We conducted numerical
simulation to support the analytical results.

Index Terms—dynamical system; HIV/AIDS; different stages;
stability analysis.

I. INTRODUCTION

A IDS (Acquired Immune Deficiency Syndrome) is a dis-
ease caused by human immunodeficiency virus (HIV)

that has the ability to suppress T-cells in the body which
functions to fight against infections. The cells are important
part of the body-immune system. AIDS becomes a major
problem in the world because people infected with HIV
are prone to various diseases which might lead to death.
Some countries have attempted to reduce the growth rate of
AIDS disease by implementing infection control programs
including the use of condoms and sterile syringes.

Mathematical models have significantly contributed to the
understanding of the spread of HIV infection. In 2009, Cai
et al. conducted a dynamic analysis of HIV / AIDS epidemic
models with treatment [13]. The population was divided into
four compartments namely susceptible (S), HIV infected
(I), AIDS (A) and symptomatic (J) subpopulations. The
symptomatic sub population was considered due to the fact
that the infection period occurs for a long period, i.e more
than 10 years before entering into the AIDS stage. In 2014,
the study was developed by analyzing the dynamic of the
HIV/AIDS model by adding the density of the dependency
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factor for infection which is a function of the total population
[12].

In 2016, Huo et al. formulated the HIV / AIDS epidemic
model with the treatment stated in the SIATR model and by
analyzing the dynamics of the epidemic model. Individuals
in the T compartment received all types of treatment [5].
Unfortunately, the treatment did not completely eliminate
HIV from the individuals body. When the treatment was
successful, it suppressed the virus, even to an undetectable
level. By suppressing the amount of virus in the body, people
infected with HIV can live longer and have healthier lives.
However, they can still transmit the virus and must take
antiretroviral drugs continuously in order to maintain the
quality of their health. The results of Huo et al’s (2016)
study showed an endemic situation.

In 2014, Huo and Chen conducted a dynamic analysis
of the HIV / AIDS epidemic model with different stages
of infection, namely positive individuals infected with HIV
showing symptoms and without symptoms. After treatment,
subpopulations with HIV symptoms will become HIV pos-
itive without symptoms. The analysis result was globally
asymptotically stable for the equilibrium points [12]. Ulfa,
et al. (2018) analyzed the dynamic model of HIV/AIDS
with different stages of susceptible and infection [2] sub-
populations. The susceptible subpopulation was divided into
two, namely susceptible subpopulation that had knowledge
about HIV/AIDS and susceptible individual that did not have
knowledge about HIV/AIDS. The infected subpopulations
were divided into two, the same as in Huo and Chen’s (2014)
model [4]. The results of the analysis were local asymptot-
ically stable with certain conditions for equilibrium points.
Mushayabasa and Bhunu (2011) [20] , divided susceptible
and infected populations into two, non-homosexual and ho-
mosexual susceptible subpopulations, and non-homosexual
and homosexual HIV-infected subpopulations respectively.

In this research, we propose mathematical model of
HIV/AIDS with two different stages of infection subpopula-
tion. The proposed model is more realistic since it establishes
the compartment diagram based on the real data of the
Indonesian Ministry of Health (2019) [11]. It was estimated
that there were 640.633 people with HIV in June 2018.
From those, there were two kinds of infected individuals,
subpopulation who made a report to the health station, about
47% (301.959) and individuals who did not make a report
to the health station, around 53%. From these, we make an
assumption that the individuals who make a report are called
the HIV-positive individuals given treatment an ARV (I1),
and the individuals who do not make a report are called
the HIV-positive not receiving an ARV (I2) treatment. The
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Fig. 1. The compartment diagram of an HIV/AIDS model with two
different stages of infection subpopulation.

model obtained were analyzed dynamically. We prove the
boundedness and positivity of the solutions of the system
[3] [9]. Furthermore, we determined the disease-free and
endemic equilibrium points as the solution of the model, and
the basic reproduction number (R0) [8]. Moreover, we ana-
lyzed the stability of equilibrium points locally and globally
following [1][7][16][18][19][22][23]. The disease-free equi-
librium point is locally asymptotically stable when R0 < 1
and the endemic equilibrium point is locally asymptotically
stable when R0 > 1 .For global stability, we constructed the
Lyapunov function and the results show that the disease-free
equilibrium is globally asymptotically stable when R0 < 1
and the endemic equilibrium is globally asymptotically stable
when R0 > 1 . Numerical simulations were performed using
values of selected parameters to support the results of the
analysis.

II. AN HIV/AIDS MODEL

An HIV/AIDS epidemic model had been modified from
the model of Habibah and Sari (2018) [21] and new infected
subpopulation was added according to real data from The
Indonesian Ministry of Health (2019) [11] to establish the
compartment diagram. The total population is divided into
six compartments: S(t), I1(t), I2(t), A(t), T (t), and R(t).
S(t) represents the number of susceptible individuals; I1(t)
rrepresents the number of HIV-positive individuals consum-
ing ARV so that this subpopulation can survive longer; and
I2(t) represents the number of HIV-positive individuals not
consuming ARV; A(t) represents the number of individuals
with full-blown AIDS not receiving treatment; T (t) repre-
sents the number of individuals receiving ARV treatment;
R(t) represents the number of individuals who change their
sexual habits and maintain the habits for the rest of their
lives.

Based on the compartment diagram Figure 1, we establish
an HIV/AIDS model with two different stages of infected
subpopulation in the form of a system of non linear differ-
ential equations as follows.

Ṡ = Λ− β1SI1 − β2SI2 − aS,
İ1 = β1SI1 + α1T − bI1,
İ2 = β2SI2 − cI2, (1)

Ȧ = k2I2 + α2T − eA,
Ṫ = k1I1 + k3I2 − fT,
Ṙ = µ1S − dR,

with a = µ1 + d, b = k1 + d, c = k2 + k3 + d, e = δ1 + d,
and f = α1 + α2 + δ2 + d. where Λ is recruitment rate of
the population, β1 and β2 are transmission coefficient of the
infection stage I1 and I2 respectively, d is natural mortality
rate, α1 is the proportion of successful treatment, α2 is the
proportion of treatment failure, k1 is progression rate from I1
to T , k2 is progression rate from I2 to A, k3 is progression
rate from I2 to T , δ1 is the disease-related death rate of the
AIDS, δ2 is the disease-related death rate of being treated,
and µ1 is the rate of susceptible individuals who changed
their habits. In Table I, we summarize the parameters and
values used in the simulation.

TABLE I
PARAMETERS AND DESCRIPTIONS FOR SIMULATIONS ARE ADAPTED

FROM HUO et al. (2016)

Parameter Description Value

Λ Recruitment rate 0.55

β1 Transmision coefficient of I1 0.0023

β2 Transmision coefficient of I2 0.0033
α1 The proportion of successful treatment 0.02
α2 The proporsion of treatmen failure 0.05
k1 Progression rate from I1 to T 0.0498
k2 Progression rate from I2 to A 0.008
k3 Progression rate from I2 to T 0.05
µ1 The rate of susceptible individuals 0.03

who changed their habits

III. THE MODEL ANALYSIS

In this section, we analyze the boundedness and positivity
of the solutions, determine the equilibrium points and the
basic reproductions number, and analyze the stability of the
solutions locally and globally.

A. Basic properties

Invariant region: The solution of system (1) with positive
initial value will remain positive for all t > 0, necessarily to
be proved.

Theorem 1. All feasible S(t), I1(t), I2(t), A(t), T (t)
and R(t) of system (1) are bounded by the region D =
{(S, I1, I2, A, T,R) ∈ <6 : S+I1 +I2 +A+T+R ≤ Λ/d}.

Proof: From system equation (1)

Ṅ = Ṡ + İ1 + İ2 + Ȧ+ Ṫ + Ṙ,

= Λ− dN(t)− δ1A− δ2T, (2)

implies that
Ṅ ≤ Λ− dN(t), (3)

Engineering Letters, 29:1, EL_29_1_01

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



and it follows that

N ≤ Λ/d+N(0)e−dt, (4)

where N(0) is the initial value of total sub population. Thus

lim
t→∞

supN(t) ≤ Λ/d, (5)

we end up S+ I1 + I2 +A+T +R ≤ Λ/d. For the analysis
of the model (1), we get the region which is given by the set
D = {(S, I1, I2, A, T,R) ∈ <6 : S+ I1 + I2 +A+T +R ≤
Λ/d} which is a positivity invariant set for system(1). We
need to consider the dynamics of system (1) on the set D
nonnegative of solutions.

B. Positivity of solutions of the model

Theorem 2. If S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0,A(0) ≥ 0,
T (0) ≥ 0, andR(0) ≥ 0, then the solution of system (1) S(t),
I1(t), I2(t), A(t), T (t) and R(t) are positive for all t > 0.

Proof: From the first equation of (1), we have

Ṡ = Λ− β1SI1 − β2SI2 − aS,
= Λ− S[β1I1 − β2I2 − a],

= Λ−Q1(t)S, (6)

where Q1(t) = β1I1 − β2I2 − a. We multiply equation (6)
by e

∫ t
0
Q1(r)dr to yield

dS

dt
e
∫ t
0
Q1(r)dr = {Λ−Q1(t)S(t)}e

∫ t
0
Q1(r)dr, (7)

which implies

dS

dt
e
∫ t
0
Q1(r)dr +Q1(t)S(t)e

∫ t
0
Q1(r)dr = Λe

∫ t
0
Q1(r)dr. (8)

Furthermore, the left hand side of equation (8) can be written
as derivative of S(t)e

∫ t
0
Q1(r)dr with respect to t, to get

d

dt
{S(t)e

∫ t
0
Q1(r)dr} = Λe

∫ t
0
Q1(r)dr, (9)

thus by taking integral with respect to q from 0 to t, we
obtain

S(t)e
∫ t
0
Q1(r)dr − S(0) = Λ{

∫ t

0

e
∫ q
0
Q1(r)drdq}. (10)

We multiply equation (10) by e−
∫ q
0
Q1(r)dr to get

S(t)−S(0)e−
∫ t
0
Q1(r)dr = Λe−

∫ t
0
Q1(r)dr{

∫ t

0

e
∫ q
0
Q1(r)drdq}.

(11)
Finally we get

S(t) = S(0)e−
∫ t
0
Q1(r)dr

+ Λe−
∫ t
0
Q1(r)dr{

∫ t

0

e
∫ q
0
Q1(r)drdq} ≥ 0, (12)

means the solution of system (1) for S(t) is positive.

Similarly for the second up to sixth equations of system
(1), we have

I1(t) = I1(0)e
∫ t
0
Q2(r)dr

+e
∫ t
0
Q2(r)dr{

∫ t

0

α1T (t)e−
∫ q
0
Q2(r)drdq} ≥ 0, (13)

I2(t) = I2(0)eBt ≥ 0, (14)

A(t) = A(0)e−et + e−et
∫ t

0

eetQ3(r)dr ≥ 0, (15)

T (t) = T (0)e−ft + e−ft
∫ t

0

eftQ4(r)dr ≥ 0, (16)

R(t) = R(0)e−dt + e−dt
∫ t

0

edtQ5(r)dr ≥ 0, (17)

where Q2(t) = β1S(t) − b, B = β2S(t) − e, Q3(t) =
k2I2(t) + α2T (t), Q4(t) = k1I1(t) + k3I2(t) and Q5(t) =
µ1S(t). Therefore we can say that S(t) ≥ 0, I1(t) ≥ 0,
I2(t) ≥ 0, A(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 for all t ≥ 0,
and this completes the proof.

Furthermore, we will determine equilibrium points. An
HIV/AIDS model is analyzed by determining equilibrium
points as the constant solutions of the system (1).

C. The equilibrium points and the basic of reproduction
number

The proposed HIV/AIDS model has two equilibrium
points. One is the disease-free equilibrium point (X0) and
the other one is the endemic equilibrium point (X∗). The
equilibrium points are defined by setting the right side of
system (1) equal to zero.

Ṡ = İ1 = İ2 = Ȧ = Ṫ = Ṙ = 0.

The disease-free equilibrium point is X0 =
(S0, I0

1 , I
0
2 , A

0, T 0, R0) = (Λ
a , 0, 0, 0, 0,

µ1Λ
da ). This

equilibrium point means when we have Λ/a as the
number of the susceptible subpopulation with zero the
positive-infected subpopulation with ARV consumption
(I1) and the positive-infected subpopulation without ARV
consumption (I2) yield the full-blown AIDS subpopulation
(A) and treatment subpopulation (T ) are equal zero. It
means there is no infection transmission in the population.

Furthermore, an endemic equilibrium point X∗ is found
when I1 6= 0 and I2 6= 0 such that we get

X∗ = (S∗, I∗1 , I
∗
2 , A

∗, T ∗, R∗),

where

S∗ =
c

β2
,

I∗1 =
α1k3(Λβ2 − ac)

α1k3β1c+ β2bfc− β1fc2 − cα1k1β2
,

I∗2 =
(fβ2b− fβ1c− α1k1β2)

α1k3β2
I∗1 , (18)

A∗ =
k2(β2bf − β1cf − α1k1β2) + k3α2(β2b− β1c)

α1k3β2e
I∗1 ,

T ∗ =
β2b− β1c

β2α1
I∗1 ,

R∗ =
µ1c

β2d
.
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To determine the threshold of the infected of HIV is
predicted die out or present in the model, the basic reproduc-
tion number is calculated. The basic reproduction number is
calculated by applying the next generation method. In order
to construct the next generation matrix (Heffernan, et. al,
2005) [8], we only involve the infected subpopulations such
that from equation (1). We have

x
′

i = Fi − Vi, i = 1, 2

where F = (β1SI1, β2SI2) and V = (bI1, cI2). Jacobi
matrix F and V are obtained by partial derivative with
respect to I1 and I2 at point X0.

F (X0) =

[
β1Λ
a 0

0 β2Λ
a

]
,

and

V (X0) =

[
b 0

0 c

]
.

Thus, by inversing V (X0) and multiplied by F (X0), it is
easy to yield the next generation matrix

K = F (X0)V −1(X0),

=

[
β1Λ
ab 0

0 β2Λ
ac

]
. (19)

Thus, we get two pair eigen value

λ1 =
β1Λ

ac
,

and
λ2 =

β2Λ

ac
.

The basic reproduction number is R0 =max(λ1, λ2).
Since the spread of HIV infection is determined by contact
between susceptible and positive-HIV individuals not con-
suming ARV, then we choose the basic reproduction number

R0 =
β2Λ

ac
,

in which β2 is transmission rate between susceptible with
I2(t) subpopulations. Finally, endemic equilibrium points
can be written in the form of the basic reproduction number
as follows

S∗ =
c

β2
,

I∗1 =
α1k3ac(

(Λβ2)
ac − 1)

α1k3β1c+ β2bfc− β1fc2 − cα1k1β2
,

=
α1k3ac(R0 − 1)

α1k3β1c+ β2bfc− β1fc2 − cα1k1β2
,

I∗2 =
(fβ2b− fβ1c− α1k1β2)

α1k3β2
I∗1 , (20)

A∗ =
k2(β2bf − β1cf − α1k1β2) + k3α2(β2b− β1c)

α1k3β2e
I∗1 ,

T ∗ =
β2b− β1c

β2α1
I∗1 ,

R∗ =
µ1c

β2d
.

Obviously, in the steady state solution, the infected sub
population I1 is exist if only if R0 > 1.

IV. STABILITY ANALYSIS

In this part, we investigate stability analysis of the equi-
librium points locally and globally.

A. Local stability analysis

In this section, we analyze the local stability of the free-
disease equilibrium points by following the suggestion of the
basic reproduction number R0.

Theorem 3. The free-disease equilibrium point X0 is
locally asymptotically stable when R0 < 1 and unstable
otherwise.

Proof: An HIV/AIDS model is in the form of non linear
differential equations. To analyze the stability, we linearize
system (1) to yield the Jacobian matrix

J =



ψ1 −β1S −β2S 0 0 0

β1I1 −β1S − b 0 0 α1 0

−β2I2 0 −β2S − c 0 0 0

0 0 k2 −e α2 0

0 k1 k3 0 −f 0

µ1 0 0 0 0 −d

 . (21)

where ψ1 = −β1I1−β2I2−a. The Jacobian matrix of each
equilibrium point is obtained by substituting the disease-free
and endemic equilibrium points in the Jacobian matrix (21).
The Jacobian matrix of the disease-free equilibrium points is

J(X0) =



−a −β1Λ
a

−β2Λ
a

0 0 0

0 β1Λ
a

− b 0 0 α1 0

0 0 β2Λ
a

− c 0 0 0

0 0 k2 −e α2 0

0 k1 k3 0 −f 0

µ1 0 0 0 0 −d

 . (22)

We introduce A1 = −β1

(
Λ
a

)
, A2 = −β2

(
Λ
a

)
, A3 =

β1

(
Λ
a

)
− b, and A4 = β2

(
Λ
a

)
− c. Eigen values of matrix

(22) are obtained by solving the characteristic equation
|J(X0)− λI| = 0 as follows

∣∣J(X0)− λI
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

−a A1 A2 0 0 0

0 Γ1 0 0 α1 0

0 0 Γ2 0 0 0

0 0 k2 Γ3 α2 0

0 k1 k3 0 Γ4 0

µ1 0 0 0 0 Γ5

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (23)

where Γ1 = A3 − λ, Γ2 = A4 − λ, Γ3 = −e − λ, Γ4 =
−f−λ, Γ5 = −d−λ, I is the identity matrix with the same
dimension as J(X0), and λ is the eigenvalue. Thus equation
(23) yields the eigen values λ1 = −d < 0, λ2 = −e < 0,
λ3 = −a < 0, λ4 = A4 = (R0 − 1)c < 0 if only if R0 < 1,
a, c, d, e > 0, and λ5,6 that satisfies the quadratic polynomial

λ2 +Bλ+ C = 0, (24)

with B = f − A3, C = −A3f − α1k1. The discriminant of
equation (24) is

D = B2 − 4C,

= (f −A3)2 − 4(−A3f − α1k1),

= (f +A3)2 + 4α1k1 > 0, (25)
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and the value of λ5λ6 = −A3f − α1k1 > 0 and λ5 + λ6 =
−(f−A3) < 0. Since we get all negative values of the eigen
values, the disease-free equilibrium point is asymptotically
stable when R0 < 1 and unstable when R0 > 1.

Theorem 4. The endemic equilibrium X∗ is globally
asymptotically stable when R0 > 1 and unstable otherwise.

Proof: The Jacobian matrix of endemic equilibrium
point is

J(X∗) =


−A1 −β1S∗ −β2S∗ 0 0 0

β1I∗1 −A2 0 0 α1 0

−β2I∗2 0 −A3 0 0 0

0 0 k2 −e α2 0

0 k1 k3 0 −f 0

µ1 0 0 0 0 −d

 , (26)

with A1 = β1I
∗
1 + β2I

∗
2 + a, A2 = β1S

∗ + b, and A3 =
β2S

∗+c. Using the same steps in the stability analysis of the
disease-free equilibrium point, the eigen values of equation
(26) are obtained by substituting the endemic equilibrium
point (20) into |J(X∗)− λI| = 0 such that we get

|J(X∗)− λI| =

∣∣∣∣∣∣∣∣∣∣∣

Ψ1 −β1S∗ −β2S∗ 0 0 0

β1I∗1 Ψ2 0 0 α1 0

−β2I∗2 0 Ψ3 0 0 0

0 0 k2 Ψ4 α2 0

0 k1 k3 0 Ψ5 0

µ1 0 0 0 0 Ψ6

∣∣∣∣∣∣∣∣∣∣∣
,

(27)

where Ψ1 = −A1 − λ, Ψ2 = −A2 − λ, Ψ3 = −A3 − λ,
Ψ4 = −e − λ, Ψ5 = −f − λ, Ψ6 = −d − λ. We obtain
the eigen values λ1 = −d, λ2 = −e whereas for the other
eigen values are λ3, λ4, λ5, and λ6. From equation (27), we
determine the determinate of sub matrix

|J(X∗)− λI| =

∣∣∣∣∣∣∣
−A1 − λ −β1S∗ −β2S∗ 0

β1I∗1 −A2 − λ 0 α1

−β2I∗2 0 −A3 − λ 0

0 k1 k3 −f − λ

∣∣∣∣∣∣∣ ,
such that we have the fourth-order polynomial

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (28)

with
a1 = A1 −A2 −A3 + f ,
a2 = I∗1S

∗β2
1 + I∗2S

∗β2
2 −A1A2 −A1A3 +A1f +A2A3 −

A2f +A3f − α1k1,
a3 = −A2I

∗
2S
∗β2

2 − A3I
∗
1S
∗β2

2 + I∗1S
∗β2

1f + I∗2S
∗β2

2f +
A1A2A3 −A1A2f −A1A3 −A1α1k1 −A2A3f +A3α1k1,
a4 = −A2I

∗
2S
∗β2

2f − A3I
∗
1S
∗β2

1f + I∗2S
∗β1β2α1k3 −

I∗2S
∗β2

2α1k1 +A1A2A3f +A1A3α1k1.
It is rather difficult to determine the roots of fourth order
polynomial (28). Using the Routh-Hurwitz criteria [9], the
real parts of eigen values (Re(λi), i = 1, 2, 3, 4) of polyno-
mial (28) are negative if they satisfy the following conditions

1) D1 = |a1| = a1 > 0,
2) D2 = a1a2 − a3 > 0,
3) D3 = a1a2a3 − a2

1a4 − a2
3 > 0,

4) D4 = a1a2a3a4 − a2
1a

2
4 − a2

3a4 > 0.

According to the Routh-Hurwitz stability criteria, all real
parts of eigen values are negative. Hence the endemic equi-
librium point is locally asymptotically stable when R0 > 1

and unstable when R0 < 1. We will show these conditions
numerically in the next section.

B. Global stability analysis of equilibrium points

To show that the solutions of the system (1) are globally
asymptotically stable, we use the Lyapunov function theory.
First, we present the global stability of free-disease X0

equilibrium point when R0 < 1 by proofing following
theorems.

Theorem 5. The free-disease equilibrium point X0 is
globally asymptotically stable if R0 < 1 and unstable oth-
erwise.

Proof: Let the Lyapunov function

Ļ = pI2(t), (29)

where p is a positive constant.
The derivative of Ļ(S(t), I1(t), I2(t), A(t), T (t), R(t))

with respect to t gives

dĻ
dt

= p
dI2(t)

dt
,

= p(β2S(t)I2(t)− cI2(t)),

= pc(
β2Λ

ac
− 1) = pc(R0 − 1), (30)

where p = 1/c. Thus we have dĻ/dt = 0 when R0 ≤ 1.
Furthermore dĻ/dt = 0 if only if I2(t) = 0, hence by
LaSalle’s invariance principle [14], X0 is globally asymp-
totically stable.

Furthermore, we will prove global stability of the endemic
equilibrium point.

Theorem 6. The endemic equilibrium X∗ is globally
asymptotically stable if R0 > 1 and unstable otherwise.

Proof: Let define the Lyapunov function motivated in
[6][17]

V̧(S, I1, I2, A, T,R) = (S − S∗ − S∗ ln
S

S∗
)

+A(I1 − I∗1 − I∗1 ln
I1
I∗1

)

+B(I2 − I∗2 − I∗2 ln
I2
I∗2

), (31)

with A and B which are positive constant
such that V̧(S, I1, I2, A, T,R) < 0 in Ω =
(S, I1, I2, A, T,R)|S, I1, I2, A, T,R > 0. In order to
know whether the Lyapunov function is weak or strong, we
should investigate the condition by following the definition
of weak and strong Lyapunov functions explained in [10],

1) V̧(X∗) = 0. It is clear that X∗ are constant solutions
of system, consequently V̧′(X∗) = 0.

2) V̧(X∗) > 0, ∀X 6= X∗ in W with W is some neigh-
borhood of X∗. It is clear that V̧(X∗) > 0, ∀X 6= X∗

in W .
3) V̧′(X∗) ≤ 0, ∀X in W (weak Lyapunov function)

or V̧′(X∗) < 0, ∀X 6= X∗ in W (strong Lyapunov
function).
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According to the chain rule, the derivative of V̧ with
respect to t is

V̧′ = (1− S∗

S
)S′ +A(1− I∗1

I1
)I ′1 +B(1− I∗2

I2
)I ′2. (32)

Substitute equation (1) into ( 32), we obtain

V̧′ = (1− S∗

S
)[Λ− β1SI1 − β2SI2 − aS]

+A(1− I∗1
I1

)[β1SI1 + α1T − bI1]

+B(1− I∗2
I2

)[β2SI2 − cI2], (33)

V̧′ = (1− S∗

S
)[β1(S∗I∗1 − SI1) + β2(S∗I∗2 − SI2)

+ a(S∗ −A)] +A(1− I∗1
I1

)[−β1(S∗I∗1 − SI1)

− α1(T ∗ − T ) + b(I1)∗ − I1)]

+B(1− I∗2
I2

)[−β2(S∗I∗1 − SI1) + c(I∗2 − I2)]. (34)

We consider the following variables substitutions by letting,

S

S∗
= x1,

I1
I∗1

= x2,
I2
I∗2

= x3, (35)

the equation (34) after doing simple algebra, it becomes

V̧′ = [(1−A)β1S
∗I∗1 + (1−B)β2S

∗I∗2

+ 2aS∗ −Aα1T
∗ + 2AbI∗1 + 2BcI∗2 ]

− 1

x1
(β1S

∗I∗1 + β2S
∗I∗2 + aS∗)

− 1

x3
(Bβ2S

∗I∗2 +BcI∗2 )− x5

x2
(Aα1T

∗)

+ x1x2(A− 1)β1S
∗I∗1 + x1x3(B − 1)β2(S∗I∗2 − SI2)

+ x1(Aβ1S
∗I∗1 −Bβ2(S∗I∗2 − aS)

+ x2(β1S
∗I∗1 −AbI∗1 ) +

1

x2
(Aβ1S

∗I∗1 +Aα1T
∗ +AbI∗1 )

+ x3(β2(S∗I∗2 −BcI∗2 ). (36)

The only variables that appears in equation (36) with positive
coefficients are x1x2, x1x3, x1, x2, x3, 1/x2. If the total of
these coefficients are positive then there is a possibility
that V̧′ could be positive. By making the terms with the
coefficients x1x2, x1x3, x1, x2, x3, 1/x2 are equal to zero,
we get

(A− 1)β1S
∗I∗1 = 0,

(B − 1)β2(S∗I∗2 − SI2) = 0,

(Aβ1S
∗I∗1 −Bβ2(S∗I∗2 − aS) = 0,

(β1S
∗I∗1 −AbI∗1 ) = 0,

(Aβ1S
∗I∗1 +Aα1T

∗ +AbI∗1 ) = 0,

(β2(S∗I∗2 −BcI∗2 ) = 0, (37)

we have several choices of P1 and P2. By choosing

A =
β1S

∗

b
, B =

β2S
∗

c
(38)

Fig. 2. Numerical simulation of the disease-free equilibrium point for the
susceptible subpopulation

and substituting A and B into equation (36), we end up

V̧′ = β1S
∗I∗1 (3− 1

x1
) + β2S

∗I∗2 (3− 1

x1
− 1

x3
)

+ aS∗(2− 1

x1
)− β1S

∗α∗1T
∗

b
(1 +

x5

x2
)

− β2
2S
∗2I∗2
c

(1 +
1

x3
)− β2

2S
∗2I∗1
b

. (39)

By applying the Theorem in Peter [15], it is said that the
arithmetical mean is greater than or equal to the geometrical
mean, then we have 3 − 1

x1
≤ 0, 3 − 1

x1
− 1

x3
≤ 0,

2 − 1
x1
≤ 0, 1 + x5

x2
≥ 0, and 1 + 1

x3
≥ 0. Hence

V̧′ ≤ 0, for x1, x2, x3, x5 > 0 and satisfies the definition of
Lyapunov function. Therefore, the endemic equilibrium point
X∗ is globally asymptotically stable by LaSalle’s invariance
principle [14] when R0 > 1, and unstable otherwise.

V. NUMERICAL SIMULATION

Numerical simulation is conducted in order to under-
stand the behavior of the proposed HIV/AIDS model and
to confirm the stability analysis of the equilibrium points
(disease-free and endemic equilibrium points) in the previous
section. We will show that the disease-free equilibrium point
is asymptotically stable when R0 < 1 and the endemic
equilibrium point is asymptotically stable when R0 > 1.

We choose the parameter values in order to satis-
fies reproduction number R0 < 1 for stability condi-
tion for the disease-free equilibrium point. According to
Table I, and by choosing the parameters β1 = 0.0023
and β2 = 0.0033, we get the basic reproduction num-
ber R0 = 0.00284 < 1. Let set initial values for each
subpopulation, N0 = (30, 25, 35, 16, 20, 50), the solutions
of the system (1) converge to the disease-free equilib-
rium point X0 = (S0, I1

0, I2
0, T 0, A0, R0), that is X0 =

(11.0887, 0, 0, 0, 0, 16.9719).
When the basic reproduction number, the dynamics of

HIV/AIDS models is shown in Figure 2 to 7 for each sub-
population. The figures show that the infected and full-blown
AIDS individual will vanish in the future. The numerical
results support analytical results.
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Fig. 3. Numerical simulation of the disease-free equilibrium point for the
HIV-positive individuals consuming ARV

Fig. 4. Numerical simulation of the disease-free equilibrium point for the
HIV-positive individuals not consuming ARV

Fig. 5. Numerical simulation of the disease-free equilibrium point for the
full-blown AIDS subpopulation

Fig. 6. Numerical simulation of the disease-free equilibrium point for the
treatment subpopulation

Fig. 7. Numerical simulation of the disease-free equilibrium point for the
recovered subpopulation

Next, we simulate the stability of model solutions for
the endemic equilibrium point numerically. We choose the
parameter values in order to satisfy the basic reproduction
number R0 > 1 as shown in Table I, and the parameters β1 =
2.3 and β2 = 3.3, the basic reproduction number is R0 =
2.8396 > 1. Let set initial values for each subpopulation,
N1 = (30, 25, 35, 16, 20, 50), and using the condition of the
Routh-Hurwitz criteria D1 > 0, D2 > 0 , D3 > 0 and D4 >
0, the solutions of the system (1) converge to the endemic
equilibrium point X∗ = (S∗, I1

∗, I2
∗, T ∗, A∗, R∗), that is

X∗ = (0.0235, 3.4042, 4.6953, 1.5103, 2.5867, 0.0388).
In the other hand, when the basic reproduction number

R0 > 1, the behavior of HIV/AIDS model can be shown in
Figure 8 to 13 for each subpopulation. This is different with
previous simulation (the disease-free equilibrium point). The
figures show that for long-time simulation, the subpopulation
of infected and full-blown AIDS exist. This shows that
endemic occurred in the proposed model. The numerical
solution is coincided with the analytical solution. In the next
research, it necessary to apply control optimal theory in order
to minimize the infected and full-blown AIDS individuals by
adding control strategies in the proposed model.
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Fig. 8. Numerical simulation of the endemic equilibrium point for the
susceptible subpopulation

Fig. 9. Numerical simulation of the endemic equilibrium point for the
HIV-positive individuals consuming ARV

Fig. 10. Numerical simulation of the endemic equilibrium point for the
HIV-positive individuals not consuming ARV

Fig. 11. Numerical simulation of the endemic equilibrium point for the
full-blown AIDS subpopulation

Fig. 12. Numerical simulation of the endemic equilibrium point for the
treatment subpopulation

Fig. 13. Numerical simulation of the endemic equilibrium point for the
recovered subpopulation
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VI. CONCLUSION

The mathematical model of HIV/AIDS with two different
stages of infection subpopulation has been established. The
proposed model is more realistic since it establishes the com-
partments diagram based on real data from the Indonesian
Ministry of Health. The model consists of six compartments
(susceptible, infected with and without treatment, AIDS,
treatment, and recovered sub populations). The infected
subpopulations are an HIV-positive consuming ARV I1 so
that this subpopulation can survive longer, and HIV-positive
not consuming ARV I2.

We have proved the positivity and boundedness of the
model solutions. The stability analysis of HIV/AIDS model
is determined according to the basic reproduction number.
The disease-free equilibrium is locally asymptotically stable
when R0 < 1 and unstable when R0 > 1. The endemic
equilibrium is locally asymptotically stable when R0 > 1
and unstable otherwise. Thus, for global stability, we con-
struct the Lyapunov function. The disease-free equilibrium
point is globally asymptotically stable when R0 < 1 and
unstable otherwise. The endemic equilibrium is globally
asymptotically stable when R0 > 1 and unstable otherwise.
Numerical simulations are performed using values of selected
parameters to support the analysis results.
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