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Abstract— This study proposes a multi-objective new whale 

optimization algorithm (MONWOA) to solve environment 

economic power dispatch (EED) problem. The EED problem 

is a nonlinear multi-constrained multi-objective optimization 

problem, which can be solved by MONWOA method that has 

strong ability to find the best compromise solution (BCS). In 

order to balance exploration and exploitation of the algorithm, 

the Gaussian mutation operator, variation process of 

differential evolution algorithm and search mode parameter 

are adopted to improve the standard multi-objective whale 

optimization algorithm (MOWOA). Furthermore, a new 

constraint handling method combined with the MONWOA is 

put forward to find the Pareto solution set with better 

distribution. Six experiments aimed at simultaneously 

optimizing fuel cost and emission, fuel cost with valve-point 

effect and emission, power loss and emission are carried on 

IEEE 30 bus, 57 bus and 118 bus systems. Compared with 

MOWOA and traditional MOPSO methods, the results of 

Pareto fronts and BCS show the superiority of WONWOA to 

solve EED problems. Moreover, the result of two performance 

indicators, it is clearly show that the stability and diversity of 

MONOWA method were stronger than the other two 

comparison algorithms. 

 
Index Terms—Environment economic power dispatch; 

multi-objective optimization; multi-objective new whale 

optimization algorithm; a new constraint handling method 

 

I. INTRODUCTION 

HE electric energy is inextricably linked with each 

department of the national economy, thus improving the 
quality of electric power has very important practical 

significance [1-4]. In the early research of the power system  
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optimization operation, it was limited to the economic load 

dispatch (ELD) of the system, which operating at absolute 

minimum cost is the only criterion [5-7]. The research 

shows that this method cannot fully consider the safety 

constraints to make the system operate safely. The 

increasing scarcity of fossil energy (coal, oil, natural gas.) 

and the prominence of the greenhouse effect make it 

necessary to consider the issue of pollutant emission while 

using fossil energy efficiently, which is one of the core tasks 

for the energy industry to establish an environment-friendly 

form of fossil energy utilization [8, 9]. 

Thermal power plants convert chemical energy into 

electrical energy by burning fossil fuels, which is the main 

body of fossil energy consumption and one of the important 

sources of polluted gases. In order to ensure sustainable 

development, it is necessary to perform the emission 

dispatch into the ELD problem [10, 11]. The ELD problem 

considering the emission objective transforms to an EED 

problem. The EED problem is a nonlinear multi-objective 

optimization problem with many equality and inequality 

constraints [12]. There is usually a conflicting relationship 

between different optimization objectives, when solving a 

single objective usually result in the demotion of another 

goal. 

The EED problem is a research focus in recent years. 

Different from the single-objective optimization problem, 

the multi-objective optimization problem needs to optimize 

multiple objectives at the same time, and find a series of 

Pareto optimal solution sets, and finally find the best 

compromise solution (BCS) in the Pareto solution set [13]. 

Therefore, obtaining the BCS solution becomes very 

difficult for multi-objective optimization problems. 

Traditional methods include linear weighted sum method, 

multi-constraint method, linear programming method, and 

objective weighted method. They all have the common 

drawback that they must be run multiple times to get the 

solution for the problem [14-17]. And the above method is 

difficult to deal with the problem of non-differentiable and 

non-convex, which further limits their application in 

multi-objective problem [18, 19]. 

In view of the shortcomings of traditional methods, the 

evolutionary algorithm is used to solve the EED problem. 

The evolutionary algorithm can get a set of Pareto solutions 

in a single simulation and can easily handle discontinuous 

solutions [20-23]. In recent years, a large number of 

algorithms have been successfully applied to solve EED 

problem [24-26]. Such as interactive honey bee mating 

optimization algorithm [27], multi-objective differential 
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evolution algorithm [28], modified non-dominated sorting 

genetic algorithm II [29], fuzzy based bacterial foraging 

algorithm [30], multi-objective particle swarm optimization 

algorithm and hybrid multi-objective cultural algorithm [31, 

32]. Since the whale optimization algorithm proposed by 

Mirjalili and Lewis, it has been successfully applied to 

various optimization problems. In [33], a hybrid whale 

optimization algorithm is proposed to solve the permutation 

flow shop scheduling problem. In [34], the researcher 

proposed a hyper-heuristic for improving the initial 

population of whale optimization algorithm. In [35], a 

modified whale optimization algorithm is presented for 

large-scale global optimization problems. In [36], Control 

strategy for MGT generation system optimized by improved 

the whale optimization algorithm to enhance demand 

response capability. In [37], an improved chaotic whale 

optimization algorithm was used to aim at parameter 

estimation of photovoltaic cells. 

MOWOA is also a meta-heuristic optimization algorithm, 

which has advantages of fewer parameters, high efficiency 

in search and stronger search capability [34], and makes it 

some certain advantage when solving multi-objective 

optimization problems. But the MOWOA may lead to 

premature convergence [37], falling into local optimal and 

failing to balance global search and local search capabilities 

when dealing with EED problems. Thus, the Gaussian 

mutation operator is added to avoid premature convergence 

and escape local optima. Furthermore, Instead of standard 

parameters controlling MOWOA global search and local 

search, the search mode parameters are used to control two 

different search mode, and the local search and global 

search of the algorithm are more effectively balanced to 

obtain a more effective Pareto optimal solution set. 

Furthermore, a constraint handling method and non-inferior 

sorting strategy is proposed to obtain the Pareto optimal set 

with better distribution. After the above operations, the 

multi-objective new whale optimization algorithm 

(MONWOA) is obtained. 

In order to verify the superiority of the proposed 

MONWOA method, MONWOA, MOWOA and MOPSO 

algorithms were tested on IEEE30 bus system, IEEE57 bus 

system and IEEE118 bus system. Besides, the generational 

distance (GD) and spacing (SP) indicators are used to 

calculate the stability and diversity of the three methods 

[38]. 

The structure of this paper is generalized as follows. The 

mathematical model of EED is shown in Section Ⅱ. The 

MOWOA and MONWOA algorithms are introduced in 

Section Ⅲ. In addition, Section Ⅲ gives the main steps of 

MONWOA algorithm to solve the EED problem. 
Simulation results and performance analysis of the three 

algorithms are showed in Section Ⅳ, and to further verify 

the superiority of the proposed algorithm, the Wilcoxon 

signed ranks method is also adopted. Section Ⅴ gives a final 

summary. 

II. MATHEMATICAL DESCRIPTION 

Generally, the EED problem is to minimize the objective 

functions of fuel cost and emissions, while satisfying the 

equality and inequality constraints of the system. However, 

the power loss of the system will affect the economic 

operation of the system, so the EED problem must consider 

the power loss objective function. The EED mathematical 

model can be mathematically described as follows: 

 
1 2 mminimize ( ( ), ( ), ( ))G G GF f P f P f P  (1) 

 ( ) 0,    1,2, ,j GG P j g   (2) 

 ( ) 0,   1,2, ,k GH P k h   (3) 

The premise of the objective function optimization is that 

it must satisfy equality constraints and inequality 

constraints, fi(PG) is the ith objective function, m is the 

number of objective functions, PG is the active output of the 

generator. g, h is the number of inequality constraints and 

equality constraints. 

The mathematical model of EED includes objective 

functions and system constraints. The objective function 

includes the minimization of fuel costs, emission and power 

loss. The system constraints include equality constraints and 

inequality constraints. 

A. Objective Function 

1) Fuel cost minimization 

The total cost of the system includes fuel cost, labor cost 

and other cost, labor costs and other cost account for a fixed 

proportion. Thus, the total fuel cost (Fcost) of each generator 

is represented by a quadratic polynomial. 
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where ai, bi and ci are the cost coefficients. 

The fuel cost function considering valve-point effect 

(Fcost_vp) is more practical, which will cause a high degree of 

nonlinearity and discontinuity, making it more difficult to 

optimize the objective function. 
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where di and ei are the cost coefficients with valve-point 

effect. 

2) Emission minimization 

Pollution emission (Ee) is given as a function of 

generator output, which can be expressed as: 

 2
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where αi, βi, γi, ξi and λi are emission coefficients of the ith 

generator. 

3) Power loss minimization 

Transmission loss in the power system will cause the 

economic loss of the power company, the power loss (Ploss) 

of the line will affect the economic operation and safe 

operation of the system, so it must be minimized to obtain 

the maximum economic benefits. Which can be described 

as: 
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where N is the number of buses, i and j is the number of bus; 

gij is the conductance of the branch of bus i and bus j; Vi and 

Vj are the voltage of bus i and bus j, respectively; δij is the 

phase angle difference of the voltage between bus i and bus 

j. 
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B. Constraints of EED 

1) Equality constraints 

The total power generation must meet the total load 

demand (PD) and the total power loss (Ploss), this equality 

constrain can be expressed as: 
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The load flow equations shown as: 
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where NPQ is the number of load nodes, QGi and QDi are the 

injected reactive power and actual active power of bus i, 

respectively; PGi and PDi are the injected active power and 

actual active power of bus i, respectively; Gij and Bij are the 

conductance and susceptance between bus i and bus j, 

respectively. 

2) Inequality constraints 

In order to ensure the safety and economic operation of 

the system, the following inequality constraints must be 

satisfied. The active power output of the generator, the bus 

voltage and the reactive power output are constrained by the 

upper and lower limits as follows: 

 
min max

i i iP P P   (10) 
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Line power flow constraint is an important condition for 

the safe operation of the system, any line has its ultimate 

power carrying capacity. This constraint can be showed as 

follows: 

 max

, ,|Lf k Lf kP P k L   (13) 

where PLf,k is the actual active power of line k, PLf,k
max is the 

maximum active power that line k can withstand. L is the 

number of transmission lines. 

III. PROPOSED ALGORITHMS FOR EED PROBLEM 

A. Overview of MOWOA 

Whale optimization algorithm is a new metaheuristic 

algorithm proposed by Mirjalili and Lewis and mimics the 

foraging of humpback whales [39]. Similar to other 

population-based algorithms, WOA uses a set of random 

candidate solutions and uses three rules to update and 

improve its position at different times, which are encircling 

prey, spiral update position and search for prey [35]. The 

main steps are shown as follows. 

1) Search for prey phase (p < 0.5 and A ≥ 1) 

In the phase of search for prey, whale individuals search 

randomly according to each other's positions, which 

corresponds to the global search stage of the algorithm. The 

mathematical model can be expressed as follows: 

 | * ( ) ( ) |randD C X t X t   (14) 

 ( 1) ( ) *randX t X t A D    (15) 

where Xrand(t) is a randomly selected individual from the 

current whale population, X(t) is the current individual 

whales position. A and C are the coefficient vectors, which 

are defined as follows: 

 
12 *A a r a   (16) 

 
22*C r  (17) 

where r1 and r2 are random vector in [0, 1], and a is called 

the control parameter, which decreases linearly from 2 to 0 

as the number of iteration increases, which are defined as 

follow: 

 2 2 / _a t Max iter   (18) 

where Max_iter is the maximum number of iterations. 

2) Encircling prey phase (p < 0.5 and A < 1) 

In the stage of encircling prey, whale individuals will 

approach the best whale individual in its current position, 

the mathematical model of encircling prey stage can be 

expressed as: 

 | * ( ) ( ) |bestD C X t X t   (19) 

 ( 1) ( ) *bestX t X t A D    (20) 

where Xbest(t) is the best whale individual. 

3) Bubble-net attacking method (p ≥ 0.5) 

In the stage of spiral updating position, it will prey in a 

spiral way to search for the optimal solution, which are 

defined as: 

 ' | ( ) ( ) |bestD X t X t   (21) 

 '( 1) * *cos(2 ) ( )bl

bestX t D e l X t    (22) 

where b is a constant and l is a random number between 0 

and 1. 

B. MONWOA 

1) Gaussian mutation operator 

The standard multi-objective whale optimization 

algorithm is similar to the general random intelligent 

algorithm, and the search process of the algorithm is easy to 

fall into the local optimal, which will result in the poor 

optimization effect of the algorithm. In order to avoid this 

problem, the Gaussian mutation operator is added to avoid 

premature convergence and escape local optima. The 

Gaussian distribution can be defined as follows: 
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where μ is the expectation of the Gaussian distribution, and 

σ2 is the variance of the Gaussian distribution, when μ = 0 

and σ = 1 it is the standard Gaussian distribution. The three 

search processes of MOWOA are changed as: 

 ( 1) ( 1)*(1 * (0,1))IWOA WOAX t X t k Guass     (24) 

where k is a number that decreases between 0 and 1. 

2) Differential evolution algorithm 

In order to improve the global search ability of WOA and 

avoid WOA’s premature convergence, the variation process 

of differential evolution algorithm is introduced. Which can 

be expressed as follows: 

 1 2( 1) ( ) *( ( ) ( ))best r rx t x t F x t x t     (25) 

where F is the weight factor of differential evolution 

algorithm, xr1(t) and xr2(t) is selected randomly in the 

population. 
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3) Search mode parameter 

General bionic algorithms involve the trade-off between 

exploration and exploitation, and balancing the two search 

modes of the algorithm is of great significance to improve 

the performance of the algorithm. The local search ability of 

the standard MOWOA is in a dominant position, and the 

global search ability of MOWOA method is weakened, 

causing the algorithm to converge prematurely. In the 

MOWOA, the value of p is randomly selected and A is 

decreased over time. Therefore, the search for prey, the 

encircling prey and the spiral update position phases are 

randomly selected to optimize the population, which can't 

well balance the exploration and exploitation of the 

algorithm. Thus, the search mode parameter (SMP) is 

adopted to solve this problem. 

By tracking the change of the solution in the population, 

the SMP can adaptively change the current update state of 

the population. To ensure that exploration is the early stages 

of the algorithm, the SMP is set to 1 and then the parameter 

of p is set to 0.8. If the two parameters are set according to 

the above steps, the probability of entering the exploration 

is much greater than the exploitation. If the best solution 

has not been improved after multiple updates, the SMP is 

set to 2 and the update status of the current population is 

transformed to the stage of exploitation. In order to ensure 

that the best solution is changed after multiple runs, the 

parameter of count is used to track the best solution over 

time and maxnum is a threshold to decide whether to 

change the value of the SMP. The most important thing is 

the setting of the initial value of maxnum, it cannot be too 

large or too small. The smaller value of maxnum will cause 

the search mode of the algorithm to be changed frequently, 

and the optimization process cannot be carried out 

reasonably. The larger value of maxnum may cause the 

algorithm to fall into local optimum. Thus, the threshold is 

set to 10. 

4) Search process improvements 

In order to further balance the two search mechanisms of 

the MOWOA, the search for prey and the encircling prey 

stages is changed as follows: 

 
1 1( 1) ( ) *( ( ) ( ))rand randX t X t A X t X t     (26) 

 
2( 1) ( ) *( ( ) ( ))rand bestX t X t A X t X t     (27) 

5) Constraint handling method and non-inferior sorting 

 Constraint handling method 

In the EED problem, when an individual violates the 

constraint of the inequality of the active power output of the 

generator, modify the individual using formula (28). 
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The total value of the individual who violates the state 

variable inequality constraint can be expressed as: 

 ( ) max( ( , ),0)G j G

j

Svio P g P x  (29) 

where Svio(PG) is the total value of the state variable 

inequality constraint violation, gj(PG, x) is the value of jth 

state variable inequality constraint violation. The state 

variables include Vi, QGi and PLf,k. 

The individual pp and pq are randomly selected and 

calculating the Svio(pp) and Svio(pq), their relationship can 

be judged by the following rules. 

Constraint Handling Rules: 

1. if Svio (pp) < Svio (pq)  pp dominates pq; 

2. if Svio (pp) > Svio (pq)  pq is judged to be superior to pp; 

3. if Svio (pp) = Svio (pq) 

4. if fi (pp) ≤ fi (pq) for all i∈{1, 2, …, M} and fj (pp) < fj (pq) for 

any j∈{1, 2, …, M} 

the individual pp is superior to individual pq; 

5. else pq dominates pp. 

According to the above rules, all individuals can be 

divided into n levels, the value of level is expressed as 

rank(x). The smaller value of rank(x), and the individual is 

much stronger. 

 Non-inferior sorting 

All individuals in the population are divided into 

different hierarchy by the constraint handling method. If the 

value of rank(xi) is equal to rank(xj), calculating the 

crowded distance can determine their individual strength, 

then the crowded distance of ith individual is defined as 

distance(xi). At the same hierarchy, if distance(x) of the 

individual is greater, the individual is much stronger. The 

following rules are adopted to determine the dominant 

relationship between individuals. 

Constraint Handling Rules: 

1. if rank(xi) < rank(xj)  individual i is stronger than individual j.; 

2. if rank(xi) > rank(xj)  individual j dominates individual i.; 

3. if rank(xi) == rank(xj) 

4. if distance(xi) > distance(xj)  individual i is superior to 

individual j; 

5. else  individual j will be selected to the next iteration. 

After the above steps, the original MOWOA algorithm is 

improved to obtain the MONWOA algorithm. The pseudo 

code is shown as follows. 

Begin 
Generate the initial population Xi (i =1, 2, …,N); 
Select the best individual xbest; 
Set p = 0.8, maxnum = 10, count = 0, SMP = 1, F = 0.6; 
t=1; 
while t < tmax 
for i = 1 to N 

if (SMP ==1 && rand1 <= p) || (SMP == 2 && rand1 > p) 
if (rand2 < CR || i = round(N * rand3 +0.5)) 

1 2( ) ( ) *( ( ) ( ))x i x best F x r x r    

else 

3 3( ) ( ( ) *( ( ) ( )))*(1 * (0,1))x i x r A x i x r k Guass     

end if 
else if (SMP ==2 && rand4 <= p) || (SMP == 1 && rand4 > p) 
if rand5 <= 0.5 

4 4( ) ( ( ) *( ( ) ( )))*(1 * (0,1))x i x r A x best x r k Guass     

else 
end if 

end if 
end for 
Obtain the new population and the new best individual x*

best; 

Use constraint handling and non-inferior sorting method judge the 

dominant relationship between x*
best and xbest 

if x*
best dominates xbest 

count = 0; 
else 

count = count + 1; 
if count > maxnum 

if SMP == 1 
SMP == 2, count = 0, maxnum = maxnum*2; 
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else 
SMP == 1, count = 0, maxnum = 10; 

end if 
end if 

end if 
t = t +1; 

end while 

end 

C. Proposed MONWOA for EED problem 

The main goal of this paper is to solve the EED problem 

using the proposed MONWOA method. Using the proposed 

method, a set of non-dominated solutions based on the 

concept of Pareto optimal can be obtained, these solutions 

are continuously updated until the iteration stops. After the 

iteration select the strongest solution as the best 

compromise solution (BCS).The steps of the MONWOA to 

solve the EED problem are as follows. 

Proposed MONWOA for EED Problem 

Step1: Establish mathematical model of EED and set relevant 

parameters of MONWOA. 

Step2: Initialize the population randomly and set each individual 

within the feasible region. 

Step3: Calculate the objective function and the constraint 

violation value of each individual in the population. 

Step4: Sort all individuals in the population by constraint handling 

and non-inferior sorting method. 

Step5: Save the new population to the initial external repository 

and start the iteration. 

Step6: Update the population using the proposed MONWOA 

method and obtain a new population. 

Step7: Integrate the new population and the initial external 

repository into a global population. 

Step8: Delete replicate individuals of the global population and 

sort all individuals in the global population by constraint 

handling and non-inferior sorting method. 

Step9: Select individuals with a smaller level and a larger 

crowded distance from global population to update the 

external repository, and keep the size of external repository 

unchanged. 

Step10: Select the strongest solution in the external repository as 

the BCS solution. 

Step11: If the number of iterations t satisfies t = tmax, the iteration 

will stop and obtain the BCS. If not, the iteration will 

continue. 

IV. SIMULATION RESULTS 

Based on MATLAB 2014a and a PC with Intel(R) 

Core(TM) i5-7400 CPU @ 3.00GHz with 3.00GHz. 

MOWOA, MOPSO and MONWOA are used to solve the 

EED problem in the IEEE 30 bus system (system 1), IEEE 

57 bus system (system 2) and IEEE 118 bus system (system 

3). 

A. Parameter settings 

The number of population size and maximum iterations 

will affect the effectiveness of the proposed algorithm in 

solving EED problem. Therefore, choosing the appropriate 

parameters is of great significance for this optimization 

problem. After repeated experiments, the parameters of the 

three algorithms are set in TABLE Ⅱ. 

The values of the fuel and emission coefficients of the 

system 1 can be found in TABLE I, the line data and bus 

data are given in [40] and the detail data are given in [27]. 

The detail data of system 2 are given in [41, 42]. In order to 

verify the effectiveness of the proposed algorithm in the 

large bus systems, three algorithm are tested on the system 

3. Its detail data can be found in [42, 43]. The structure 

diagram of three system are shown in Fig. 1-3. 

 
Fig. 1. The structure diagram of system 1 

 
Fig. 2. The structure diagram of system 2 
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Fig. 3. The structure diagram of system 3 

B. Trials on system 1 

1) Case1: Optimization of Fcost and Ee 

In this simulation process, the Fcost and Ee are optimized 

at the same time on IEEE 30 bus system. Fig. 4 gives the 

Pareto fronts obtained by MONWOA, MOWOA and 

MOPSO method, we can easily find that the proposed 

algorithm can obtain the better Pareto optimal front. The 
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minimum fuel cost (MF), minimum emission (ME) and the 

BCS obtained by MONWOA method are shown in Fig. 5. 

The active power output of generators of the BCS solutions 

obtained by the three algorithms are given in TABLE Ⅲ, 

and the comparison results of other published literatures are 

also shown in TABLE Ⅲ. It clearly show that the BCS of 

MONWOA algorithm with 0.1972 ton/h of Ee and 621.12 

$/h of Fcost dominates the BCS solutions of other 

comparative methods. TABLE Ⅳ and TABLE Ⅴ gives the 

detail data of ME and MF obtained by three method and 

other published literatures, it gives the value of MF is 

611.23 $/h and ME is 0.1942 ton/h. Meanwhile, it also 

shows that the proposed MONWOA can obtain a better 

boundary solution. 

2) Case2: Optimization of Fcost_vp and Ee 

The non-convexity of the valve point effect will make the 

EED problem more complicated. Thus in case2 aims to 

optimize Fcost_vp and Ee. The Pareto fronts obtained by three 

algorithms are given in Fig. 6. It can be found that 

MONWOA method can obtain the evenly distributed Pareto 

front, which is better than MOWOA and MOPSO method. 

And the minimum Fcost_vp (MFvp) and ME of MONWOA 

method are shown in Fig. 7. TABLE Ⅵ gives the detail data 

of the BCS solutions obtained by MONWOA, MOWOA, 

MOPSO algorithm, and the comparison results of other 

published literature are also shown in TABLE Ⅵ. TABLE 

VII shows the result of ME and MFvp obtained by three 

method and the published literature. The BCS of 

MONWOA algorithm which includes 0.1966 ton/h of Ee 

and 638.68 $/h of Fcost_vp is better than the BCS solutions of 

MOWOA, MOPSO algorithm and the published literature. 

In addition, the superiority of proposed MONWOA method 

in handling the non-convexity of the valve-point effect is 

verified. 

3) Case3: Optimization of Ploss and Ee 

Ploss is an indicator to ensure the economic and safe 

operation of the power system. Thus in case3, Ploss and Ee 

are optimized simultaneously. The simulation results of 

three methods illustrated in Fig. 8-9. It is clearly observed 

from Fig. 8 that the minimum Ploss (MP) is 1.2423 MW and 

ME is 0.1942 ton/h. The simulation results of BCS solutions 

are given in TABLE VIII and the result of ME and MP 

obtained by three method are given in TABLE IX. It can be 

found that Ploss and Ee are 1.5496 MW and 0.2016 ton/h for 

MONWOA method, which dominates the BCS of two 

comparison algorithm. 

C. Trials on system 2 

1) Case4: Optimization of Fcost and Ee 

Fig. 10 shows the Pareto fronts of MONWOA and other 

comparison algorithms, which takes the optimization of 

Fcost and Ee goals. It can be found that the Pareto front 

obtained by MONWOA algorithm is superior to the Pareto 

fronts obtained by MOWOA and MOPSO method. Fig. 11 

gives the MF and ME of the proposed algorithm. The BCS 

solutions of three method is shown in TABLE X. It can be 

seen that the BCS found by MONWOA, Fcost of 43118.61 

$/h and Ee of 1.2622 ton/h, is better than the BCS solutions 

found by MOWOA and MOPSO. TABLE XI gives the MF 

and ME of MONWOA method, which is 41662.88 $/h and 

1.0341 ton/h. It’s less than other methods. Thus, it shows 

that the proposed method can obtain the smaller boundary 

value. 

 
Fig. 4. The simulation results of case1 obtained by MONWOA, MOWOA 

and MOPSO 

 
Fig. 5. The Pareto fronts of MONWOA in case1 

 

  

 
Fig. 6. The simulation results of case2 obtained by MONWOA, MOWOA 

and MOPSO 

 
Fig. 7. The Pareto fronts of MONWOA in case2 
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Fig. 8. The simulation results of case3 obtained by MONWOA, MOWOA 

and MOPSO 

 
Fig. 9. The Pareto fronts of MONWOA in case3 

 

TABLE I 
GENERATOR AND EMISSION COEFFICIENTS OF IEEE 30 BUS SYSTEM 

NO. gen λ ζ γ β α c b a PGmin PGmax 

PG1 2.857 0.0002 0.06490 -0.05554 0.04091 100 200 10 5 150 

PG2 3.333 0.0005 0.05638 -0.06047 0.02543 120 150 10 5 150 

PG5 8.000 0.000001 0.04586 -0.05094 0.04258 40 180 20 5 150 
PG8 2.000 0.002 0.03380 -0.03550 0.05326 60 100 10 5 150 

PG11 8.000 0.000001 0.04586 -0.05094 0.04258 40 180 20 5 150 

PG13 6.667 0.00001 0.05151 -0.05555 0.06131 100 150 10 5 150 
 

TABLE II 

SIMULATION PARAMETER SETTINGS 

Algorithms Parameters Values 

Common parameters 
Population 100 
Repository 100 

Max_iter 300(case1-case5)       500(case6) 

MOPSO c1 
c2 

 

2 
2 

0.9 

MOWOA b 1 
MONWOA σ 

μ 

b 
F 

1 

0 

1 
0.6 

 
TABLE III 

SIMULATION RESULTS OF BCS FOR CASE1 

Generators MONWOA MOWOA MOPSO MBFA[30] SPEA[7] MOPSO[31] NSBF[22] DE[8] NSGA-II[20] 

PG1(MW) 0.3064 0.3096 0.2833 0.2983 0.3052 0.2882 0.2911 0.3877 NA 

PG2(MW) 0.4019 0.4183 0.3983 0.4332 0.4389 0.3965 0.3704 0.5201 NA 

PG5(MW) 0.5699 0.5645 0.6151 0.7350 0.7163 0.7320 0.6230 0.2538 NA 
PG8(MW) 0.5890 0.5947 0.5760 0.6899 0.6978 0.7520 0.5897 0.7281 NA 

PG11(MW) 0.5419 0.5418 0.5128 0.1569 0.1552 0.1489 0.5613 0.4655 NA 

PG13(MW) 0.4436 0.4280 0.4714 0.5503 0.5507 0.5463 0.4252 0.5101 NA 

Fcost ($/h) 621.12 622.08 622.54 629.56 629.59 626.10 621.71 626.03 625.36 

Ee (ton/h) 0.1972 0.1973 0.1975 0.2080 0.2079 0.2106 0.1983 0.1979 0.1984 
 

TABLE IV 
SIMULATION RESULTS OF ME FOR CASE1 

Generators MONWOA MOWOA MOPSO MBFA[30] SPEA[7] MOPSO[31] NSBF[22] NSGA[24] NPGA[21] 

PG1(MW) 0.4113 0.4161 0.3930 0.4716 0.4419 0.4589 0.4047 0.4403 0.4753 

PG2(MW) 0.4574 0.4764 0.4009 0.5127 0.4598 0.5121 0.4533 0.4940 0.5162 
PG5(MW) 0.5398 0.5371 0.5883 0.6189 0.6944 0.6524 0.5439 0.7509 0.6513 

PG8(MW) 0.3934 0.4058 0.4458 0.5032 0.4616 0.4331 0.3921 0.5060 0.4363 

PG11(MW) 0.5411 0.5257 0.5127 0.1788 0.1952 0.1981 0.5454 0.1375 0.1896 
PG13(MW) 0.5143 0.5028 0.5281 0.5822 0.6131 0.6129 0.5246 0.5364 0.5988 

Fcost ($/h) 643.0 644.30 639.60 651.93 651.71 656.87 644.41 649.24 657.59 

Ee (ton/h) 0.1942 0.1943 0.1948 0.2019 0.2019 0.2014 0.1942 0.2048 0.2017 
 

TABLE V 

SIMULATION RESULTS OF MF FOR CASE1 

Generators MONWOA MOWOA MOPSO MBFA[30] SPEA[7] MOPSO[31] NSBF[22] NSGA[24] NPGA[21] 

PG1(MW) 0.1569 0.1945 0.1390 0.1175 0.1319 0.1524 0.178 0.1358 0.1127 

PG2(MW) 0.3625 0.4130 0.3810 0.3617 0.3654 0.3427 0.3366 0.3151 0.3747 
PG5(MW) 0.6220 0.5764 0.6788 0.7899 0.7791 0.7857 0.7292 0.8418 0.8057 

PG8(MW) 0.7089 0.7110 0.7113 0.9591 0.9282 1.0180 0.5908 1.0431 0.9031 

PG11(MW) 0.590 0.5328 0.5187 0.1457 0.1308 0.0995 0.5766 0.0631 0.1347 
PG13(MW) 0.4114 0.4297 0.4259 0.4916 0.5292 0.4669 0.4474 0.4664 0.5331 

Fcost ($/h) 611.23 613.75 612.54 618.06 619.60 618.54 619.61 620.87 620.46 

Ee (ton/h) 0.2048 0.2028 0.2056 0.2264 0.2244 0.2308 0.2027 0.2368 0.2243 


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TABLE VI 

SIMULATION RESULTS OF BCS FOR CASE2 

Generators MONWOA MOWOA MOPSO PSO[25] 

PG1(MW) 0.3111 0.3394 0.3129 0.1409 
PG2(MW) 0.4174 0.4028 0.3970 0.3442 

PG5(MW) 0.550 0.5682 0.6134 0.6756 

PG8(MW) 0.5718 0.5760 0.5620 0.8397 
PG11(MW) 0.5371 0.5520 0.5002 0.4904 

PG13(MW) 0.4663 0.4174 0.4707 0.3980 

Fcost_vp($/h) 638.68 639.04 639.71 639.65 

Ee (ton/h) 0.1966 0.1969 0.1969 0.2111 

TABLE VII 

SIMULATION RESULTS OF ME AND MFVP FOR CASE2 

Method objective PG1 PG2 PG5 PG8 PG11 PG13 Fcost_vp Ee 

MONWOA 
Best Fcost 0.1793 0.3643 0.5970 0.7067 0.5920 0.4136 627.12 0.2038 

Best Ee 0.4108 0.4625 0.5438 0.3903 0.5414 0.5109 659.35 0.1942 

MOWOA 
Best Fcost 0.1661 0.4073 0.6030 0.7091 0.5699 0.3989 627.87 0.2039 
Best Ee 0.4029 0.4101 0.5549 0.3831 0.5916 0.5144 657.41 0.1945 

MOPSO 
Best Fcost 0.1881 0.3774 0.6157 0.7114 0.4894 0.4756 629.44 0.2031 

Best Ee 0.4006 0.4381 0.6193 0.3907 0.5225 0.4891 657.71 0.1946 

PSO[17] 
Best Fcost 0.0994 0.3625 0.4835 0.8736 0.6643 0.3900 626.96 0.2139 

Best Ee 0.3788 0.3932 0.4995 0.5344 0.5734 0.4865 659.44 0.1957 

TABLE VIII 

SIMULATION RESULTS OF BCS FOR CASE3 

Generators MONWOA MOWOA MOPSO 

PG1(MW) 0.2202 0.2101 0.1737 
PG2(MW) 0.3821 0.4396 0.3842 

PG5(MW) 0.8077 0.8111 0.8267 

PG8(MW) 0.4311 0.5190 0.4448 
PG11(MW) 0.6038 0.5002 0.6348 

PG13(MW) 0.4046 0.370 0.3861 

Ploss (MW) 1.5496 1.5965 1.6267 

Ee (ton/h) 0.2016 0.2026 0.2040 
 

TABLE IX 
SIMULATION RESULTS OF MP AND ME FOR CASE3 

Method objective PG1 PG2 PG5 PG8 PG11 PG13 Ploss Ee 

MONWOA 
Best Ploss 0.2200 0.2964 0.8408 0.4853 0.6402 0.3636 1.2423 0.2235 

Best Ee 0.4112 0.4623 0.5452 0.3884 0.5452 0.5079 2.6211 0.1942 

MOWOA 
Best Ploss 0.2022 0.4468 0.7834 0.5540 0.5021 0.3637 1.3661 0.2229 

Best Ee 0.4150 0.4625 0.5628 0.4493 0.5196 0.4514 2.6592 0.1946 

MOPSO 
Best Ploss 0.2492 0.2964 0.8573 0.4560 0.6321 0.3575 1.4376 0.2232 
Best Ee 0.3954 0.4513 0.5280 0.4147 0.6020 0.4708 2.8238 0.1945 

 

2) Case5: Optimization of Ploss and Ee 

In case5, The MONWOA, MOWOA and MOPSO are 

tested for minimization of Ploss and Ee. The Pareto front 

formed by a series of Pareto solutions obtained by the three 

algorithms is shown in Fig. 12. It obviously shows that 

MONWOA method obtains the Pareto front with more 

superior performance. As we can see in TABLE XII, the 

BCS solution of MONWOA algorithm with 1.1389 ton/h of 

Ee and 13.37 MW of Ploss dominates the BCS solution of 

MOWOA and MOPSO algorithms. Especially in the 

objective of power loss, the proposed algorithm obtains 

smaller value compared to other two comparison algorithms. 

As is shown in Fig. 13 and TABLE XIII, the MP and ME of 

the MONWOA method are 9.47 MW and 1.0343 ton/h, 

respectively. The obtained results is better than other two 

methods. 

 
Fig. 10. The simulation results of case4 obtained by MONWOA, 

MOWOA and MOPSO 

 
Fig. 11. The Pareto fronts of MONWOA in case4 
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Fig. 12. The simulation results of case5 obtained by MONWOA, 

MOWOA and MOPSO 

 
Fig. 13. The Pareto fronts of MONWOA in case5 

 

TABLE X 

SIMULATION RESULTS OF BCS FOR CASE4 

Generators MONWOA MOWOA MOPSO 

PG1(MW) 224.23 219.06 222.35 

PG2(MW) 100.0 99.97 99.89 

PG3(MW) 87.37 85.50 83.62 

PG6(MW) 99.96 99.65 99.32 

PG8(MW) 340.29 344.74 348.20 

PG9(MW) 99.94 99.70 99.92 

PG12(MW) 312.57 321.33 316.10 

Fcost ($/h) 43118.61 43205.42 43170.06 

Ee (ton/h) 1.2622 1.3005 1.2999 

 

TABLE XI 

SIMULATION RESULTS OF ME AND MF FOR CASE4 

Method objective PG1 PG2 PG3 PG 6 PG 8 PG 9 PG 12 Fcost Ee 

MONWOA 
Best Fcost 139.98 99.67 43.33 99.96 431.87 99.98 349.84 41665.88 1.8080 

Best Ee 331.61 99.66 140.0 99.95 261.33 100.0 238.72 48503.43 1.0341 

MOWOA 
Best Fcost 137.29 98.14 41.98 98.91 427.45 99.28 366.41 41904.44 1.8335 

Best Ee 327.69 99.97 140.0 99.78 266.34 100.0 244.87 48608.82 1.0519 

MOPSO 
Best Fcost 139.36 99.97 41.54 98.63 433.87 99.76 358.08 41945.69 1.8553 

Best Ee 327.01 99.64 140.0 100.0 270.44 100.0 238.73 48468.16 1.0455 

 
TABLE XII 

SIMULATION RESULTS OF BCS FOR CASE5 

Generators MONWOA MOWOA MOPSO 

PG1(MW) 220.76 227.81 215.47 

PG2(MW) 100.0 98.35 98.51 

PG3(MW) 139.96 138.18 139.95 

PG6(MW) 99.69 99.92 100.0 

PG8(MW) 275.37 266.90 275.26 

PG9(MW) 99.96 99.83 100.0 

PG12(MW) 328.42 333.62 335.62 

Ploss (MW) 13.37 13.80 14.01 

Ee (ton/h) 1.1389 1.1448 1.1574 

 

TABLE XIII 

SIMULATION RESULTS OF MP AND ME FOR CASE5 

Method objective PG1 PG2 PG3 PG 6 PG 8 PG 9 PG 12 Ploss Ee 

MONWOA 

Best Ploss 162.04 53.56 140.00 100.00 294.67 100.00 410.00 9.47 1.4588 

Best Ee 330.22 100.00 139.87 100.00 262.29 99.90 239.19 20.67 1.0343 

MOWOA 

Best Ploss 121.35 91.01 139.54 95.96 303.24 99.60 410.00 9.89 1.4489 

Best Ee 334.90 100.00 139.88 100.00 258.67 100.00 239.07 21.71 1.0360 

MOPSO 
Best Ploss 145.20 75.41 130.04 100.00 301.81 98.77 410.00 10.43 1.4555 

Best Ee 331.59 100.00 140.00 100.00 260.05 100.00 240.92 21.76 1.0364 

 

TABLE XIV 
SIMULATION RESULTS OF ME AND MF FOR CASE6 

MONWOA  MOWOA  MOPSO 

Fcost ($/h) Ee (ton/h)  Fcost ($/h) Ee (ton/h)  Fcost ($/h) Ee (ton/h) 
58025.08 2.7771  58428.15 2.9902  59138.62 2.7248 
68222.51 0.6090  66764.67 0.7743  68590.75 0.7028 
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Fig. 14. The simulation results of case6 obtained by MONWOA, 

MOWOA and MOPSO 

 
Fig. 15. The Pareto fronts of MONWOA in case6 

TABLE XV 

SIMULATION RESULTS OF BCS FOR CASE6 

Generators MONWOA MOWOA MOPSO Generators MONWOA MOWOA MOPSO 

PG4(MW) 5.0 5.0 5.0 PG66(MW) 115.44 107.89 106.08 

PG6(MW) 5.0 28.92 5.0 PG69(MW) 52.0 74.10 43.11 

PG8(MW) 5.01 5.21 5.02 PG70(MW) 31.81 30.02 30.20 

PG10(MW) 115.32 124.40 155.27 PG72(MW) 10.0 10.0 10.0 

PG12(MW) 299.79 298.90 290.05 PG73(MW) 5.0 5.02 5.02 

PG15(MW) 10.32 10.43 10.83 PG74(MW) 5.11 5.0 5.02 

PG18(MW) 88.88 99.88 76.98 PG76(MW) 28.40 25.0 25.0 

PG19(MW) 5.0 5.08 5.02 PG77(MW) 25.0 25.0 25.11 

PG24(MW) 5.0 5.02 5.10 PG80(MW) 283.18 298.47 300.0 

PG25(MW) 100.16 100.02 100.0 PG82(MW) 32.22 25.93 68.23 

PG26(MW) 100.0 100.0 100.0 PG85(MW) 10.35 28.35 10.04 

PG27(MW) 9.19 9.02 8.02 PG87(MW) 242.24 238.23 170.73 

PG31(MW) 8.08 8.0 8.0 PG89(MW) 188.39 164.06 173.69 

PG32(MW) 99.39 25.09 25.02 PG90(MW) 8.12 8.06 8.0 

PG34(MW) 8.53 8.02 8.01 PG91(MW) 20.37 20.01 20.02 

PG36(MW) 25.03 25.15 25.0 PG92(MW) 121.64 140.20 168.71 

PG40(MW) 8.0 8.15 8.14 PG99(MW) 201.58 158.53 216.51 

PG42(MW) 8.01 8.0 8.0 PG100(MW) 193.83 191.37 146.47 

PG46(MW) 54.69 71.90 98.08 PG103(MW) 8.03 8.0 8.0 

PG49(MW) 249.01 250.0 248.46 PG104(MW) 28.18 29.64 25.13 

PG54(MW) 50.10 50.0 50.16 PG105(MW) 25.0 25.06 25.0 

PG55(MW) 25.23 25.0 25.05 PG107(MW) 8.0 8.07 8.01 

PG56(MW) 25.0 25.0 25.0 PG110(MW) 25.97 25.0 25.44 

PG59(MW) 50.98 50.0 50.70 PG111(MW) 25.0 26.04 25.25 

PG61(MW) 199.18 199.92 199.04 PG112(MW) 30.88 25.63 25.01 

PG62(MW) 53.29 25.17 97.34 PG113(MW) 55.06 100.0 76.96 

PG65(MW) 420.0 420.0 420.0 PG116(MW) 26.50 43.60 44.73 

Fcost ($/h) 61183.34 61558.66 61838.56 Ee (ton/h) 1.4083 1.4418 1.4607 

D. Trials on system 3 

1) Case6: Optimization of Fcost and Ee 

To verify the effectiveness of the proposed algorithm in a 

large bus system, two objectives of Fcost and Ee are 

optimized at the same time on the IEEE 118 bus system. 

The Pareto fronts of three method are given in Fig. 14. It 

can be intuitively seen that MONWOA can obtain a better 

distribution of Pareto front. Furthermore, Fig. 15 give the 

value of ME and MF. TABLE XV and TABLE XIV give 

the details of BCS solutions and the boundary solution. The 

BCS of MONWOA algorithm, which includes 61183.34 $/h 

of Fcost and 1.4083 ton/h of Ee. It obviously shows that the 

BCS of MONWOA method is better than the ones found by 

MOWOA and MOPSO algorithm. Besides, the proposed 

method is capable to obtain 58025.08 $/h of MF and 0.6090 

ton/h of ME. It can be seen that the proposed algorithm 

MONWOA is superior to MOWOA and MOPSO algorithm, 

especially in the complex structure and large scale IEEE 

118 bus system. 

E. Performance evaluation 

The time complexity of the algorithm represents by the 

running time, which is used to evaluate the performance of 

the algorithm. TABLE XVII shows the running time of the 

six cases of the three algorithms. The running time of the 

proposed MONWOA method is longer than MOPSO 

algorithm, but shorter than MOWOA method. 

In order to further verify the superiority of the proposed 

algorithm, the Wilcoxon signed ranks method is adopted. 

Furthermore SP and GD performance indicators were 

selected to evaluate MONWOA, MOWOA and MOPSO 

method. The SP and GD indicators are employing to 

evaluate the distribution and convergence of Pareto optimal 

solution set. 

1) Wilcoxon signed ranks method 

In the Wilcoxon signed ranks method, it adds the rank of 

the absolute value of the difference between the observation 

value and the center position of the null hypothesis 

according to different signs as its test statistic. The optimal 
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compromise of Fcost and Ee of MONWOA are compared 

with the ones of other algorithms. The Wilcoxon test results 

are exhibited in TABLE XVI. 

TABLEXVI 
WILCOXON TEST RESULT FOR CASE1(REF=MONWOA(Fcost=621.12, 

Ee=0.1972)) 

Method Fcost ($/h) T Ee (ton/h) T 

MOWOA 622.08 + 0.1973 + 

MOPSO 622.54 + 0.1975 + 

MBFA[21] 629.56 + 0.2080 + 

SPEA[5] 629.59 + 0.2079 + 

MOPSO[22] 626.10 + 0.2106 + 

NSBF[15] 621.71 + 0.1983 + 

DE[13] 626.03 + 0.1979 + 

NSGA-II[18] 625.36 + 0.1984 + 

  R+=36 R-=0  R+=36 R-=0 

  p=0.0117  p=0.0117 

The values of p (p=0.0117 and 0.0117 in system 1 for 

case1) are all far less than the significance level (α=0.05), 

the optimal compromise of Fcost and Ee are all more 

optimized by our proposed MONWOA method, a 

conclusion can be drawn that the MONWOA’s 

outperformance is significant. 

2) SP 

The SP indicator has been defined in (30), it evaluates 

the distribution of the Pareto optimal solution set by 

calculating the variance range of the neighbor solution. The 

meaning of the specific symbols in the following formula 

are clearly stated in the literature [38].Which can be 

expressed as follows: 

 

2
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1 1

1

Nr Nr

i i

i i

SP d d
Nr Nr
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 
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Boxplot is a commonly technique for data analysis, it can 

intuitively represent the median and abnormal values of 

data. Fig. 16 shows the boxplots of SP indicator for 

MONWOA, MOWOA and MOPSO among case1-6. It 

clearly shows that the proposed algorithm MONWOA has a 

lower value of SP than two comparison method, which 

indicate that it can obtain the Pareto solution with better 

distribution. The average and standard deviation of SP 

index are shown in TABLE XVIII. As we can see, the value 

of average and standard deviation of MONWOA are better 

than the other two algorithms, it also shows that the 

MONWOA method has certain competitive advantages in 

these cases. 

3) GD 

The GD indicator is used to describe the distance 

between the Pareto optimal solution obtained by the 

algorithm and the real Pareto solution of the problem, the 

GD=0 indicate that all the solution is the real Pareto 

solution [38, 44]. Which can be described as follow: 

 

2

1

n

i

i

d

GD
n





 (32) 

where n represents the number of all solutions, di is the 

distance between the ith solution and the true Pareto 

solution. 

The boxplots of GD for three method among case1-6 are 

shown in Fig. 17, it intuitively indicates that the MONWOA 

can obtain the optimal Pareto solution set closest to the true 

Pareto solution, which dominates the MOWOA and 

MOPSO method. TABLE XIX shows the value of mean 

and standard deviation of three method. It can be seen that 

the proposed method can get a lower value of mean and 

standard deviation than the other comparison method. It 

shows that the MONWOA algorithm has better stability in 

handling the EED problem. 

   

   

Fig. 16. Boxplots of SP for MONWOA, MOWOA and MOPSO method 
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Fig. 17. Boxplots of GD for MONWOA, MOWOA and MOPSO method 

 

TABLE XVII 

The Average Running Time (sec) of MONWOA, MOWOA and MOPSO Method 

algorithm case1 case2 case3 case4 case5 case6 

MOPSO 225.80 229.06 227.56 340.84 345.95 1243.26 

MONWOA 234.24 237.78 230.44 348.65 354.81 1281.54 

MOWOA 241.56 245.38 243.84 359.23 367.42 1321.92 

 

TABLE XVIII 

THE MEAN AND STANDARD DEVIATION OF SP FOR MONWOA, MOWOA AND MOPSO METHOD 

Indicator 
Test 

Case 

MONWOA  MOWOA MOPSO 

mean deviation  mean deviation mean deviation 

SP 

Case1 0.13064 0.01704  0.36136 0.03139 0.20448 0.03017 

Case2 0.15237 0.00644  0.19496 0.00947 0.18017 0.01128 

Case3 0.00719 0.00066  0.06404 0.02074 0.07026 0.01212 

Case4 16.6669 1.91010  19.6055 1.97604 21.8522 2.67388 

Case5 0.06145 0.00524  0.08047 0.01012 0.08629 0.01291 

Case6 17.8431 1.08477  26.4510 2.49917 19.2825 1.95756 

 

TABLE XIX 
THE MEAN AND STANDARD DEVIATION OF GD FOR MONWOA, MOWOA AND MOPSO METHOD 

Indicator 
Test 

Case 

MONWOA  MOWOA  MOPSO 

mean deviation  mean deviation  mean deviation 

GD 

Case1 0.03759 0.00765  0.07396 0.02309  0.06440 0.02238 

Case2 0.03574 0.00725  0.05336 0.01802  0.07157 0.01833 

Case3 0.00875 0.00186  0.02108 0.00497  0.01607 0.00718 

Case4 0.47001 0.08934  0.73718 0.22209  0.58026 0.18142 

Case5 0.02468 0.00580  0.04365 0.01450  0.04159 0.01217 

Case6 0.74925 0.18586  1.51665 0.37507  1.24684 0.31512 

 

V. CONCLUSION 

In order to deal with EED problems more effectively and 

ensure the economic, environmental and safe operation of 

the power system, a novel MONWOA is proposed in this 

paper. The MONWOA method obtains a better Pareto 

solution by balancing exploration and exploitation of the 

algorithm and the handling method of constraints. Six 

experiments carried on IEEE 30 bus, 57 bus and 118 bus 

systems have proved the effectiveness of the three 

algorithms in dealing with EED problems. Compared with 

MOWOA and MOPSO methods, the results of Pareto fronts 

and the BCS show the superiority of WONWOA to solve 

EED problems. Furthermore, the result of SP and GD 

indicates, it is obvious that MONOWA method were 

outstanding than MOPSO and MOWOA method. 
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