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Abstract—We propose a method based on an empirical 

formula for solving the problem of verifying the strength of a 

columnar curved plate in a flow field. The deformation 

equation of the columnar curved plate was established first. 

Considering the difficulty of the analytical solution, it is 

assumed that the unilateral curved plate only experiences 

torsional deformation that is linearly distributed along the 

exhibition direction, which could reduce motion to a single 

degree of freedom. Aerodynamic load models with different 

airspeeds and attack angles were established based on lift line 

theory and strip assumptions. The failure points and dangerous 

stress on the columnar curved plates, which are unilaterally 

fixed, partially connected branches, were obtained using the 

theory of material mechanics. The results were verified using 

finite element simulation software. Considering that the 

dynamic load on the curved plate structure in a flow field is 

much larger than that of a static load, an empirical relationship 

between the static and dynamic loads is obtained based on a 

large number of previous simulation and test results. Taking a 

certain structure as an example, the dynamic load in the flow 

field is simulated and analyzed using the empirical formula, 

which provides a theoretical basis for strength design and 

analysis of this type of structure. 

 
Index Terms—Rotary curved plate; lift line theory; strength 

checking; finite element; dynamic load 

 

I. INTRODUCTION 

OLUMNAR curved panels are widely used in aviation, 

aerospace, shipbuilding, and civil engineering to build 

aircraft wing skin structures [1], piezoelectric wind 

generators [2], wrap-around fins in missiles, blast furnace gas 

dehydration devices [3], and turbine blades in a turbocharger 

[4]. These panels have smooth appearance, strong bending 

and torsional resistance, and are light weight. All the 

structures mentioned above exist in a flow field environment 

and with a high-speed rotating working mode, which leads to 

occasional structural damage resulting from large 

deformation. Methods for verifying the strength of columnar 

curved plates under an applied load in a flow field has 

remained the focus of many researchers [5] . In early studies 

on the strength of curved panels, many researchers assumed 
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that the curved panel was an ideal homogeneous structure, 

and the ultimate load of the curved panel was equal to the 

elastic critical buckling load. Redshaw [6] and Timoshenko 

[7] obtained different expressions describing the elastic 

critical buckling stress using the energy method and an 

approximate expression for the displacement field, 

respectively. In recent years, the development of finite 

element software has provided an effective numerical method 

for analyzing the strength of curved plate structures. Given 

the lack of a formula in the European Standard for predicting 

the ultimate load of columnar curved panels, Le Tran [8] used 

the finite element method to calculate the stability of metallic 

columnar curved plates and proposed a semi-empirical 

formula for predicting the ultimate strength of columnar 

curved plates subjected to axial compressive loads, thus 

combining the numerical solution with the verification 

process for plate and shell stability in Euro Code 3. 

Considering the influence of different structural parameters 

and boundary conditions on stability, Martins [9], Shariati 

[10], Han [11], and Sun LY [12] studied the elastic buckling 

behavior of columnar curved plates using finite element 

method and through experiments; the various results were 

consistent with each other. Li [13], Chen [14], and Huan [15] 

analyzed the stability of composite-stiffened curved panels 

using experimental and finite element methods. Fan [16-18] 

studied the defect susceptibility of a composite curved plate 

and analyzed the influence of different defects on the 

ultimate load.  

Although the results from the finite element method are 

typically accurate, the finite element method is not applicable 

in engineering design due to the huge number of required 

calculations and the long calculation period [19-21].  

Based on previous studies, Li [22] proposed a relatively 

concise engineering method for calibrating the strength of a 

columnar curved plate, which is consistent with experimental 

results. However, this method only considers the structural 

stress of curved plates with different parameters under a 

certain load and the dynamic strength under different 

dynamic conditions. Considering a curved plate as an elastic 

structure in a flow field will redistribute the aerodynamic 

load; the stress at the failure point will change accordingly, 

which means that the original verification method will be 

biased towards failure. Based on classical aeroelastic 

analysis, this study develops a method for verifying the 

strength of columnar curved plates with different structural 

parameters in a flow field in order to provide a theoretical 

basis for the design of such structures. 
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II. OPEN CYLINDRICAL SHELL DEFORMATION MODEL 

The open cylindrical shell model is shown in Figure 1. 0  

is an angle that defines curvature, c  is the length of a chord, 

x  is the bus on the middle surface, and s R   is the 

circumference. / 2R r b   is the radius of curvature along 

the direction of the circumference, r  is the radius of the 

missile, and b  is the thickness of the wing. E  is the elastic 

modulus and   is Poisson's ratio. The dimensionless 

coordinates are /x R   and   . Stress concentration 

along the bus and the circumference are ignored in this model, 

while nq  defines stress concentration along the direction 

normal to the middle surface. 
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Fig.1 Cylindrical shell model 

An auxiliary function ( , )   is introduced, which is 

used to calculate the displacement components u , v , and w  

(defined along x , s , and normal to the middle surface, 

respectively): 
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 According to the cylindrical shell simplification theory, 

the deformation problem can be solved by solving the 

following eight-order partial differential equations under 

given boundary conditions [8]: 
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The boundary condition of the curved plate  is unilaterally 

clamped, and the remaining three sides are free. The auxiliary 

function is defined in the following three sets of partial 

differential equations: 
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(5) 

( , )   can be determined from the set of four equations 

in equation  (3), then we could get  displacement u , v , and 
w . The three strain components on the middle surface can be 

defined in terms of the moment of a cylindrical shell [8]: 
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(6) 

The curvature change and twist rate are 
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(7) 

However, it is difficult to determine the form of the 

auxiliary function that meets all the boundary conditions in 

the above model. Therefore, the above equation can only be 

solved using numerical methods. Therefore, it is necessary to 

develop a relatively simple alternative model that facilitates 

engineering strength verification. 

III. UNILATERALLY FIXED MODEL 

Most curved plate structures are unilaterally fixed and 

locally connected. Without loss of generality, a structural 

model can be constructed, as shown in Fig.1. The angle in the 

spanwise direction is 0 ; Rc  and Tc  are the root string and 

sharp string, respectively; the section width of the fixed 

branches is Rmc , which are located at distances p  and 

q away from the front and rear edges of the root, 

respectively. 
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Fig. 1 Unilaterally fixed curved plate model  

 

An analytical solution to the deformation equation 

describing the plate-shell structure under the action of a 

specific distributed load is difficult to obtain. Lift line theory 

is used to simplify the calculation of the aerodynamic load on 

the aircraft. It is considered that the flow field load of the 

curved plate is the normal force acting on the lift line at 1/4 

the length of the chord. 

The curved plate is considered to be composed of a series 

of strip elements. Regardless of the ternary effect of the fluid 

along the span direction, the load produced by the flow field 

load on each strip is assumed to be related only to the local 

flow velocity and direction[23]. 

The load produced by the flow field generates a torsion 

angle q  at the sharp string. The torsion distribution on the 

curved plate can be approximated as linear. Therefore, the 

rotation angle of the strip T  corresponding to the curvature 

  should be 
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Let   be the angle between the flow direction and the root 

string. According to the system geometry, the angle between 

the strip and the incoming flow should be 

2( ) sin ( ) 1 a     

               

(10) 

This angle appears in the following equation: 
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a
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According to lift line theory, the load distribution 

produced by the flow field can be expressed as follows [20]: 

   1dL qca rd                    (12) 

The Lagrange method is used to solve the problem 

according to classical aeroelastic analysis theory, yielding the 

torsion angle q ， when the sharp string has an incremental 

twist angle, there should be an incremental twist angle d  

on strip T : 
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Due to the incremental torsion angle on strip T , the 

incremental work done by the flow field is ( )
4

c
dL d .  

The total incremental work is found by integrating the over 

the entire curve: 
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The strain energy corresponding to torsional deformation 

is 
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q  can then be taken as the generalized coordinate and 

substituted into the Lagrange equation: 
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q  can be solved using the above equation and 

substituted into Eq. (12), yielding the load distribution on the 

lift line. 

IV. STATIC STRENGTH VERIFICATION 

During static load strength verification, the load on the 

curved plate produced by the flow field can be regarded as a 

combination of a bending moment and torque. Therefore, the 

bending stress and torsional stress must be calculated 

separately. 

A. Bending stress calculation 

Figure 2 shows the coordinate system used to calculate 

bending stress.  

 
Fig. 2 Flow field load decomposition Lift action line 

The load on the lift line is projected along the z axis and 

the y axis. The z and y components are 
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The relationship between x  and   is 
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Let the force acting on the fixed branch A along z (i.e., the 

axial direction) be ( )( )Az Rf x p x p mc   .  

Let the force acting on the fixed branch B along z (i.e., the 

axial direction) be 

F

x

Fs

x

M

x

. 

The following equation can be obtained in static 

equilibrium: 
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The moment at any point on the fixed branch A is 
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The load distribution on the fixed branch can be calculated 

by combining Eqs. (20) and (21). 
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Fig. 3 Load, stress, and torque distributions. 

The force can be approximated as a uniform distribution if 

the width of the fixed branch is much smaller than the width 

of the root [19]. Eqs. (20) and (21) can be rewritten as 

follows: 
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Solving the Eqs. (22) and (23) yields 
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Therefore, the bending moment at the failure point in the 

xz  plane is 
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The bending moment at the failure point in the xy  plane is 
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The synthetic bending moment is 
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This yields the stress value at the failure point:  
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B.  Calculation of torsional stress 

The distributed load ( )dL   generates a moment at the 

root of the curved plate, resulting in the following torque 

distribution: 

( ) ( ) sinxT x dL r  
                   

(30) 

The total torque is found by integrating along the 

projection of the lift line at the root: 
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The inner bending moment along the exhibition direction 

can be approximated as being uniformly distributed along the 

fixed branch portion. According to the equilibrium 

conditions, we obtain 
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(32) 

Therefore, the shear stress on the section of the fixed 

branch portion should be  

2 2
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C.  Example analysis  

For the combined bending and torsion moment, the 

structural failure point is in the two-direction stress state, and 

the principal stresses should be 
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(34) 

According to third strength theory, the strength condition 

is 

2 2

1 3 4 [ ]       
             

(35)
 

A certain curved plate structure is taken as an example for 

analysis. Let nc  be the distance between the fixed branch 

portion and the front and rear edges. The structural 

parameters are shown in Table 1. 
TABLE 1  

CURVED PLATE STRUCTURE PARAMETERS 

Radian 0  1.57 rad Thickness d  0.006 m  

Curve r  0.061 m Density 7.9×103 kg/m3 
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Chord length c  0.155 m 
 

 

After substituting these parameters into the above 

equation, we obtain 

22 4 1
26.22

( 2 1)

m n
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   

           
(36)

 

21
573.01 V

m
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(37)

 
The following conclusions can be drawn after comparing 

Eqs. (36) and (37):  

1. The torsional stress is the primary factor in strength 

verification as it is much larger than the bending stress. 

2. The structural strength primarily depends on the width 

of the fixed branch portion, while its position has little effect. 

3. The failure stress is proportional to the product of the 

square of the velocity and the incoming flow angle. 

Figure 4 shows the variation in the failure stress as the 

width of the fixed branch portion, square of the incoming 

flow velocity, and incoming flow angle change. 

 
Fig. 4 Variation of the dangerous stress 

In order to verify the reliability of the model, the finite 

element simulation software ANSYS was used to simulate 

the stress on the cylindrical curved plate under a flow field of 

2.5
aM  angled at 4°, as shown in Fig. 5. 

 

 
Fig. 5 Simulation of static loading strength 

The simulation results show that the failure stress point 

appears at the vertex of the joint. The stress value is about 

25.35 MPa, and the calculated value in the model is 29 MPa; 

the error is about 14%. This is primarily caused by the 

theoretical calculation error for the lift line. In practical 

applications, a certain scale reduction factor can be 

introduced into the model depending on the actual situation, 

thus that the calculation result could be more accurate. 

V. DYNAMIC STRENGTH VERIFICATION 

A. Empirical formula for dynamic stress 

High speed rotation of the curved plate structure will 

produce a dynamic load that is much larger than the static 

load. Therefore, the influence of the dynamic response of the 

curved plate must be considered during strength verification.  

A large number of finite element simulation calculations 

and experimental results show that the dynamic stress at the 

failure point has the following relationship with static stress: 

d d jK  
                            

(38) 

where dK
 
is the dynamic coefficient, which has a 

nonlinear relationship with the ratio of the first-order natural 

frequency f
 
to the rotational speed 

.


 
of the curved plate, 

as shown in Fig. 6: 

 

Fig. 6 Dynamic coefficient 

The first-order natural frequency of the curved plate can be 

obtained by correcting the natural frequency equation of the 

flat plate with one side fixed and three sides free: 
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2 2
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a gE
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 (39) 
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where 
2a  is a constant. Regarding the first-order natural 

frequency, 
2a  is only slight different when the aspect ratio 

of the rectangular plates changes, thus we take 
2 3.494a  . 

d  is the average thickness, g  is the gravitational 

acceleration, E  is the modulus of elasticity,   is Poisson's 

ratio,   is the density, and   is the correction factor.  

B. Analysis of examples 

The previous curved plate model is analyzed here. Figure 7 

shows the finite element simulation results of the first three 

vibration modes of the curved plate. The first order natural 

frequency was substituted into the model for analysis. 

 

 
Fig. 7 Finite element simulation of the first three vibration modes of curved 

plates. 

Figure 8 shows the static stress and dynamic stress 

responses at the failure point for initial speeds of 1100 r/s, 

1300 r/s, 1500 r/s, and 1700 r/s. 

 

 
 

Initial speed: 1100 r/s 

 
Initial speed: 1300 r/s 

                              

 
Initial speed: 1500 r/s 

 
Initial speed 1700 r/s 

Fig. 8 Comparison of static stress and dynamic stress responses at different 

speeds. 
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The analysis shows that the dynamic stress increases as the 

rotational speed increases. Based on this variation in the 

dynamic coefficient variation, it is not surprising that the 

growth will take the form of an index. Therefore, in order to 

ensure the structural strength requirements of the curved 

plate, the rotational speed must be controlled within a certain 

range in actual applications. 

 

VI. CONCLUSION 

Based on the existing empirical strength verification 

methods for curved plates, the static and dynamic strength 

verification methods combined with aeroelastic analysis 

theory were studied for rotating curved plate structures in a 

flow field. 

First, a unilateral fixed support model of the curved plate 

was established by simplifying the shape deformation model 

of the cylindrical curved plate. Based on this, the load 

redistribution on the curved plate for different flow velocities 

and directions was solved. A static strength verification 

model was established based on material mechanics analysis. 

This method is far more convenient and simpler than the use 

of numerical methods. According to the analysis and 

verification of the example, the accuracy can basically meet 

the requirements of practical applications. 

Second, a dynamic stress verification method is presented 

based on the empirical relationship between the static stress 

and dynamic stress, and the dynamic stress response of a 

specific curved plate model under different initial rotational 

speeds was simulated numerically. The analysis shows that 

the dynamic stress value of the curved plate will increase 

exponentially as the rotational speed increases, which 

provides a theoretical basis for strength design and analysis 

of this type of structure. 

In the stereotyped test of a certain type of rocket, there 

have been many ballistic mid-fall accidents. By comparing 

with the debris recovered from previous tests, it was found 

that the wings were unusually damaged. Through the analysis 

of the data recorded by the missile sensor, it was found that 

during the rocket flight, the abnormal speed accelerated 

dramatically, and the load on the wings increased sharply 

accordingly, and the structure was destroyed, eventually 

leading to flight instability. After the overall redesign of the 

rocket, the speed during its flight is kept within a certain 

range, and such problems have been solved. 

 

REFERENCES 

[1] Zhou J. Yang Z C. He S. Static pressure modification for piston theory 

aerodynamics and its application to the analysis of curved panel flutter. 

Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1512-1519 

[2] FANG Li-qing; ZHANG Lei Modeling and experiments of equivalent 

viscous damping for piezoelectric unimorph cantilevers [J] Optics and 

Precision Engineering 2014.22(3)641-647 

[3] Narimani E, Shahhoseini S. Optimization of vane mist eliminators [J]. 

Applied Thermal Engineering, 2011, 31: 188-193 

[4] WANG Long-kai, BIN Guang-fu, LI Xue-jun, LIU Ding-qu. Effects of 

unbalance Location on dynamic characteristics of high-speed gasoline 

engine turbocharger with Floating Ring Bearings [J]. Chinese Journal 

of Mechanical Engineering. 2016 (02) 

[5] ZHU L, YU Y, WANG H. Effect of defects in cylindrical panels and 

fix-errors on buckling behavior [J]. Acta Aeronauticaet  Astronautica 

Sinica, 2016,37(7):2180-2188 

[6] Redshaw S C. The elastic instability of a thin curved panel 

subjected to an axial thrust, its axial and circumferential edges 

being simply supported[R]. Greenwich: British Aeronautical 

Research Council, 1934 

[7] Timoshenko S P, Gere J M. Theory of elastic stability [M]. 

New York: Mc Graw-Hill,1961:462-468 

[8] LE TRAN K, DAVAINE L, DOUTHE C. et.  Stability of curved panels 

under uniform axial compression [J]. Journal of Constructional Steel 

Research, 2012, 69(1):30-38 

[9] Martins J P, Da Silva L S, Reis A. Eigenvalue analysis of cylindrically 

curved panels under compressive stresses-Extension of rules from EN 

1993-1-5[J]. Thin-Walled Structure, 2013, 68:183-194 

[10] Shariati M. A numerical and experimental study on bucking of 

cylindrical panels subjected to compressive axial load [J]. Strojniki 

Vesthik-Journal of Mechanical Engineering, 2010,56 (10):609-618 

[11] HAN Zi-jian, XUE Yinian, HAN Jinhu, et al. Internal pressure test of 

cylindrical panels [J]. Mechanics in Engineering, 1980(1):46-48. 

[12] Sun L Y, Yu Y, Chen B, et al. A new method for implementation of 

simple supported boundary in stability test of cylindrical panel under 

axial compression[J]. Journal of Mechanical Engineering, 2014, 50(8): 

53-58 

[13] Li C, Wu Z. Buckling of 120° stiffened composite cylindrical shell 

under axial compression- experiment and simulation [J]. Composite 

Structure, 2015, 128: 199-206 

[14] CHEN Huanxing, XUE Kexing. Buckling test of integral stiffened 

waffle cylindrical panels[J]. Acta Mechanica Solida Sinica, 

1982(2):236-246. 

[15] Vescovini R, BIsagni C. Buckling analysis and optimization of 

stiffened composite flat and curved panels [J]. AIAA Journal, 

2012,50(4):904-915 

[16] FAN Qinshan, CHEN Wen. Initial postbuckling and imperfection 

sensitivity of a cylindrical shell [J]. Journal of Tsinghua University, 

1990, 30(2):76-83. 

[17] WU Hongfei, YUAN Shijian, WANG Zhongren, et al.Effect of initial 

defects and proportional loading paths on the elastoplastic stability of 

cylindrical shell[J]. Chinese Journal of Mechanical Engineering, 2003, 

39(2):53-57. 

[18] Martins J P, Beg D, Sinur F, et al. Imperfection sensitivity of 

cylindrically curved steel panels [J]. Thin-Walled Structures, 2015,89: 

101-115 

[19] Huang-Yi Analysis on the wind-induced vibration response and overall 

stability of large-span timberwork single-layer spherical reticulated 

shell [D]. Chongqing University 2014 

[20] Wang Cun-Fu, Zhao-Min, Ge-Tong. Study on the topology optimal 

design of under water presser structure [J]. Engineering Mechanical, 

2015(1): 247-256 

[21] Huang Jin-Qiang, Chen-Jie. Strength and buckling analysis of 

ring-stiffened cylindrical shell with flat ribs [J]. Ship Science and 

Technology 2015(9): 7-11 

[22]  Li Xiao-guang, Li Ming-xing. Engineering Calculation Method of 

WAF Strength [J] Journal of Ordnance, 1995 9(1):37-39 

[23] J.R.Wright, J.E. Cooper. Introduction to Aircraft Aeroelasticity and 

Loads [M]. Shanghai Jiaotong University Press. 2010 

 

 

 

Engineering Letters, 29:1, EL_29_1_11

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 

http://23.104.219.145/kns55/loginid.aspx?uid=M0VUYWNPU282WVdBV2NFT0lXd09qdk8wSEFMR2FHdU1YcUp5YTlobnZlSlpJTjV0&p=Navi%2FBridge.aspx%3FLinkType%3DBaseLink%26DBCode%3Dcjfq%26TableName%3DCJFQbaseinfo%26Field%3DBaseID%26Value%3DGXJM
http://23.104.219.145/kns55/loginid.aspx?uid=M0VUYWNPU282WVdBV2NFT0lXd09qdk8wSEFMR2FHdU1YcUp5YTlobnZlSlpJTjV0&p=Navi%2FBridge.aspx%3FLinkType%3DBaseLink%26DBCode%3Dcjfq%26TableName%3DCJFQbaseinfo%26Field%3DBaseID%26Value%3DGXJM
http://23.104.219.145/KCMS/detail/detail.aspx?filename=YJXB201602006&dbcode=CJFQ&dbname=CJFD2016
http://23.104.219.145/KCMS/detail/detail.aspx?filename=YJXB201602006&dbcode=CJFQ&dbname=CJFD2016
http://23.104.219.145/KCMS/detail/detail.aspx?filename=YJXB201602006&dbcode=CJFQ&dbname=CJFD2016



