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Abstract—In this paper, we mainly propose a new parameter-
free filled function, which derives from two inverse trigono-
metric functions. First, we accomplish the analytical studies,
to prove that filled function proposed in this paper possess
all the properties of filled function. Secondly, based on this
parameter-free filled function, a comparatively new algorithm
was built. Finally, we implemented the algorithm to solve
unconstrained global optimization problems. The computational
results demonstrated in this paper revealed the effectiveness of
the proposed filled function compared to some related results
of the filled functions in the literature.

Index Terms—Global optimization, filled function method,
nonlinear programming, global minimizer, auxiliary function
approach.

I. INTRODUCTION

Awide attention to the topic of global optimization has
led many scholars to come up with new methods. The

global optimization methods are divided into metaheuristic
and deterministic approaches. Metaheuristic algorithm deals
with the black box optimization problem (see for example
[1], [2], [3]). On the other hand, problems with clearer math-
ematical structures are usually solved by the deterministic
approach. Modified objective function method is one typical
example of the deterministic approach. This technique mod-
ifies the objective function to find a new initial point once
the local minimizer has been located. Tunneling function [4]
and filled function [5] are both representation of a modified
function approach or better known as an auxiliary function
approach. Those two methods have been proven to be reliable
in finding the global minima of a multidimensional function.
Tunneling function method applies two phases alternately
in its algorithm: minimizing and tunneling step. The prior
is to minimize the objective function and the later is to
find the zero point of the defined modified function. Shortly
after, many researchers found that phase 2 in the tunneling
algorithm was not easy, because we deal with how to obtain
the zero point of function with variables. This obstacle then
was improved by filled function method.
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Newton’s method, steepest descent method, conjugate
gradient method, BFGS method, and so on have only the
capability to obtain local minimizer. However, it does not
mean that those local minimum methods cannot be exploited
to locate the global one. Filled function method involves local
downhill routine in its algorithm. The mechanism of the filled
function method is as follows.

1) Minimizing the objective function starting from any
point in its feasible domain;

2) Creating the auxiliary function (we call it filled func-
tion) of the objective function at a local minimizer
obtained in the first step

3) Minimizing the filled function;
4) Using the minimizer that is obtained in the third step

as an initial point and returning to the first step;

If we run the algorithm until the predetermined stopping
criterion is met, the global minimizer of the cost function
can lastly be obtained.

Filled function method is the original work of Renpu Ge.
It firstly appeared in [5]. From [5], we know that many filled
functions can be formed as long as they satisfy three condi-
tions stated in the filled function definition. One original and
specific filled function was given in [5]. Unfortunately, some
conditions could be met by the two modifiable parameters
in its function during the computer iteration. If the intended
conditions are not satisfied by those parameters, the global
optimization problem can be unsolvable. One other issue that
is lacking in Ge’s filled function is the involvement of the
exponential term. This transcendent function makes the graph
of Ge’s filled function is almost flat when the feasible domain
is huge [6]. When it happens, the minimizer of the filled
function obtained is nothing but the pseudo minimizer. Filled
functions in [6] attempted to reduce the number of parameter
and the effect of the exponential function by providing 7
new filled functions. However, exponential and logarithmic
functions and parameter are still incorporated. Consequently,
those filled functions underwent the same deficiencies as
filled function in [5] did.

One parameter filled functions have been widely con-
ceived. Both theory and applications are developed. For
example, in [7], a new filled function definition is offered.
They replaced the third property of the filled function in
[5]. Instead of requiring the existence of the minimizer of its
filled function, they compared the value of the filled function
in two regions. By this novel property, they claimed that it is
easier to find a point in a basin that was lower than a basin
that contained a minimizer found so far (the definition of
basin can be studied in [5]). A new class of parametric filled
function was also proposed in [7]. This filled function was
discontinuous at some points. The aforementioned property
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resulted in limited use of the local downhill methods to
minimize the filled function. Other filled functions that have
one parameter in its function can be studied in ([8], [9], [10],
[11]). Although the computational experiences perform that
the methods are able to solve the global optimization prob-
lems, the parameter requires updating during the iterations.
This sensation has the possibility that the global optimization
process will stop at a local minimizer. The Ge’s algorithm
that has previously been mentioned is simplified by algorithm
given in [12] because the filled function in [12] has the same
minimizer of the objective function. The property of filled
function given in [12] allows us to only minimize the cost
function once. After that, we only need to minimize filled
function simultaneously, and this increases the effectiveness
the algorithm. However, the numerical results show that the
algorithm provided in [12] requires more iteration to obtain
the less accurate global minimum.

Filled function method was not only intended to solve the
smooth global optimization without any restrictions, but also
can be employed to solve any other optimization problems.
For instance, filled functions in [13] and [14] are proposed to
find global minimizer of the constrained global optimization
problem, where all the constraints are inequality. However,
filled function in [13] includes three piecewise functions
and a parameter. So, the form of the function is quite
complicated. Filled function can also be applied to nonlinear
equations, for example, filled functions given in [15] and
[16]. They solved nonlinear equations by first converting it
into global optimization problem. Nevertheless, parameter in
their filled functions becomes a barrier in the algorithm.
The competencies of the filled function have also been
proved to be reliable for solving non-smooth constrained or
unconstrained global optimization (see [17], [18], [19]). The
unique way of utilizing filled function method is shown in
[20]. In that literature, the original multi-dimensional objec-
tive function is transformed into one dimensional function
by using smoothing filled function. Based on this filled
function, they proposed a new algorithm. Although this
method promises a new way and evidenced to be dependable
to solve unconstrained global optimization problems, but the
new algorithm is complex.

It had been discussed in [5] that the ideal filled function is
function that does not contain parameter. Based on this fact,
parameter-free filled function was initially given in [21] and
is defined as follows:

G (x, x∗m) = −s (h(x)− h (x∗m)) ‖x− x∗m‖
2
, (1)

where s : R→ R is a sign function

s(t) =

{
1, t ≥ 0
−1, t < 0

,

and x∗m is the firstly obtained local minimizer of the objective
function h. From Equation (1), it is clear that the value of
(1) changes at x = x∗m. This discontinuous point is used as
a stopping criterion in the algorithm to minimize Equation
(1). Consequently, the effective well-established gradient-
based local downhill procedures cannot be implemented.
This reduces the plus point of Equation (1). The ones
proposed in [22] come up with a relatively new parameter-

free filled function. The formula is as follows:

G (x, x∗m) = −s (h(x)− h (x∗m)) arctan
(
‖x− x∗m‖

2
)
,

(2)
with s is a sign function as in Equation (1). Even though the
use of arctan function in Equation (2) prevents the overflow
effect in the computational experiment, the ineffectiveness
caused by the discontinuous point will be experienced by
Equation (2).

The drawbacks faced by Equations (1) and (2) are then
addressed by continuously differentiable filled functions sug-
gested in [23] and [24]. The formulas are expressed in
Equations 3 and 4 respectively.

G (x, x∗m) = −‖x− x∗m‖
2
$ (h(x)− h (x∗m)) , (3)

with $ : R→ R is a single variable function,

$(t) =

{
1, t ≥ 0
− exp

(
t2
)
+ 2, t < 0

G (x, x∗m) =
1

1 + ‖x− x∗m‖
2$ (h(x)− h (x∗m)) , (4)

with $ : R→ R is

$(t) =

{ π/2 t ≥ 0
π/2− arctan

(
t2
)

t < 0
.

Equation (3) was successful in finding global maxima of
13 problems. They have done 10 runs for each problem.
However, it can be seen from its numerical results, that filled
function in (3) is inefficient. This can mainly be seen from the
number of iterations, function evaluation, and the successful
rates. Exponential function was one of the factors causing
it. Equation 4 is free from the exponential term and has
been proven to be reliable for solving the given optimization
problems. Both filled functions are claimed to fulfill three
conditions requested by the filled function definition. How-
ever, we examine that filled functions in [23] and [24] fail
to satisfy the third condition of the filled function definition.
We will prove this through a counterexample, which will be
explained in section 3.

After analyzing the filled functions that currently exist,
this paper attempts to propose a new parameter-free filled
function. This function derives from the combination of two
inverse trigonometry functions. The study of the properties
of the proposed filled function, including discussion of a
particular condition that must be met by the intended filled
function to qualify as a filled function, will be studied
comprehensively. The implementation to some unconstrained
global optimization problems have been done. To ensure that
our filled function is better than those in the literature, some
comparison has also been accomplished.

The rest of this paper is systematized as follows: Some
definition and assumption supporting this study are given in
Section 2. Section 3 provides a new filled function and the-
orems that are the properties of the proposed filled function.
Implementation to some optimization problems will be done
in Section 4. Comparison and discussion are proposed in
Section 5. Finally, Section 6 gives some conclusion.
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II. PRELIMINARIES

This section provides some explanation of the problem that
will be solved and its equivalency. Some assumptions and
definitions are also given in this part. Moreover, a study of a
counterexample of continuously differentiable parameter-free
filled function will be offered in this section.

A. Basic Knowledge

This paper aims to solve the continuous global optimiza-
tion problem without any constraints. It means that the
proposed method is intended to find a global minimizer of
the objective function h in the entire region of Rn. The
expression can be written as follows:

CGO

{
min h(x)
x ∈ Rn ,

where h is continuously differentiable.
The CGO problem seems promising, although in the

implementation step, it is almost impossible to be solved
without some assumptions. Basically, we need to convert
CGO into another solvable problem. In order to accomplish
the conversion, in this paper, we assume that h is globally
convex. By this special property, the existence of a set ψ in
which the entire local minimizers of h are all the interior
points of ψ can be ensured. Therefore, CGO problem can
be altered into the following global optimization problem

BCGO

{
min h(x)
x ∈ ψ .

Other assumption, besides those already mentioned, that
supports this study is that BCGO has isolated finite mini-
mizers. It means that the minimizers of h are possible to be
infinite, but the number of different local minimum value is
always finite.

From [5], we know that a function can be classified as a
filled function of h at a converged local minimizer x∗m if:
(1) x∗m is on the highest position of the hill of the filled
function, (2) the filled function has no minimizers in the
basins higher than the basin of h at x∗m, and (3) if h has
another lower minimizer than x∗m, then there exists x′ that
minimizes the filled function on the line through x′ and x∗m.
From criterion (3), we can conclude that, even if the Ge’s
filled function has minimizer, it is not guaranteed that the
minimizer holds h (x′) < h (x∗m). That condition is needed
to make sure that the minimization process of h from x′

yields better minimizer than x∗m. Paper in [25] improves
filled function definition, which is then widely used.

Definition 2.1: [25]. Function G : Rn → R is a filled
function of the objective function h : Rn → R at x∗m (a
local minimizer of h), if G holds these conditions.

1) x∗m is a strict local maximizer of G
2) G is clear from stationary points in

ψa = {h(x)− h (x∗m) ≥ 0|x ∈ ψ\ {x∗m}}

3) G has minimizer in

ψb = {h(x)− h (x∗m) < 0|x ∈ ψ} ,

if x∗m is not a global minimizer of h.

In this study, we use Definition 2.1 to classified the func-
tion that is proposed to be categorized as a filled function.
The following notations will be used in this paper:
(1) ψa = {h(x)− h (x∗m) ≥ 0|x ∈ ψ\ {x∗m}}
(2) ψb = {h(x)− h (x∗m) < 0|x ∈ ψ}
(3) M : is the set of all the minimizers of h
(4) λ = ‖x− x∗m‖
(5) λ1 = ‖x1 − x∗m‖
(6) λ2 = ‖x2 − x∗m‖
(7) β = h(x)− h (x∗m).
(8) β2 = h(x2)− h (x∗m).

B. Counterexample

The filling properties (three conditions given in Definition
2.1) fulfillment owned by the parametric filled functions in
the literature is controlled by the adjustable parameter(s)
in its functions. Because continuously differentiable filled
functions in Equation (3) and (4) do not involve parameters,
this makes those functions have no controller for satisfying
all the properties mentioned in Definition 2.1. The exception
is for lower-semi-continuous parameter-free filled function
as in [21] and [22]. Theorem 2.3 in [23] and [24] stated
that their filled function has minimizer x′ in ψb if ψb is not
empty (the third condition of Definition 2.1). The theorem
is not always be fulfilled by Equation (3) and (4).

To prove that filled functions in [23] and [24] do not
meet the third condition of Definition 2.1, now consider the
following objective function:

h(x) = 0.1 cos (5πx) + x2. (5)

Function (5) is globally convex (coercive) and has finite num-
ber of minimizers, they are x∗1 = −0.5505, x∗2 = −0.1849,
x∗3 = 0.1849, and x∗4 = 0.5505, where the minimum values
are h (x∗1) = 0.2318, h (x∗2) = −0.0630, h (x∗3) = −0.0630,
h (x∗4) = 0.2318 respectively. The points x∗2 and x∗3 are the
global minimizers (see Figure 1).

 

Fig. 1: The Graph of Equation (5).

If we move from initial point x0 by using any local
minimization method, we will attain the first local minimizer
x∗1. A filled function of h(x) is then built at x∗1. Figures 2 and
3 are the geometrical interpretation of Liu’s filled function
in [23] and Ahmed’s filled function in [24], respectively.
Both filled functions have no minimizer in the entire feasible
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 Fig. 2: The Graph of Equation (3).

 Fig. 3: The Graph of Equation (4).

domain. Therefore, if we implement the filled function algo-
rithm, the global minimizer of h(x) will fail to be localized.

Based on this reality, continuously differentiable
parameter-free filled function requires a specific condition
to categorized as a filled function. We provide the intended
condition in Equation (9) and is proved in Theorem 3.6.

III. A NEW FILLED FUNCTION AND ITS PROPERTIES

Conditions 2 and 3 of Definition 2.1 are difficult to
be fulfilled by two parameter filled functions, due to two
adjustable parameters in its function. To address this dif-
ficulty, Liu in [26] recommended the impelling function.
The idea is to construct a hill in the region ψb, so that
the minimization process of the filled function in ψa, which
is a concave function, starting from the neighborhood of
x∗m, will be halted by the hill. Based on this reason, the
minimizer of the filled function is the point near or equal
to x′ where h (x′) = h (x∗m). The character of concave
impelling function given in [26] is then adopted by the
filled function given in [23]. However, as already mentioned
in Section 1, the exponential term causes some troubles in
the numerical experiment. Furthermore, [26] stated that the
concavity property of a function may bring some undesirable
consequences in the numerical minimization. This property,
by the way, is owned by the parameter-free filled function

given in [23]. These facts motivated us to propose a new
type of filled function. Our filled function is free from any
parameters and is convex in the region ψa. Our new filled
function is defined as follows:

G (x, x∗m) = − arcsin

(
λα

1 + λα

)
×
[
arctan

(
(min [0, β])

2
)
+ 1
]
, (6)

where α is an even positive integer.

Remark 1: Without loss of generality, in this paper, we
take α = 2. From Equation (6),

G (x, x∗m) = − arcsin

(
λ2

1 + λ2

)
, (7)

∀x ∈ ψa, and

G (x, x∗m) = − arcsin

(
λ2

1 + λ2

)[
arctan

(
β2
)
+ 1
]
, (8)

∀x ∈ ψb.
Before some theorems are given, we provide a lemma.

This lemma reveals that the value of G in Equation (6)
is negative for all x ∈ ψ. This property relates to the
monotonically increasing behavior of the arcsin function.
The lemma is as follows.

Lemma 3.1: If x∗m ∈M , then G (x, x∗m) ≤ 0, ∀x ∈ ψ.

Proof: If x ∈ ψa, then it follows Remark 1, the value
of G (x, x∗m) is Equation (7). We know that the value of
λ2

1+λ2 contains in the interval (0, 1). The arcsin function
has monotonic increasing property and arcsin(0) = 0. So,
arcsin

(
λ2

1+λ2

)
is always positive. Consequently, Equation

(7) is negative. On the other hand, if x ∈ ψb, the value
of G (x, x∗m) is Equation (8). Because arctan is monotone
increasing and arctan(0) = 0. So, arctan

(
β2
)
+ 1 > 1.

This implies G (x, x∗m) < 0 for all x ∈ ψb. The conclusion
is G (x, x∗m) < 0, ∀x ∈ ψ = ψa ∪ ψb.

The property of arcsin(0) = 0 implies that G (x, x∗m) = 0
holds when x = x∗m. Theorem below provides to guarantee
that the property (1) of Definition 2.1 is fulfilled.

Theorem 3.2: If x∗m ∈M , then x∗m is a maximizer of G.

Proof: Since x∗m ∈ M , there exists Bσ (x
∗
m) =

{x ∈ Rn| ‖x∗m − x‖ < σ} where h (x) ≥ h (x∗m), ∀x ∈
Bσ (x

∗
m)∩ψ. Because h (x) ≥ h (x∗m), then Bσ (x∗m) ⊆ ψa.

It follows Remark 1, the value of filled function is Equation
(7). From Lemma 3.1, we know that G (x, x∗m) < 0. Because
G (x∗m, x

∗
m) = 0, so, G (x, x∗m) < G (x∗m, x

∗
m). This proves

that x∗m is a maximizer of G.

Filled function algorithm uses x∗m as a starting guess to
minimize filled function. We can use any local minimization
methods. However, if gradient-based procedure is used, x∗m
cannot be directly exploited because the gradient vector of
G at x∗m is a zero vector. So, the point close to x∗m will be
worked as an initial point. Our proposed filled function is
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convex in the region ψa. This can be intuitively seen if it
is drawn for function with one variable. The next theorem
is another advantageous property of the proposed filled
function.

Theorem 3.3: Let x∗m ∈ M . If x1, x2 ∈ ψa such that
‖x1 − x∗m‖ < ‖x2 − x∗m‖, then G (x1, x

∗
m) > G (x2, x

∗
m).

Proof: Let x1 and x2 be two points arbitrarily taken
from ψa. From Remark 1, G (x1, x

∗
m) = − arcsin

(
λ2
1

1+λ2
1

)
and G (x2, x

∗
m) = − arcsin

(
λ2
2

1+λ2
2

)
. The difference between

G (x1, x
∗
m) and G (x2, x

∗
m) is as follows:

G (x1, x
∗
m)−G (x2, x

∗
m) = − arcsin

(
λ21

1 + λ21

)
+arcsin

(
λ22

1 + λ22

)
.

Since ‖x1 − x∗m‖ < ‖x2 − x∗m‖, then

λ22
1 + λ22

>
λ21

1 + λ21
> 0.

We know that arcsin function is monotonically increasing
function. Therefore, G (x1, x

∗
m)−G (x2, x

∗
m) > 0.

Theorem 2 assures that the iteration process of
minimization of the proposed filled function will run
successfully, unless there exists a stationary point in ψa.
Fortunately, we have the following theorem that guarantees
the situation is not going to happen.

Theorem 3.4: Let x∗m ∈ M . If x1 ∈ ψa, then
∇G (x1, x

∗
m) 6= 0.

Proof: Let x1 be arbitrary taken from ψa. From Remark
1, we have

G (x1, x
∗
m) = − arcsin

(
λ21

1 + λ21

)
.

The vector gradient of G at x1 is as follows:

∇G (x1, x
∗
m) = −

(
2 (x1 − x∗m)

1 + λ21
− 2 (x1 − x∗m)λ21

(1 + λ21)
2

)
× 1√
−
(

λ2
1

1+λ2
1

)2
+ 1

.

Define d = (x1 − x∗m) 6= 0 ∈ Rn. Since x∗m ∈ ψ0, where
ψ0 is the interior of ψ, then d is a feasible direction. Thus,

∇G (x1, x
∗
m) = −

(
2λ21

1 + λ21
− 2λ41

(1 + λ21)
2

)
×

1√
−
(

λ2
1

1+λ2
1

)2
+ 1

= − 2λ21

(1 + λ21)
2

1√
−
(

λ2
1

1+λ2
1

)2
+ 1

< 0.

Because x1 ∈ ψa, then x1 6= x∗m. Since dT∇G (x1, x
∗
m) < 0,

then ∇G (x1, x
∗
m) 6= 0. This proves the theorem.

From Theorems 3.2 to 3.4, we have proved that Equation
(6) is descent in the region ψa. How the minimization of
Equation (6) converges to a minimizer will be assured by
the following theorems. Theorem 3.5 studies the value of
Equation (6) in ψa and ψb.

Theorem 3.5: Let x∗m ∈ M be not a global
minimizer of h. If x1 ∈ ψa and x2 ∈ ψb, such that
‖x1 − x∗m‖ < ‖x2 − x∗m‖. Then, G (x1, x

∗
m) > G (x2, x

∗
m).

Proof: Since x1 ∈ ψa and x2 ∈ ψb, then from Remark
1, we have

G (x1, x
∗
m) = − arcsin

(
λ21

1 + λ21

)
and

G (x2, x
∗
m) =

(
− arcsin

(
λ22

1 + λ22

))
×
[
arctan

(
β2
2

)
+ 1
]
.

The inequality below comes from the fact that ‖x1 − x∗m‖ <
‖x2 − x∗m‖ and arcsin is a monotonically increasing func-
tion.

arcsin

(
λ21

1 + λ21

)
< arcsin

(
λ22

1 + λ22

)
.

We know that arctan(t) ≥ 0 as t ≥ 0. Thus,

arctan
(
β2
2

)
+ 1 ≥ 1.

Therefore, G (x1, x
∗
m) > G (x2, x

∗
m).

The remark below is needed to provide cloudless
interpretation of how the theorems are constructed so far.

Remark 2: The explanations of Theorems 3.2 - 3.5 are
reviewed as follows:

1) Theorem 3.2 exposes that the point x∗m is a hilltop.
2) If we move from x∗m, the entire region of ψa is a

downhill slope. This fact is stated by Theorem 3.3.
3) How our movement will not encounter uphill areas

along the region ψa is guaranteed by Theorem 3.4.
4) If ψb is not empty and we remain moving to the region

ψb, then we will continue to descent. Theorem 3.5
declares this.

5) At some points, we will find an uphill area in ψb.
Theorem 3.6 will guarantee this condition.

From Remark 2, it is clear that the convergence of mini-
mization process of filled function in Equation (6) will hold
if we can find the ascent region in ψb. This will be proven
in Theorem 3.6. The following inequality will be used in
Theorem 3.6.

A > B, (9)

where

A =

[
2dT∇h(x) (−β2)

β2
2 + 1

]
arcsin

(∥∥∥∥ λ22
1 + λ22

∥∥∥∥) ,
and

B = 2λ22 ×
[
arctan

(
β2
2

)
+ 1
]
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.

Theorem 3.6: Let x∗m ∈ M . Suppose that x∗m is not
a global minimizer and x2 ∈ ψb. If Equation (9) holds
and dT∇h (x2) > 0, then d is an ascent direction of G at x2.

Proof: Since x2 ∈ ψb, it follows Remark 1, the value
of G is the following:

G (x2, x
∗
m) = − arcsin

(
λ22

1 + λ22

)[
arctan

(
β2
2

)
+ 1
]
.

The vector gradient of G at x2 is

∇G (x2, x
∗
m) = −2 (x2 − x∗m)×

arctan
(
β2
2

)
+ 1

(1 + λ22)
2

√
1−

(
λ2
2

1+λ2
2

)2
−
[
arcsin

(
λ22

1 + λ22

)]
2β2∇h (x2)

1 + β2
2

The directional derivative of G for vector d = (x2 − x∗m)
is given below

dT∇G (x2, x
∗
m) =

[
−2λ22

(1 + λ22)
2

]
arctan

(
β2
2

)
+ 1√

1−
(

λ2
2

1+λ2
2

)2
+

[
arcsin

(
λ22

1 + λ22

)]
×

2 (−β2) dT∇h (x2)
1 + β2

2

>
(
−2λ22

) (
arctan

(
β2
2

)
+ 1
)

+

[
arcsin

(
λ22

1 + λ22

)]
×

2 (−β2) dT∇h (x2)
1 + β2

2

which derives from
(
1 + λ22

)2√
1−

(
λ2
2

1+λ2
2

)2
=(

1 + λ22
)√

1 + 2λ22 > 1. Since (9) holds,

dT∇G (x2, x
∗
m) > 0.

So, d is an ascent direction of G at x2

IV. FILLED FUNCTION ALGORITHM

Our goal in this section is to offer filled function
algorithm, which involves our new parameter-free filled
function. All process of the algorithm is ensured by all
properties provided in the previous section. Our algorithm
(we call it NPFF) is given below.

Algorithm 1: NPFF Algorithm
S-0: Choose γ0 ∈ (0, γ), where γ ∈ R; choose P > 0 (e.g.

P = 0.1); set coordinate directions ei, i = 1, 2, ..., 2n,
where n is the number of variables of h; set m = 1.

S-1: Minimize h starting from xm ∈ ψ. This step yields
x∗m.

S-2: Build filled function G of h at x∗m (Equation (6)) and
set i = 1.

S-3: while γ0 < γ do xm = x∗m + γ0ei and go to Step 4,
otherwise x∗m is taken as a global minimizer.

S-4: if i ≤ 2n, then minimize G starting from xm to obtain
x′i and go to Step 5, otherwise, γ0 = γ0+P , set i = 1
and go to Step 3.

S-5: if h (x′i) < h (x∗m), then xm ← x′i and go to Step 1,
otherwise set i = i+ 1 and go to Step 4.

NPFF Algorithm is divided into two part: initial part
and looping part. Minimizing the objective function with
a specified initial guess and building filled function of the
objective function at a converged local minimizer are done
before entering the looping stage. The looping part begins
with generating xm = x∗m + γ0ei, where x∗m is the first
local minimizer and ei is a direction. 3. The point x∗m is
then used as the initial point for minimizing filled function.
The value γ0 is added into xm to avoid the minimization
traps on x∗m, because x∗m is a maximizer of filled function.
If there is i where the minimization of the filled function
yields a minimizer x′i such that h (x′i) < h (x∗m), then x′i
is a new initial point to minimize the objective function so
that a new better minimizer is obtained. From this step, we
replace x∗m by a new minimizer and the iteration will go back
to Step 2. If for all the value of i, no minimizers of filled
function hold h (x′i) < h (x∗m), then we regenerate xm by
adding the positive small real number P to γ0 and algorithm
will go back to Step 3. On the other hand, if γ0 ≥ γ and
no minimizer of filled function satisfies h (x′i) < h (x∗m),
then the algorithm stops and the minimizer of the objective
function found so far is taken as a global minimizer.

V. NUMERICAL EXPERIMENT

NPFF Algorithm is then implemented to solve well-
known global optimization problems. These problems are
commonly used in the global optimization literature. For
minimizing both cost function and filled function, we used
BFGS method. In the implementation stage, the set ψ was
known in advance. The benchmark global optimization
problems are as follows:

Problem 1 (Two-dimensional Rastrigin function)

min h(x) = x21 + x22 − cos (18x1)− cos (18x2) ,

s.t. − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1.
.

This is a very common problem on unconstrained global
optimization literature. The global minimizer of Rastrigin
function is x∗m = (0.0000, 0.0000) with h (x∗m) = −2.

Problem 2 (Two-dimensional function)

min h(x) = [1− 2x2 + c sin (4πx2)− x1]2

+[x2 − 0.5 sin (2πx1)]
2
,

s.t. 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0.

.

NPFF algorithm succeeded to identify the global minimum
value h (x∗m) = 0.0000 for all c.

Problem 3 (Three-hump camel-back function)

min h(x) = 2x21 − 1.05x41 +
1
6x

6
1 − x1x2 + x22,

s.t. − 3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.
.
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The global optimum solution of this problem is
x∗m = (0.0000, 0.0000), where h (x∗m) = 0.0000.

Problem 4 (Six-hump camel-back function)

min h(x) = 4x21 − 2.1x41 +
1
3x

6
1 − x1x2

−4x22 + 4x42,

s.t. − 3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

.

Six-hump camel-back function has two global
minimizers. They are x∗m = (0.0898, 0.7127) and
x∗m = (−0.0898,−0.7127) with h (x∗m) = −1.0316.

Problem 5 (Treccani function)

min h(x) = x41 + 4x31 + 4x21 + x22,

s.t. − 3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.
.

Treccani function has two global minimizers. They are
x∗m = (0.0000, 0.0000) and x∗m = (−2.0000, 0.0000),
where h (x∗m) = 0.0000.

Problem 6 (Two-dimensional Shubert function)

min h(x) =

{
5∑
i=1

i cos [(i+ 1)x1] + i

}
×
{

5∑
i=1

i cos [(i+ 1)x2] + i

}
,

s.t. − 10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10.

Shubert function is a crucial problem in global optimization
field. This problem has about 760 minimizers. NPFF
algorithm was successful in obtaining the global minimum
value h (x∗m) = 186.7309.

Problem 7 (Shekel’s function)

min h(x) = −
5∑
i=1

[
4∑
j=1

(xj − ai,j)2 + ci

]−1

s.t. 0 ≤ xj ≤ 10, j = 1, 2, 3, 4,

,

with the coefficients ai,j and ci are provided in Table I

TABLE I: The coefficients for Problem 7

i ai,1 ai,2 ai,3 ai,4 ci
1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.3
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.5

The global minimizer of this problem is x∗m = (4, 4, 4, 4)
with h (x∗m) = −10.1532.

Problem 8 (Goldstein and Price function)

min h(x) = f1(x).f2(x)

s.t. − 3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3,

with

f1(x) = 1 + (x1 + x2 + 1)
2

×
(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)

and

f2(x) = 30 + (2x1 − 3x2)
2

×
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)
NPFF algorithm has successfully obtained the global
minimizer x∗m = (0.0000,−1.0000) of this problem, where
h (x∗m) = 3.0000.

Problem 9 (n-dimensional Sine-square function)

min h(x) = π
n (P + S + T )

s.t. − 10 ≤ xi ≤ 10, i = 1, 2, ..., n.
,

where P = 10sin2 (πx1),

S =
n−1∑
i=1

[
(xi − 1)

2 (
1 + 10sin2 (πxi+1)

)]
,

T = (xn − 1)
2.

We solved this problem up to 50 dimensions. The global
minimum value is h (x∗m) = 0.0000.

Problem 10 (n-dimensional Rastrigin function)

min h(x) = 10n+
n∑
i=1

(
x2i − 10 cos (2πxi)

)
,

s.t. − 5.15 ≤ xi ≤ 5.12, i = 1, 2, ..., n.

This function was solved for n = 20, 30, 50. The global
minimizer is uniformly expressed as x∗m = (0, 0, 0, ..., 0),
where h (x∗m) = 0.0000.

Problem 11 (Ackley function)

min h(x) = −20 exp

(
−0.2

√
1

n

∑n

i=1
x2i

)

− exp

(
1

n

∑n

i=1
cos (2πxi)

)
+20 + e,

s.t. − 32.768 ≤ xi ≤ 32.768, i = 1, 2, ..., n.

This function was solved for n = 10 and n = 20. The
global minimizer: x∗m = (0, ..., 0), h (x∗m) = 0.

Problem 12 (Branin function)

min h(x) =

(
x2 − 1.275

x21
π2

+
5x1
π
− 6

)2

+10

(
1− 0.125

π

)
cos (x1) + 10,

s.t. − 5 ≤ xi ≤ 15, i = 1, 2.

The Branin function has three global minimum points:
x∗m = (9.4247, 2.4750), x∗m = (3.1416, 2.2750), and
x∗m = (−3.1416, 12.2750). The global minimum value is
h (x∗m) = 0.3979.

Problem 13 (Bohachevsky function)

min h(x) = x21+2x22−0.3 cos (3πx1)−0.4 cos (4πx2)+0.7

s.t. − 100 ≤ xi ≤ 100, i = 1, 2.
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This function attains its minimum global at x∗m = (0, 0),
with h (x∗m) = 0.

Problem 14 (Beale function)

min h(x) = (1.5− x1 + x1x2)
2
+
(
2.25− x1 + x1x

2
2

)2
+
(
2.625− x1 + x1x

3
2

)2
s.t. − 4.5 ≤ xi ≤ 4.5, i = 1, 2.

The global minimum point is at x∗m = (3, 0.5), h (x∗m) = 0.

The notations below are used in Tables II - VII.
Prob: problem number.
n: the number of variables.
It: the number of iteration to get global minimizer.
Hf : the number of function evaluation of the objective
function and filled function.
T : the CPU time for algorithm to obtain the global
minimizer.
h∗m: global minimum value of the h.
Gf : the number of gradient evaluation of the objective
function and filled function.

Table II is an overall numerical result of the filled function
proposed in this paper. Those data are gained by imple-
menting the algorithm given in the previous section. We
solve 14 global optimization problems that frequently used
in global optimization literature. The information of the local
minimizer(s) and their value of the problems are widely
available in many resources. So, the computational results
obtained can later be compared to other filled function
algorithms, which will also be reviewed in this section. In
Table II, It means the number of local minimum points
successfully visited by our algorithm, where the last local
minimizer obtained is the global one. The dimension of the
problem solved ranges from 2 to 50. In [24], they addressed
Problem 9 and Problem 10 up to 1000 dimensions. However,
those two problems have symmetric feasible region. The
feature owned by those two problems means that the higher
dimension of the problems does not indicate the level of the
efficiency of the algorithm. We used the same initial points
as used in [12], except for problem 2 (c = 0.2), 9, 11, 12,
13, and 14 . For those problems, we deploy the initial point
acquired randomly in its feasible region. If the starting point
is more than 1, the value displayed in Table II is the average.
Table II shows that the parameter-free filled function given
in this study can be employed to find the global solution of
the unconstrained global optimization problems.

The numerical results obtained will be compared with var-
ious filled functions that currently exist. The first comparison
is with the filled functions [5] (RPFF Algorithm) and [27]
(WPFF Algorithm), which are presented in Table III. These
two functions are often used as an object of comparison to
examine for evaluating the filled function method’s effec-
tiveness. We compare problems 1-6 and problem 9 up to 10
dimensions. The numerical performance of the RPFF and
WPFF algorithms are adopted from [27]. Table III reveals
that our filled function is much more effective in terms of
the number of iterations function evaluations.

TABLE II: Computational Results

Prob n It Hf T h (x∗
m)

1 2 3 322 0.233071 -2.0000
2 (c=0.2) 2 2 177 0.103109 3.8015e-18
2 (c=0.5) 2 2 127 0.136122 2.4982e-18
2 (c=0.05) 2 2 110 0.085900 6.3690e-19
3 2 2 45.5 0.095338 1.7812e-23
4 2 2 42.3 0.048961 -1.0316
5 2 2 146 0.112724 1.9330e-18
6 2 2 102 0.079625 -186.7309
7 4 2 332.5 0.192953 -10.1532
8 2 2 193 0.136824 3.0000
9 2 2 59 0.049324 1.1533e-18

3 3 154 0.119019 3.2955e-20
5 2 231 0.491824 1.1384e-15
7 3 495 0.225745 3.6199e-17
10 2 395 0.115396 9.9173e-17
20 2 1043 0.473937 9.0621e-14
30 3 2703 1.915886 1.4398e-14
50 5 2278 8.412125 1.6860e-15

10 2 3 147 0.118253 0.0000
3 4 487 0.379145 0.0000
5 5 803 0.764473 0.0000
7 6 854 0.502052 0.0000
10 11 3688 1.966561 0.0000
20 19 12417 7.590710 0.0000
30 28 25821 23.614725 0.0000
50 49 3205 139.035894 0.0000

11 10 18 6302 3.890256 9.0552e-10
20 36 23113 17.768747 6.8313e-09

12 2 1 139 0.088063 0.3979
13 2 2 767 0.434860 0
14 2 1 52 0.340522 5.5785e-16

TABLE III: The Comparison of the Results

Prob n RPFF WPFF NPFF
It Hf It Hf It Hf

1 2 4 21276 4 11097 3 322
2 (c=0.2) 2 15 27500 5 903 2 177
2 (c=0.5) 2 34 54505 3 47204 2 127
2 (c=0.05) 2 35 38424 4 11476 2 110
3 2 31.5 58328.5 3 8783 2 45.5
4 2 25 20437 3 4613 2 42.3
5 2 14 15759 2 2544 2 146
6 2 20 103988 3 8061 2 102
9 2 22 107899 6 83516 2 59

3 6 248407 10 127695 3 154
5 16 1229860 3 329956 2 231
7 21 1443686 19 222630 3 495
10 16 1829898 35 276386 2 395

In the next comparison, we want to assess the NPFF
algorithm with another parameter-free filled function [22]
(MPFF Algorithm). Three indicators are utilized to capture
the efficiency of the NPFF algorithm; they are the number
of iterations, function evaluations, and gradient evaluations.
In [22], they employed the BFGS method and quasi-newton
method to minimize the objective function and the filled
function. At the same time, we only used the BFGS method
to minimize both the objective and the filled function.
This is why, as can be seen in Table IV, the number of
gradient evaluations of the NPFF algorithm is all 0 for all
problems. The numerical performance for the number of
function evaluations of the NPFF algorithm, for all tested
problems, is better than the MPFF algorithm. However, for
some problems, the NPFF algorithm has a larger number
of iterations than the MPFF algorithm. For example, for
Problem 1, the MPFF algorithm needs only 2 iterations to
arrive at the global minimizer, while the NPFF algorithm
takes 3 steps. Other examples are for Problems 3,4,5 and

Engineering Letters, 29:1, EL_29_1_22

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Problem 9 (n=2).

TABLE IV: The Comparison of the Results

Prob n MPFF NPFF
It Hf Gf It Hf Gf

1 2 2 337 206 3 322 0
2 (c=0.2) 2 3 4012 991 2 177 0
2 (c=0.5) 2 3 5097 1022 2 127 0
2 (c=0.05) 2 2 2507 246 2 110 0
3 2 1 545 37 2 45.5 0
4 2 1 518 79 2 42.3 0
5 2 1 595 72 2 146 0
6 2 5 5280 756 2 102 0
9 2 1 536 103 2 59 0

3 3 6083 734 3 154 0
5 2 7839 1140 2 231 0
7 2 10130 4259 3 495 0
10 4 29463 6856 2 395 0

The next two comparisons were made to portray the
efficacy of the NPFF algorithm with another continuously
differentiable parameter-free filled functions and the current
filled function which has the same minimum point of the
objective function.

Table V is the comparison between our algorithm and
continuously differentiable parameter-free filled functions
proposed in [23] and [24]. For convenience, we call them
LPFF and APFF algorithms, respectively. Both NPFF and
LPFF algorithms used the BFGS method to minimize objec-
tive function and filled function, while the APFF algorithm
employed the quasi-Newton method. Table V is reported to
capture the behavior of each filled function judged based on
two indicators, namely the number of iteration and their func-
tion evaluation. From Table V, we can say that, in general,
the number of iterations of the NPFF algorithm is better than
the LPFF algorithm, and it is worst but not significantly if it is
compared with the APFF algorithm. Our filled function tends
to produce more local minimizer, especially if the objective
functions is a symmetric function such as Rastrigin function
(Problem 1 and Problem 10). However, our algorithm is
much better than two other algorithms when viewed from
the aspect of the number of function evaluations.

TABLE V: The Comparison of the Results

Prob n NPFF LPFF APFF
It Hf It Hf It Hf

1 2 3 322 3.7 642.1 2 409
2 (c=0.2) 2 2 177 3 635 2 581
2 (c=0.5) 2 2 127 2.7 455.8 2 380
2 (c=0.05) 2 2 110 2.9 619.8 2 588
3 2 2 45.5 2 379 2 282
4 2 2 42.3 2 224.7 2 263
5 2 2 146 2 214.3 2 186
6 2 2 102 4.2 627.1 5 652
7 4 2 332.5 3 820.1 2 613
8 2 2 193 3 321.2 1 323
9 2 2 59 3.2 596.8 2 505

3 3 154 3.4 1023.1 3 793
5 2 231 3.2 2025.4 2 903
7 3 495 4.7 3799.6 3 1121
10 2 395 10.3 11747 3 1639
20 2 1043 23.9 43254.3 3 5355
30 3 2703 10 44194.1 3 3866
50 5 2278 34.3 249833 3 5897

10 2 3 147 2.9 687.6 3 564
3 4 487 2 998.1 3 650
5 5 803 2 1906 6 1770
50 49 3205 - - 3 5642

The comparison between the proposed filled function and

that given in [12] (GFFM algorithm) is displayed in Table
VI. The main reason for comparing our algorithm with that
given in [12] is because GFFM algorithm cuts one step
of the traditional filled function algorithm. This is because
their filled function has the same minimizer of the objective
function. For this reason, we want to evaluate whether the
GFFM algorithm influences the effectiveness of the results
obtained.

The data which are compared between NPFF and GFFM
algorithms are based on the aspect of the value of global
minimum, the number of iterations, and the function eval-
uation of both cost function and filled function. Generally,
function evaluation of GFFM algorithm is better than the
algorithm given in this paper. From 15 problems displayed in
Table VI, it can be seen that NPFF algorithm had 7 problems
that had better function evaluation than GFFM algorithm did.
However, the difference of the function evaluation between
NPFF and GFFM algorithm is not too significant.

From the results displayed in Table VI, it can also be
seen that for all problems solved, the number of iterations
of NPFF algorithm was less than or equal to the GFFM
algorithm. For example, for problem 2 (c = 0.2), NPFF
algorithm has 2 iterations to obtain global minimizer, while
GFFM had 3 iterations. Similarly, for problem 2 (c = 0.05),
the number of iterations of our algorithm was far less than
that of the GFFM algorithm. Two other problems, specifically
problems 6 and 7, also had better number of iterations.
In addition, NPFF algorithm has a better accuracy rate of
global minimum value compared to GFFM algorithm for
almost all problems. This level of accuracy is mainly seen
in problems in which the global minimum value is 0. For
example, the global minimum values for Problems 2–3 were
far more accurate than those obtained in [12]. The only
exception was for Problem 5 and Problem 9 (n=10), in which
our global minimum value was 1.9330e-18 and 9.9173e-17,
respectively, while the global minimum value in [12] was 0
for both problems.

TABLE VI: Comparison of the NPFF and GFFM algorithm

Prob NPFF GFFM
h (x∗

m) It lHf h (x∗
m) It Hf

2 (c = 0.2) 3.8015e-18 2 177 2.8229e010 3 131
2 (c = 0.5) 2.4982e-18 2 127 1.5257e009 2 88
2 (c = 0.05) 6.3690e-19 2 110 4.3885e011 7 236
3 1.7812e-23 2 61 1.5130e008 2 49
3 1.7812e-23 2 30 1.5130e008 2 49
4 -1.0316 2 41 -1.0316 2 60
4 -1.0316 2 43 -1.0316 2 60
4 -1.0316 2 43 -1.0316 2 92
5 1.9330e-18 2 146 0 2 34
6 -186.7309 2 102 186.7309 4 84
7 -10.1532 2 397 -10.1532 2 160
7 -10.1532 2 268 -10.1532 3 251
8 3.0000 2 193 3.0000 2 121
9 (n = 7) 3.6199e-17 3 495 7.4665e-011 2 690
9 (n = 10) 9.9173e-17 2 395 0 4 883

The last comparison was conducted to test our method’s
effectiveness compared with the results published in [20]
(SFFM algorithm). SFFM algorithm applies the smoothing
technique and the transformation of the multi-dimensional
global optimization problem into a one-dimensional problem.
From Table VII, it can be seen that the global minimum
value generated by the NPFF algorithm has a higher level
of accuracy than the accuracy level of the SFFM algorithm.
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The superiority of the NPFF algorithm can also be seen from
function evaluations, which are lower than those in the SFFM
algorithm.

TABLE VII: Comparison of the NPFF and SFFM algorithm

Prob NPFF SFFM
h (x∗

m) Hf h (x∗
m) Hf

2 (c = 0.2) 3.8015e-18 177 6.4583e16 518
2 (c = 0.5) 2.4982e-18 127 2.3665e15 522
2 (c = 0.05) 6.3690e-19 110 4.3800e16 306
3 1.7812e-23 45.5 1.3537e15 360
4 -1.0316 42.3 1.0316 384
5 1.9330e-18 146 2.3139e16 364
6 -186.7309 102 186.7309 480
7 -10.1532 332.5 10.1532 388
8 3.0000 193 3.0000 400
9 3.2955e-20 154 5.7060e14 244
10 0 3688 3.7682e12 332
12 0.3979 139 0.3979 204
13 0 767 1.0504e13 280
14 5.5785e-16 52 4.0766e14 112

VI. CONCLUSION

This paper offered a new parameter-free filled function.
This paper has no limitations which usually happen to para-
metric filled function. The counterexample to other continu-
ously differentiable parameter free filled function was illus-
trated. Furthermore, the general computational results were
mined. The comparison result confirms that the proposed
filled function was better than the current filled function.
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