
 

  
Abstract—Two active configurations for simulating tunable 

floating and grounded lossy inductors are described. Each 
simulated inductor circuit contains only a single fully balanced-
voltage differencing buffered amplifier (FB-VDBA), one 
resistor, and one capacitor.  The equivalent values of the 
simulated elements can be tuned independently through the FB-
VDBA’s bias current and/or the resistor in the circuit.  Non-
ideal analysis of the synthetic inductors is also provided.  The 
practical use of the proposed FB-VDBA based lossy inductance 
simulators is demonstrated on both a second-order RLC low-
pass filter and a parallel RLC resonance circuit.  PSPICE 
simulation results are provided to evaluate the presented 
theory. 
 

Index Terms—Fully Balanced-Voltage Differencing Buffered 
Amplifier (FB-VDBA), RL impedance simulator, lossy 
inductor, inductance simulation    
 

I. INTRODUCTION 
N active simulation of lossy inductors has become a 
fascinating research topic for electrical engineers, 

circuit researchers, and scientists, since it is useful in active 
network synthesis, and microelectronic applications, such as 
active filters, LC oscillators, and impedance matching and 
parasitic cancellation circuitry.  From the viewpoint of the 
advent of integrated circuit (IC) technology, the design of 
synthetic active inductances can be applied instead of the 
bulky discrete inductors in passive circuits.  Accordingly, 
several active circuits for synthetic lossy inductance 
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simulation have been developed earlier using various types 
of active elements [1]-[31].  These inductance simulators 
can usually be classified as floating [1]-[13] and grounded 
[14]-[31] configurations.  It can be observed in [1]-[5], [7], 
[9], [11]-[13], [19], [21], [23] that the realizations are 
composed of more than one active components.  Some of 
them also use three or more grounded and/or floating 
passive components [1]-[5], [9], [11], [19], [21], [23], [31].  
Moreover, in [2]-[3], [5], [9], [12], any kind of critical 
element-matching and/or cancellation constraints are 
necessarily required. A topology without such matching 
requirements is considered to be a favorable feature for the 
desired realization.  Apart from that, the methods in [6], [8], 
[10], [14]-[18], [20], [22], [24]-[30] utilize a single active 
component to simulate floating and grounded lossy 
inductors.  However, the designs still need an excessive 
number of passive elements, i.e. at least three passive 
elements, and do not provide electronic control facility.  In 
addition to [8], [14]-[15], [25]-[27], there are requirements 
for any certain component-matching or cancellation 
conditions. 

The main objective of this work is, therefore, to introduce 
two tunable lossy inductance simulator circuits, which 
realize floating series RL impedance and grounded parallel 
RL impedance.  The introduced lossy simulated inductors 
both employ only one fully balanced-voltage differencing 
buffered amplifier (FB-VDBA) [32]-[36] as well as a low 
number of passive elements, namely one resistor and one 
capacitor.  The simulated inductor circuits are devoid of any 
certain component-matching or cancellation constraints.  
The simulated resistance and inductance elements of the 
circuits in both cases can be varied electronically by the 
transconductance gain of the FB-VDBA.  The effects of the 
transfer error and parasitic elements of the FB-VDBA on the 
resulting inductor structures are also examined.  The 
presented theory has been verified by simulation results 
based on CMOS TSMC 0.25-µm process parameters.  A 
detailed comparison of the proposed inductance simulators 
with the previously similar solutions [1]-[31] is presented in 
Table I. 

II. FULLY BALANCED-VOLTAGE DIFFERENCING BUFFERED 
AMPLIFIER (FB-VDBA) 

The symbolic representation of the ideal FB-VDBA 
device is shown in Fig.1, which can be characterized by the 
following matrix equation [33]-[35].   
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TABLE I 
PHYSICAL COMPARISON OF THE PROPOSED INDUCTANCE SIMULATORS WITH SOME EARLIER WORKS. 

 

Ref. Inductor  
terminal 

Inductor  
type 

No. of  
active  

element 

No. of  
passive  
element 

Matching 
requirement 

Availability 
of electronic 

tuning 

Supply  
voltages 

[1] 

Floating 

series (Fig.1b) CCII = 2 R = 2,  
C = 1 no no NA parallel (Fig.1c) 

[2] series (Fig.2b) OA = 2,  
OTA = 1 

R = 2,  
C = 1 yes no NA parallel (Fig.2c) 

[3] series, (Fig.3f) OA = 2 R = 3, C = 2 yes no NA parallel (Fig.3c) OA = 1, OTA = 1 R = 3, C = 1 no yes 

[4] 

series,  
(Fig.3a, 3c, 3f, 3g) CCII = 2 R = 2,  

C = 1 no no NA parallel,  
(Fig.3b, 3d, 3e, 3h) 

[5] parallel CCII = 2 R = 2, C = 1 yes no ±12V 
[6] series CCII = 1 R = 2, C = 1 no no NA 

[7] series, (Fig.3) CCCII+ = 2, 
CCCII- = 1 C= 1 no yes 

±2.5V 
(simulation), 

±5V (experiment) parallel (Fig.2) CCCII- = 2 
[8] series/parallel DDCC = 1 R = 2, C = 1 no no ±0.9V, -0.34V 
[9] parallel CFOA = 2  R = 3, C = 2 yes no ±15V 

[10] parallel, (Fig.2) DO-DDCC = 1 R = 2, C = 1 no no ±1.5V, -0.9V 

[11] series, (Fig.1a) CFOA = 2 R = 2,  
C = 1 no no NA parallel (Fig.1b) 

[12] 
series, (Fig.2) 

VDBA = 2  R = 1,  
C = 1 yes yes 

±0.75V 
(simulation), 

±5V (experiment) parallel (Fig.3) 

[13] series FB-VDBA = 2 C = 1 no yes ±1V 
[14] 

Grounded 

series CCII = 1 R = 3, C = 4 yes no NA 
[15] series CFOA = 1 R = 3, C = 1 yes no NA 

[16] series FTFN = 1 R = 2,  
C = 1 no no NA parallel 

[17] parallel, (Fig.1) CCII = 1  R = 2, C = 1 no no NA 
parallel, (Fig.2) CCI = 1, CCIII = 1 R = 1, C = 2 no no NA 

[18] series/parallel CCIII = 1 R = 2, C = 1 no no ±2.5V 
[19] parallel CCII = 3 R = 3, C = 3 no no ±12V 
[20] parallel, (Fig.2a) OTRA = 1 R = 2, C = 1 no no ±5V 
[21] parallel, (Fig.2a) OTRA = 2 R = 4, C = 1 no no ±10V 

[22] series, (Fig.2a) DVCC = 1 R = 2,  
C = 1 no no ±2.5V parallel, (Fig.3a) 

[23] parallel VF = 2, CF = 1 R = 3, C = 1 no no ±1.25V, 0.4V 
[24] parallel CDBA = 1 R = 2, C = 1 no no ±12V 
[25] parallel CCIII = 1 R = 3, C = 1 no no ±10V 
[26] parallel DXCCII = 1 R = 2, C = 1 yes no ±1.5V 
[27] series/parallel DXCCII = 1 R = 3, C = 1 yes no ±2.5V, 1.44V 
[28] series  CFOA = 1 R = 2, C = 1 no no ±10V 
[29] series VDCC = 1  R = 1, C = 1 no no ±0.9V 
[30] series/parallel CFOA = 1 R = 2, C = 1 no no ±0.75V, 0.34V 
[31] series VDBA = 1 R = 1, C = 1 no no ±0.75V 

Proposed 
circuits 

Floating series FB-VDBA R = 1, C = 1 no yes ±0.75V Grounded parallel 
 

NA : Not Available 
CCI : first-generation current conveyor, CCII : second-generation current conveyor, CCIII : third-generation current conveyor,  
CCCII± : positive/negative current-controlled conveyor, DDCC : differential difference current conveyor, DO-DDCC : dual-output 
differential difference current conveyor, DVCC : differential voltage current conveyor, DXCCII : dual-X current conveyor, VDCC : voltage 
differencing current conveyor, OA : operational amplifier, OTA : operational transconductance amplifier, CFOA : current feedback 
operational amplifier, OTRA : operational transresistance amplifier, VDBA : voltage differencing buffered amplifier, FTFN : four-terminal 
floating nullor, CDBA : current differencing buffered amplifier, VF : voltage follower, CF : current follower,  
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Fig. 1.  Electrical circuit symbol of the FB-VDBA.  
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In (1), gm is the small-signal transconductance gain of the 

FB-VDBA, which is scaled electronically by electronic 
means.  Also, the parameters αi and βi (i = p, n) are 
respectively the non-ideal transconductance gains and the 
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non-ideal voltage gains, which are equal to unity in the ideal 
case.  The possible structure realization of the FB-VDBA is 
given in Fig.2, where its internal part is functionally a 
connection of dual-out operational transconductance 
amplifier (OTA) M1-M12 and two voltage buffers M13-M16 
and M17-M20 [33]-[35].  Therefore, this device utilizes 
features of tunable OTA and voltage follower in a single 
integrated circuit structure.  The FB-VDBA 
transconductance gain, which is realized in the OTA stage, is 
determined by the following relation.   

 Bm KIg =  (2) 

where K = µ0CoxW/L is the MOS transistor transconductance, 
W and L are the channel width and length, respectively, µ0 is 
the carrier and Cox is the gate-oxide capacitance per unit 
area.  In this design, the transistor dimensions (W/L) of the 
FB-VDBA realization in Fig.2 are given in Table II.   
 

TABLE II 
GEOMETRICAL ASPECT RATIOS (W/L) OF TRANSISTORS IN FIG.2. 

Transistors W/L (µm/µm) 

M1 – M2 8/0.25 
M3 , M6 12/0.25 

M4 – M5 , M7 – M12 20/0.25 
M13 – M20 60/0.25 

 

III.  PROPOSED LOSSY INDUCTANCE SIMULATOR CIRCUITS 
The proposed circuits for realizing floating and grounded 

lossy inductors are shown in Fig.3 and 4, respectively. Both 
of the circuits are implemented with a single FB-VDBA, one 
resistor, and one capacitor.  For the ideal case, i.e. αi = βi = 
1, the input impedance and admittance functions of the 
proposed inductance simulators in Fig.3 and 4 are 
respectively obtained as follows: 
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From these results, it follows that the proposed circuit of 

Fig.3 simulates a floating lossy series RL-type inductor with 

equivalent resistance Req1 = 1/gm and equivalent inductance 
Leq1 = R1C1/gm, and the proposed circuit of Fig.4 realizes a 
grounded parallel RL impedance with Req2 = R2 and Leq2 = 
R2C2/gm.  It is further observed that in both circuits the 
simulated inductance value is adjustable independently via 
R1 and/or C1 in the circuit of Fig.3, and via gm and/or C2 in 
the circuit of Fig.4.  Two proposed circuits are also free 
from any passive component-matching constraints for 
inductance simulations.    
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Fig. 3.  Proposed floating lossy series-type inductance simulation and its 
equivalent model.    
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Fig. 4.  Proposed grounded lossy parallel-type inductance simulation and 
its equivalent model.    

 

IV.  EFFECT OF TRANSFER ERRORS 
Considering the non-ideal parameters αi and βi gave in 

(1), the one-point impedance function looking into terminal 
1 for the simulator circuit in Fig.3 can be found as: 

 

















+








=′+′==′

=
nn

p

mmn
eqeq

in
vin g

CRs
g

LsR
i
vZ

βα
β

α
11

11
1

1
01

1
2

.

 (5) 
 

 

M2M1

n p iz+

z+

iz-

z-

M13 M17

+V

M14 M18

IB

-V

M3 M6

M4

M5

M7

M8

M9
M10

M11M12

w+

M19

M20

w-

M15

M16

 
Fig. 2.  Circuit diagram of the CMOS FB-VDBA.   
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On the other hand, the one-point impedance function 

looking into terminal 2 of Fig.3 can be written as:    
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 (6) 
In the same way, the αi and βi gains are also taken into 

consideration to evaluate the performance of the second 
developed lossy parallel-type inductance simulator of Fig.4.  
Therefore, considering non-idealities into account, the input 
admittance from (4) modifies as: 
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It readily shows in (5)-(7) that the non-ideal transfer gains 
of FB-VDBA affect the input equivalent impedances of the 
proposed circuits, and as a result lesser the αi and βi non-
ideal gains, the lesser is the influence on the simulator.  It is 
also noted that the proper tuning of the gm-value may 
practically lead to the reduction of the non-ideal transfer 
gain effect.  

V.  EFFECT OF PARASITIC IMPEDANCES 
Consider the non-ideal behavior model of the FB-VDBA 

shown in Fig.5. The shunt parasitic impedances (R//C) 
appear at terminals p, n, z+, and z-, respectively, whereas the 
resistances Rw+ and Rw- are the serial parasitic resistances at 
terminals w+ and w-.  Using the non-ideal model of the FB-
VDBA in presence of parasitic impedances, the proposed 
inductance simulator circuits in Fig.3 and 4 can be redrawn 
as represented in Fig.6 and 7, respectively. Thus, taking into 
account the FB-VDBA parasitics outlined above and 
reanalyzing the real behavior of the proposed floating lossy 
inductance simulator in Fig.6, the non-ideal input impedance 
becomes:  
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Assumed that in practice the above relation is R1 >> Rw+, 
Rw-, then the impedance Zin1 can be approximated to 
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From (9)-(11), it is important to note that an extra intrinsic 
capacitance Cext1 appears in shunt with the parasitic 
resistance R*

eq1.  It may be also mentioned that in the same 
branch an extra intrinsic resistance Rext1 is also in parallel 
with the parasitic inductance L*

eq1.  Thus, if the FB-VDBA 
parasitic impedances are included, an equivalent circuit of 
the proposed floating lossy inductance simulator in Fig.3 is 

redrawn in Fig.8.  However, if the condition Rw+ << 1/gm, R1 
is satisfied, then the parasitic effects of the FB-VDBA are 
reduced.   
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Fig. 5.  Non-ideal model of the FB-VDBA with parasitic elements.    
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Fig. 6.  Proposed floating lossy inductance simulator of Fig.3 including 
parasitic elements.    
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Fig. 7.  Proposed grounded lossy inductance simulator of Fig.4 including 
parasitic elements.    

 
Similarly, for the proposed grounded lossy inductor in 

Fig.7, the input admittance for the common case of C2 >> 
Cn, Cz- and Rz- >> Rw+ is found approximately as: 

 









++

+







++

+
≅+=

−−

−

−−

+−

)1)(()1)((
)1(

2222

2
2 CsRRR

Rg
CsRRR

RgCsRYYY
zw

zm

zw

wmz
BAin

, (12) 
 

where 

2

*
2

2

22 1
)1(1

1

ext
eq

wmz

w

wm

w

A
A sC

R
CRgsR

RR
Rg
RR

Y
Z +=








+

+
+








+

+
==

+−

−

+

− , 

  (13) 
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From (12)-(14), an equivalent circuit including FB-VDBA 

parasitic impedances for the proposed inductance simulator 
circuit in Fig.4 can be represented in Fig.9.  One observes 
from above mentioned mathematical results that R2 >> Rw- 
must be satisfied to prevent the parasitic effects on R*

eq2 and 
L*

eq2.  It also follows from (13) and (14) that if the value of 
parasitic resistance Rz- is high enough, the extra impedances 
(Rext2 and Cext2) do not affect the impedance of the inductor. 
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Fig. 8.  Non-ideal equivalent model of the proposed floating lossy 
inductance simulator in Fig.3 including parasitic impedances.    
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Fig. 9.  Non-ideal equivalent model of the proposed grounded lossy 
inductance simulator in Fig.4 including parasitic impedances.    

VI.  SIMULATIONS AND FUNCTIONAL VERIFICATIONS 
To verify the functionality of the proposed lossy 

inductance simulator circuits, PSPICE simulations were 
carried out based on a standard 0.25-µm CMOS process 
parameters from TSMC [37]. The proposed circuits in Fig.3 
and 4 are simulated by using the FB-VDBA in Fig.2 with 
power supply voltages fixed at ±0.75 V.   

A. Simulation results of the proposed floating lossy 
inductance simulator circuit in Fig.3 
The simulated transient responses of the proposed circuit 

in Fig.3 are represented in Fig.10 with gm = 0.5 mA/V (IB ≅ 
30 µA), R1 = 1 kΩ and C1 = 0.1 nF.  Using (3), the simulated 
equivalent elements are obtained as Req1 = 2 kΩ and Leq1 = 
0.2 mH.  In Fig.10, it is found that the phase shift between 
vin1 and iin1 is about 31° when the sinusoidal input signal of 
an amplitude 80 mV (peak) at 1 MHz was applied to the 
circuit.  On the other hand, the simulation and ideal 
frequency characteristics of the impedance Zin1 are also 
plotted in Fig.11. The simulated responses agree well quite 
with the theoretical results, which confirm the proper 
operation of the proposed circuit.  In addition to simulation 
results, the total power consumption of the circuit in Fig.3 
was found as 14.1 mW.  
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Fig. 10.  Simulated transient responses for vin1 and iin1 of the proposed 
floating lossy inductance simulator in Fig.3.    
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Fig. 11.  Theoretical (dashed lines) and simulation (solid lines) magnitude 
and phase responses of Zin1 of Fig.3.    

 
Fig.12 shows the simulated magnitude responses of Zin1 

with Req1 tuning while keeping Leq1 constant.  This design is 
for Leq1 = 0.2 mH with C1 = 0.1 nF, and simultaneously 
changing the values of gm and R1 as follows: (0.25 mA/V 
and 0.5 kΩ), (0.50 mA/V and 1 kΩ), (0.75 mA/V and 1.5 
kΩ), (1 mA/V and 2 kΩ), and (1.25 mA/V and 2.5 kΩ), 
which results in Req1 = 4 kΩ, 2 kΩ, 1.34 kΩ, 1 kΩ, and 0.8 
kΩ, respectively. Fig.13 also shows the Zin1-magnitude 
frequency variation concerning R1-value (i.e., 2.5 kΩ, 2 kΩ, 
1.5 kΩ, 1 kΩ, and 0.5 kΩ).  The values of gm = 0.5 mA/V 
and C1 = 0.1 nF are taken to obtain Req1 = 2 kΩ for all plots.  
For a given R1, the corresponding Leq1 values are simulated 
as 0.5 mH, 0.4 mH, 0.3 mH, 0.2 mH, and 0.1 mH, 
respectively.   
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Fig. 12.  Simulated Zin1-magnitude responses with tuning Req1.    
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Fig. 13.  Simulated Zin1-magnitude responses with tuning Leq1.    

 

B. Simulation results of the proposed grounded lossy 
inductance simulator circuit in Fig.4    
For the proposed grounded lossy parallel-type inductance 

simulator circuit of Fig.4, the time-domain and frequency 
responses for gm = 0.5 mA/V, R2 = 1 kΩ and C2 = 0.1 nF are 
shown in Fig.14 and 15, respectively.  According to (4), the 
simulated equivalent elements can be realized as Req2 = 1 kΩ 
and Leq2 = 0.2 mH.  As can be observed from Fig.14, when 
an input sine-wave signal with 1 MHz and amplitude of 80 
mV has been applied, its phase difference is around 38°.  In 
this case, the total power dissipation of the simulated lossy 
inductor is about 15.3 mW for a given bias condition.    

It may also be observed from (4) that the Req2 variation 
can be accomplished by the adjustment of R2.  Moreover, the 
Req2 tuning can be obtained without affecting Leq2 by keeping 
the R2/gm ratio constant. The orthogonal adjustment of Req2 
and Leq2 is demonstrated in Fig.16 by plotting the Zin2- 
magnitude responses for Req2 = R2 = 1 kΩ, 1.5 kΩ, 2 kΩ and 
2.5 kΩ, while keeping R2/gm fixed at 2×10-6.  On the other 
hand, the simulated magnitude responses of Zin2 are depicted 
in Fig.17 for Leq2 = 0.3 mH, 0.4 mH, 0.5 mH and 0.7 mH, 
when Req2 remains constant at 2 kΩ.  It is evident from both 
figures that the simulated equivalent elements Req2 and Leq2 
can be tuned orthogonally.     
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Fig. 14.  Simulated transient responses for vin2 and iin2 of the proposed 
grounded lossy inductance simulator in Fig.4.    
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Fig. 15.  Theoretical (dashed lines) and simulation (solid lines) magnitude 
and phase responses of Zin2 of Fig.4.    
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Fig. 16.  Simulated Zin2-magnitude responses with tuning Req2.    
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Fig. 17.  Simulated Zin2-magnitude responses with tuning Leq2.    

VII.  APPLICATION EXAMPLES 
As the first application of the proposed floating 

inductance simulator circuit in Fig.3, it was employed to 
implement a second-order RLC low-pass filter [38], as 
shown in Fig.18.  Routine analysis of the configuration of 
Fig.18 shows that the voltage transfer function, the pole 
frequency (fp), and the quality factor (Q) are found as: 
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Fig. 18.  Second-order RLC low-pass filter using the proposed floating 
inductance simulator circuit in Fig.3.    

 
The circuit components for the realization are chosen as 

gm = 0.5 mA/V, R1 = 1 kΩ, C1 = 0.1 nF and CLP = 50 pF, 
corresponding to the important filter characteristics as: fp = 
1.58 MHz and Q = 1. The frequency characteristics of the 
resulting low-pass filter are depicted in Fig.19.  The value of 
the corresponding fp measured from the simulation is 1.60 
MHz, which demonstrates a close agreement with the 
theoretical value.   
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Fig. 19.  Frequency characteristics of the low-pass filter in Fig.18.    
(a) gain and phase frequency characteristics (theoretical--dashed lines, 
simulation--solid lines)    (b) frequency spectrum. 

 
The electronic tunability of the realized low-pass filter can 

be assessed by changing the transconductance gm of the FB-
VDBA. The gain-frequency domain behavior with respect to 
gm (i.e., gm = 0.2 mA/V, 0.3 mA/V, 0.5 mA/V, and 1 mA/V) 
is shown in Fig.20.  As mentioned in (16) and (17), the ideal 
pole frequencies are fp = 1 MHz, 1.3 MHz, 1.58 MHz, and 
2.25 MHz, and the ideal quality factors are Q = 0.65, 0.82, 
1, and 1.41. The total harmonic distortion variations (THD) 
variation in the filter output is also measured by applying 
sinusoidal input voltages at 1.58 MHz.  The obtained results 
are plotted in Fig.21, which is observed that the THD 
remains below 10% for input voltage signal up to 300 mV.  
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Fig. 20.  Simulated gain-frequency responses of the low-pass filter in 
Fig.18 with respect to gm.    
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Fig. 21.  THD variations of the filter in Fig.18 against the input signal 
amplitude.     

 
Furthermore, the RLC parallel resonance circuit in Fig.22 

is performed to verify the functionality of the proposed 
grounded inductance simulator circuit of Fig.4.  For this 
purpose, the parallel R and L in the prototype passive circuit 
is replaced by the simulated parallel RL of Fig.4.  The 
component values are taken as R2 = 2 kΩ, C2 = 0.1 nF and 
CRES = 50 pF, to achieve Req2 = 2 kΩ.  The simulated plots of 
the magnitude-frequency characteristic at different gm values 
(i.e. 0.28 mA/V, 0.40 mA/V, 0.66 mA/V, and 1 mA/V) are 
given in Fig.23.  This adjustment results in different Leq2 
values, i.e. 0.7 mH, 0.5 mH, 0.3 mH and 0.2 mH, 
respectively.  
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Fig. 22.  RLC parallel resonance circuit using the proposed grounded 
inductance simulator circuit in Fig.4.    
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Fig. 23.  Magnitude-frequency plots of the RLC resonance circuit for 
different gm values.    

VIII.  CONCLUSIONS  
In this article, series and parallel lossy inductance 

simulating configurations using a fully balanced voltage 
differencing buffered amplifier (FB-VDBA) are presented 
Each present topology utilizes only one FB-VDBA, one 
resistor, and one capacitor.  The tuning of the simulated 
equivalent elements is realized by adjusting the bias current 
and/or the resistor in the simulators.  As application 
examples, RLC second-order low-pass filter and parallel 
resonance circuits are constructed using the proposed lossy 
inductance simulators.  Simulation results are given to verify 
the functionality of the proposed inductor circuits.   
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