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Abstract—In this paper we investigate the classical problem
of finding conditions on the entire coefficients A(z) and B(z) to
ensure that all nontrivial solutions of f ′′+A(z)f ′+B(z)f = 0
are of infinite order. We assume A(z) is an entire function with
completely regular growth and B(z) satisfies three conditions
respectively, (1) B(z) is a transcendental entire function with
lower order less than 1/2; (2) B(z) is a transcendental
entire function with Fabry gaps; (3) B(z) satisfies T (r,B) ∼
α logM(r,B) outside a set of finite logarithmic measure, we
prove the solutions have infinite order in these three cases.

Index Terms—entire function, infinite order, complex differ-
ential equation.

I. INTRODUCTION

IN
this article, we assume the reader is familiar with the basic

results of Nevanlinna theory in the complex plane C and
standard notations, for example see [15], [31]. Nevanlinna
theory plays an important role in the study of complex
differential equations, and many results appear in recent
years. In this paper, the order and lower order of an entire
function f are defined respectively as

ρ(f) = lim sup
r→+∞

log+ T (r, f)

log r

= lim sup
r→+∞

log+ log+ M(r, f)

log r
, (1)

µ(f) = lim inf
r→+∞

log+ T (r, f)

log r

= lim inf
r→+∞

log+ log+ M(r, f)

log r
, (2)

where log+ x = max{log x, 0} and M(r, f) denotes the
maximum modulus of f on the circle |z| = r.

Our main purpose is to consider the second order linear
differential equation

f ′′ +A(z)f ′ +B(z)f = 0, (3)

where A(z) and B(z) are entire functions. It’s well known
that all solutions of (3) are entire functions. If B(z) is tran-
scendental and f1, f2 are two linearly independent solutions
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of this equation, then at least one of f1, f2 is of infinite order,
see [13]. However, there exist some equations of form (3)
that have a nontrivial solution of finite order. For example,
f(z) = ez satisfies differential equation

f ′′ + e−zf ′ − (e−z + 1)f = 0.

What conditions should A(z) and B(z) satisfy such that
every solution f (̸≡ 0) of equation (3) is of infinite order?
There have been many results in the literature with regard to
this problem, see [13], [15]. For example, we collect some
classical results and give the following theorem.

Theorem 1. Let A(z) and B(z) be nonconstant entire
functions, satisfying any one of the following additional
hypotheses:

1) ρ(A) < ρ(B), see [8];
2) A(z) is a polynomial and B(z) is transcendental, see

[8];
3) ρ(B) < ρ(A) ≤ 1

2 , see [12],
then every nontrivial solution f of equation (3) has infinite
order.

This is a hot research object and a lot of works have been
published, such as [3], [6], [12], [17], [19], [21], [22], [28],
[29], [30], [32]. In the article we continue to study the above
question. Since every nontrivial solution of (3) satisfies

ρ(f) ≥ max{ρ(A), ρ(B)},

so we consider the question under the condition

max{ρ(A), ρ(B)} < ∞

in the following theorems.
At first, if ρ(r) is positive, differentiable for large r and

satisfies
lim
r→∞

ρ(r) = ρ ∈ (0,∞),

lim
r→∞

ρ′(r)r log r = 0,

then ρ(r) is called a proximate order, see [5, Section 2,
Chapter 2]. In order to formulate our results, recall the
indicator h(θ) of an entire function A(z) of order ρ with
respect to the proximate order ρ(r) is defined by

h(θ) = lim sup
r→∞

log |A(reiθ)|
rρ(r)

, (4)

where ρ(r) → ρ as r → ∞. The function A(z) is said to be
completely regular growth (in the sense of Levin and Pfluger)
if there exist disks D(ak, sk) satisfying∑

|ak|≤r

sk = o(r) (5)
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such that

log |A(reiθ)| = h(θ)rρ(r) + o(rρ(r)), (6)

reiθ ̸∈
∪
k

D(ak, sk)

as r → ∞, uniformly in θ. A union of disks satisfying (5) is
called a C0-set. We refer to Levin’s book [18] for a thorough
discussion of functions of completely regular growth. There
have been some works about the coefficients of (3) involving
completely regular growth, such as [11], [27]. In [11], the
authors got the following result.

Theorem 2. Let A(z) be an entire function of completely
regular growth, and let B(z) be any entire function such
that ρ(B) < ρ(A). Define

E = {θ ∈ [−π, π) : h(θ) ≤ 0}.

Then every nonzero solution of (3) satisfies

ρ(f) ≥ max{ρ(A),
(
21
√

m(E)
)−1

− 1},

where ρ(f) = ∞ if m(E) = 0, here m(E) is the Lebesgue
measure of E.

From the above theorem, it’s easy to see that if h(θ) > 0
for almost every θ ∈ [0, 2π), then the nonzero solutions of (3)
have infinite order. In this paper, we release the restriction on
h(θ), that is, assume that h(θ) can take negative values for θ
in some intervals which are contained in [0, 2π). Moreover,
we should give some conditions for B(z), then the order of
solutions of (3) are of infinite order.

The first main result relates to the well known cos(πρ)
theorem, which is due to Barry [1].

Theorem 3. Let A(z) be a completely regular growth entire
function and the set

E = {θ ∈ [0, 2π) : h(θ) = 0}

is of Lebesgue measure zero, and let B(z) be a transcen-
dental entire function with lower order µ(B) < 1/2 and
ρ(A) ̸= ρ(B). Then every nontrivial solution of (3) is of
infinite order.

For an entire function

B(z) =

∞∑
n=0

anz
λn ,

if B(z) satisfies the gaps condition

λn

n
→ ∞

as n → ∞, we call B(z) is an entire function with Fabry
gaps. It has positive order which was shown in [10, p.651].
We apply this property to B(z) in equation (3) and establish
the following result.

Theorem 4. Let A(z) be a completely regular growth entire
function and the set

E = {θ ∈ [0, 2π) : h(θ) = 0}

is of Lebesgue measure zero, and let B(z) be a transcenden-
tal entire function with Fabry gaps and ρ(A) ̸= ρ(B). Then
every nontrivial solution of (3) is of infinite order.

In the last result, we assume B(z) is a transcendental entire
function satisfying

T (r,B) ∼ α logM(r,B) (7)

as r → ∞ outside a set of finite logarithmic measure, where
0 < α ≤ 1. This method was ever used in [20] and [26,
Lemma 2.7]. The function B(z) in Theorem 5 really exists.
For example, entire function having Fejér gaps. Here,

f(z) =

∞∑
n=1

anz
λn

is said to have Fejér gaps if
∞∑

n=1

λ−1
n < ∞,

see [23]. A result involved Fejér gaps concerning infinite
growth of the solution of equation (3) was given in [16].

Theorem 5. Let A(z) be a completely regular growth entire
function and the set

E = {θ ∈ [0, 2π) : h(θ) = 0}

is of Lebesgue measure zero, and let B(z) be a transcen-
dental entire function satisfying T (r,B) ∼ logαM(r,B)
as r → ∞, where 0 < α ≤ 1, outside a set of finite
logarithmic measure such that ρ(A) ̸= ρ(B). Then every
nontrivial solution of (3) is of infinite order.

We note that there exist many functions satisfy the
condition (7). A simple example is the exponent function
B(z) = ez , for which the condition (7) holds for α = 1

π
without an exceptional set.

In the following, we give an example to illustrate the
condition for A(z) in the above results really exist. Firstly
we introduce the definition so called SCRG. An example of
completely regular growth function is the exponential sum

A(z) =

n−1∑
k=0

ak exp(bkz),

provided
arg bk < arg bk+1 < arg bk + π

for
0 ≤ k ≤ n− 2

and
arg b0 < arg bn−1 − π,

see details in [25]. In fact, exponential polynomial form an
important subclass of functions of completely regular growth.
It’s well known [24] that the zeros of exponential sums are
close to certain rays. Motivated by this we consider the
functions satisfying the following condition, which are more
general than the exponential polynomials.

Definition 6. If A(z) is an entire function satisfying the
following items, then we say A(z) has the SCRG (special
completely regular growth) property.

1) Let the rays arg z = θj be the accumulated lines of
zeros of A(z), where j = 1, 2, · · · ,m and

θ1 < θ2 < · · · < θm < θm+1 = θ1 + 2π;
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2) Let h(θ) be the indicator of A(z) in the angle

S(θj , θj+1) = {z : θj < arg z < θj+1)},

j = 1, 2, · · · ,m and ρ(r)(→ ρ) be a proximate order
of A(z);

3)
ε(r) = 1/ logN (r)

for some N ∈ N, where logN denotes the N-th iterate
of the logarithm;

4)
log |A(reiθ)| = h(θ)rρ +O(rρ(r)ε(r))

for |θ − θj | > ε(r), j = 1, 2, · · · ,m.

The SCRG property was firstly used in [2], in which some
functions satisfying this property were given and the complex
dynamical properties of entire function satisfying SCRG
were investigated. By Lemma 5 in the second section, it’s
easy to see that the function having SCRG property satisfies
the condition for A(z) in Theorem 3 and 4. Inspired by
this, we assume the coefficient A(z) involving the SCRG
property and get the following result.

Corollary 7. Let A(z) be an entire function satisfying the
SCRG property, and let B(z) be a transcendental entire
function satisfying the condition for B(z) in Theorem 3. Then
every nontrivial solution of (3) is of infinite order.

Corollary 8. Let A(z) be an entire function satisfying the
SCRG property, and let B(z) be a transcendental entire
function satisfying the condition for B(z) in Theorem 4. Then
every nontrivial solution of (3) is of infinite order.

Corollary 9. Let A(z) be an entire function satisfying the
SCRG property, and let B(z) be a transcendental entire
function satisfying the condition for B(z) in Theorem 5. Then
every nontrivial solution of (3) is of infinite order.

II. PRELIMINARY LEMMAS AND AUXILIARY RESULTS

The Lebesgue linear measure of a set E ⊂ [0,∞) is

meas(E) =

∫
E

dt,

and the logarithmic measure of a set F ⊂ [1,∞) is

ml(F ) =

∫
F

dt

t
.

The upper and lower logarithmic densities of F ⊂ [1,∞)
are given by

log densF = lim sup
r→∞

ml(F ∩ [1, r])

log r

and
log densF = lim inf

r→∞

ml(F ∩ [1, r])

log r

respectively. We say F has logarithmic density if

log dens(F ) = log dens(F ).

By the definitions of the logarithmic measure and the log-
arithmic density, we see that if the logarithmic density is
positive, then the logarithmic measure is infinite.

In order to present the following two lemmas, we set

M(r,B) = sup{|B(z)| : |z| = r},

m(r,B) = inf{|B(z)| : |z| = r}

for an entire function B(z). The first one is Barry’s cos(πρ)
theorem.

Lemma 1. ([1]) Let B(z) be an entire function with the
lower order µ(B) < 1/2, and

µ = µ(B) < ρ(B) = ρ.

If
µ ≤ δ < min{ρ, 1/2}

and
δ < α < 1/2,

then the set

G = {r : logm(r,B) > cosπα logM(r,B) > rδ} (8)

satisfies
log dens(G) ≥ C(ρ, δ, α),

where C(ρ, δ, α) is a positive constant only dependent on
ρ, δ, α.

We state the second lemma in regard to entire function
with Fabry gaps. It can be found in [4, Theorem 1] and [9,
Lemma 2.2].

Lemma 2. ([4, Theorem 1]) Let

B(z) =
∞∑

n=0

anz
λn

be an entire function of finite order with Fabry gaps. Then,
for any given ε > 0,

logm(r,B) > (1− ε) logM(r,B) (9)

holds outside a set of logarithmic density 0.

The proofs of our results highly rely on the estimation of
logarithmic derivatives, which is due to Gundersen [7].

Lemma 3. [7] Let f be a transcendental meromorphic
function of finite order ρ(f). Let ε > 0 be a given real
constant, and let k and j be two integers such that k > j ≥ 0.
Then there exists a set E ⊂ (1,∞) with ml(E) < ∞, such
that for all z satisfying |z| ̸∈ (E ∪ [0, 1]), we have∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε). (10)

Lemma 4. (Phragmén-Lindelöf principle) [14, Theorem 7.3]
Let f(z) be an analytic function of z = reiθ, regular in a
region D between rays making an angle π/α at the origin
and on the straight lines themselves. Suppose that |f(z)| ≤
M on the lines and as r → ∞,

f(z) = O(er
β

),

where β < α uniformly. Then |f(z)| ≤ M throughout D.

Lemma 5. [18, p.115, Corollary] If the zeros of entire func-
tion A(z) of proximate order ρ(r) are regular distribution
for the index ρ(r), and if the density of the set of zeros
within some angle S(α, β) is equal to zero, then the indicator
function within this angle is a trigonometric function, i. e.

h(θ) = a cos ρθ + b sin ρθ, (11)
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where α ≤ θ ≤ β, a and b are constants. If, however, inside
this angle there are no zeros of the function, then for α <
θ < β there exists the limit

h(θ) = lim
r→∞

log |A(reθ)|
rρ(r)

, (12)

where the variable tends to the limit uniformly when α+ε ≤
θ ≤ β − ε for any given ε > 0.

The following result due to Gundersen [8, Theorem 3]
shows the asymptotic properties of finite order solutions of
equation (3).

Lemma 6. Let A(z) and B(z)(̸≡ 0) be two entire functions
such that for real constants α, β, θ1, θ2, where α > 0, β > 0
and θ1 < θ2,

|A(z)| ≥ exp{(1 + o(1))α|z|β}

and
|B(z)| ≤ exp{o(1)|z|β}

as z → ∞ in

S(θ1, θ2) = {z : θ1 ≤ arg z ≤ θ2}.

Let ε > 0 be a given small constant, and let

S(θ1 + ε, θ2 − ε) = {z : θ1 + ε ≤ arg z ≤ θ2 − ε}.

If f is a nontrivial solution of (3) with ρ(f) < ∞, then the
following conclusions hold.

1) There exists a constant b(̸= 0) such that f(z) → b as
z → ∞ in S(θ1 + ε, θ2 − ε). Furthermore,

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β}

as z → ∞ in S(θ1 + ε, θ2 − ε).

2) For each integer k ≥ 1,

|f (k)(z)| ≤ exp{−(1 + o(1))α|z|β}

as z → ∞ in S(θ1 + ε, θ2 − ε).

III. PROOF OF THEOREMS

A. Proof of Theorem 3

The case ρ(A) < ρ(B) has been proved by Gundersen [8,
Theorem 2], thus we assume ρ(A) > ρ(B). Suppose that
there is a nontrivial solution f of (3) with finite order. Set

E∗ = {θ ∈ [0, 2π) : h(θ) ≤ 0}.

We divide into two cases on basis of meas(E∗) = 0 or
meas(E∗) > 0.

Case 1. Assume that meas(E∗) = 0, then the indicator of
A(z) satisfies h(θ) > 0 for every θ ∈ [0, 2π) \ E∗. We give
the details following the idea from [29] for the convenience
of reading. By (6), we have

log |A(reiθ)| = h(θ)rρ(r) + o(rρ(r))

for z = reiθ satisfying θ ∈ [0, 2π) \ E∗ and except a C0

set, where ρ(r) → ρ(A) as r → ∞. Then for any given
δ ∈ (0, π

4ρ(A) ) and η ∈ (0, ρ(A)−ρ(B)
4 ), we have

|A(z)| ≥ exp{(1 + o(1))α|z|ρ(A)−η}, (13)

|B(z)| ≤ exp{|z|ρ(B)+η}
≤ exp{|z|ρ(A)−2η}
≤ exp{o(1)|z|ρ(A)−η} (14)

as z = reiθ(→ ∞) satisfying θ ∈ [0, 2π) \ E∗ and except a
C0 set, where α is a positive constant depending on δ. Then
by Lemma 6, there exist corresponding constants bj ̸= 0
such that

|f(z)− bj | ≤ exp{−(1 + o(1))α|z|ρ(A)−η} (15)

as z = reiθ(→ ∞) satisfying θ ∈ [0, 2π) \ E∗ and except
a C0 set. Then f(z) is bounded in the whole complex
plane by the Phragmén-Lindelöf principle. Therefore, f is
a constant in the complex plane by Liouville’s theorem.
Obviously, this is a contradiction.

Case 2. Assume meas(E∗) > 0, then there exist some
angles in which the indicator of A(z) satisfying h(θ) < 0.
We can choose a ray arg z = θ∗ in these angles such that
h(θ∗) < 0.

By Lemma 3, there exists a set E ⊂ (1,∞) with finite
logarithmic measure such that for all z satisfying |z| = r ̸∈
E ∪ [0, 1], ∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2. (16)

Then, by Lemma 1, there exists a set G ⊂ (1,∞) with
infinite logarithmic measure such that (8) holds for r ∈ G.
The for |z| = r ∈ G \ E as r sufficiently large, we obtain

exp{rδ} < m(r,B)

≤ |B(z)|

≤
∣∣∣∣f ′′(z)

f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣
≤ (1 + o(1))r2ρ(f), (17)

where δ > 0. Thus we obtain a contradiction. Thus, we
complete the proof.

Remark 1. The situation of case 1 can really happen, see
Theorem 1.5 and the following content in paper [2].

B. Proof of Theorem 4

As the similar argument in subsection III-A, we only
need to consider the situation ρ(A) > ρ(B). Suppose that
there is a nontrivial solution f of (3) with finite order. We
treat two cases on basis of meas(E∗) = 0 or meas(E∗) > 0.

Case 1. Assume that meas(E∗) = 0, then the indicator
of A(z) satisfies h(θ) > 0 for every θ ∈ [0, 2π) \ E∗. The
arguments are similar as Case 1 in subsection III-A.

Case 2. Assume meas(E∗) > 0, then there exist some
angles in which the indicator of A(z) satisfying h(θ) < 0.
Hence, there must exist an interval IA ∈ [0, 2π) such that
h(θ) < 0 for all θ ∈ IA. By Lemma 3, there exists a set
E1 ⊂ (1,∞) with finite logarithmic measure such that for
all z satisfying |z| = r ̸∈ E1 ∪ [0, 1], (16) holds. In view
of Lemma 2, there exists a set G ⊂ (1,∞) with infinite
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logarithmic measure such that (9) holds. Thus, combining
(6), (9) with (16) we have, for any given ε > 0,

M(r,B)1−ε < m(r,B) ≤ |B(z)|

≤
∣∣∣∣f ′′(z)

f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)

f(z)

∣∣∣∣
≤ (1 + o(1))r2ρ(f) (18)

for z = reiθ, r ∈ G\E1, θ ∈ IA and outside a C0 set. Thus,

(1− ε)T (r,B) ≤ (1− ε) logM(r,B)

≤ 2ρ(f) log r + o(1) (19)

as r ∈ G\E1 sufficiently large. Since B(z) is transcendental,
we have

lim
r→∞

T (r,B)

log r
= ∞.

Thus, we get a contradiction from (19). Then we complete
the proof.

C. Proof of Theorem 5
As the similar argument in subsection III-A, we only

need to consider the situation ρ(A) > ρ(B). Suppose that
there is a nontrivial solution f of (3) with finite order. We
treat two cases.

Case 1. Assume that the indicator of A(z) satisfying
h(θ) > 0 for every |θ − θj | > ε(r), j = 1, 2, · · · ,m. The
arguments is similar as Case 1 in subsection III-A.

Case 2. There exists θ∗ satisfying |θ∗ − θj | > ε(r) such
that h(θ∗) < 0. Since the indicator of A(z) is trigonometric
function by Lemma 5, there must exist an interval IA ∈
[0, 2π) which contains θ∗ such that h(θ) < 0 for all θ ∈ IA.
By Lemma 3, there exists a set E1 ⊂ (1,∞) with finite
logarithmic measure such that for all z satisfying |z| = r ̸∈
E1 ∪ [0, 1], (16) holds. For given 0 < c < 1, set

IB(r) = {θ ∈ [0, 2π) : log |B(reiθ)| ≤ c logM(r,B)} (20)

and denote its Lebesgue measure by meas(IB(r)). It follows
from the definition of proximate function that

T (r,B) = m(r,B)

=
1

2π

∫
IB(r)

log+ |B(reiθ)|dθ

+
1

2π

∫
[0,2π)\IB(r)

log+ |B(reiθ)|dθ

≤ c
meas(IB(r))

2π
logM(r,B)

+

(
2π −meas(IB(r))

2π

)
logM(r,B). (21)

Therefore, T (r,B) ∼ α logM(r,B) outsides a set E2 of
finite linear measure implies that meas(IB(r)) ≤ 2π(1−α)

1−c
as r(̸∈ E2) → ∞. Hence, for α ∈ (0, 1) close enough to
1 we have meas(IB(r)) < meas(IA). Combining (6), (16)
with (20), it leads to

M(r,B)c ≤ |B(reiθ)|

≤
∣∣∣∣f ′′(reiθ)

f(reiθ)

∣∣∣∣+ |A(reiθ)|
∣∣∣∣f ′(reiθ)

f(reiθ)

∣∣∣∣
≤ (1 + o(1))r2ρ(f) (22)

for r(̸∈ E1∪E2∪[0, 1]) sufficiently large and θ ∈ IA\IB(r).
Since B(z) is transcendental, we obtain a contradiction.
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