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Abstract—In this paper, we propose a smart planning and
control system for autonomous vehicles in a high dimensional
space. It is a complete unsupervised scheduler and motion plan-
ner. Many warehouses take advantage of using an automated
material handling process for product transshipment to speed
up procedures. However, the growth of the space dimensions
becomes a big issue for the control system that becomes
increasingly complex. The introduced model uses, as input, a
kernel with a control system based on Deep Reinforcement
Learning for the low dimensional space. Besides, it employes
a global transition-control system to intelligently coordinate
communications between the kernels. The global transition-
control system creates virtual paths for each product, assigns
tasks to kernels for handling products in their zones, and
ensures transitions between blocks to brings each product to
their destination. Our approach yields good performance in
terms of speed and number of movements. The system is robust
to the increase, as well, the size of the warehouse as the number
of products.

Index Terms—autonomous vehicles, deep reinforcement
learning, multi agent system, automated guided vehicle system,
material handling, planing design

I. INTRODUCTION

W Ith the beginning of the 21st century, the involvement
of artificial intelligence methods in dealing with

real-world problems has been massively revealed. Starting
with the improvement and the hybridization of several
algorithms, like the mixing of the swarm intelligence
and machine learning ([1], [2]), or the enhancement of
the multi-agent reinforcement learning algorithm ([3],[4]).
Moreover, the direct applications of artificial intelligence in
the manufacturing ([5],[7]), management ([6]), and security
([8]).

In recent years, the automation process has had a central
interest in the industrial sector. As a manifestation of
Industry 4.0 [9], which present the trending and the bridge
to the use of artificial intelligence in the industrial process,
several requirements related to automation. Besides, the
flexibility of many processes are becoming necessary due
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to the trend of minimizing human intervention in repetitive
tasks.

Manufactories have used Automated Guided Vehicles
(AGVs) earlier as one of the industrial examples of the
repeated process. The AGVs can move automatically,
following a path drawn or programmed in advance. They
can make a series of scheduled stops and perform different
tasks such as pick-up and drop-off items. However, recent
developments have lead to new generations of autonomous
vehicles equipped with automotive industry technologies
such as detection, recognition and anti-collision systems.

Autonomous vehicle decision-making core in a warehouse
is, in some sort, an industrial generalization of what it
called the mobile robot path planning [10]. It is, in fact,
the problem of finding the shortest path according to
some criteria, relating two positions in a static environment
configuration (shape, obstacles, and so on). Many algorithms
can deal with it like [11], [12]. The difference is that we
face a dynamic environment with many robots with the
purpose of getting the product first, and next finding the
shortest path to its destination.

In the context of material handling, the autonomous
vehicles decision-making core claims advanced algorithms
that manage the assignment of each vehicle to some tasks
in addition to resolving the conflict access between them.
We describe such a framework as an Intelligent Material
Handling System. A kind of system that integrates camera
vision, environmental localization and mapping, decision
support or decision-making and communication.

The simple way to create a material handling system of
a warehouse is to design three independent software: The
pathfinder that assign the path to a vehicle ignoring the
other dynamic components (the other vehicles), the deadlock
detector, and the deadlock solver. However, such systems
require advanced algorithms that become complex for high
dimension environment and a large number of vehicles.

Our approach to solving material handling in a warehouse
can be described by dividing the warehouse into a grid
of low dimension zones. Each zone is managed by a
control system kernel using the deep reinforcement learning
algorithm to pick-up products in their territories. The kernel
manages, efficiently, the pathfinder, the deadlock detector,
and the deadlock solver systems. A master control system
will compute the Cartesian path intersection with borders

Engineering Letters, 29:1, EL_29_1_29

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



and let each kernel control system manage only its zone.

The paper is organized as follows. In section 2, we
present a summary of autonomous vehicle works. Section 3
details the proposed model for a high dimensions warehouse
by beginning with highlighting the basic neural network
reinforcement learning approach for a control system in a
low dimensions zone, following by its improvement in large
dimensions zone. After that, we show the results in section
5. The last section gives some conclusions and perspectives.

II. RELATED WORKS

In literature, Automated Guided Vehicle (AGV) was
the first implementation of the concept of the autonomous
vehicle in the industry. It is a driver-less robot moving
products or objects in two dimensions space that navigates
using physical guide paths, such as buried wire or magnetic
tape. The second generation of autonomous vehicle uses
a wireless guidance system instead of physical support.
With the progression of the computer vision and deep
learning algorithms, the autonomous vehicle utilizes new
techniques like the vision-based guidance system, allowing
more flexibility and implementation simplicity.

Many architectures are proposed to deal with the
autonomous vehicle. [13], for example, combines three
navigation modules that helps the system following
the expressed path. [14] proposes a navigation system
implementing data aggregation to integrate all information
collected from many sources like camera, odometer, LIDAR,
and collision avoidance sensors. Other approaches implement
more sophisticate artificial intelligence algorithms like A*
([15]) and D*([16]), Q-learning algorithm in [17], artificial
bee colony algorithm and an evolutionary programming
algorithm in [18].

Studying the Autonomous vehicles system requires a test
environment in order to compare proposed methods. One
of the classic approaches is to transform the environment
into a grid map and find the shortest path without obstacles.
Moreover, task assignment problem, in comparison with
navigation and trajectory planning problems, little research
has been focused on it. Different architecture can manage
it, we cite according to [19] the rule of random vehicle,
the nearest vehicle, the farthest vehicle, the most chosen,
and the last chosen vehicle. However, for the deadlock
management ([20], [21], [22]), there are three main designs.
The first one is the pure hardware design, which is described
as a specific physical architecture for the environment to
avoid overlapping between vehicles. The second one is
the soft-hard design. It’s a control system that requires
the presence of one vehicle in a predefined zone during
the process to avoid deadlock and collision. And the last
one is the pure software design, which presents an entire
algorithm to control deadlock with no consideration of the
environment architecture.

Other methods that deal with autonomous vehicles use a
deep reinforcement learning approach. Reinforcement learn-
ing (RL) [23] is a branch of artificial intelligence which deals

with the learning of agents who evolve in an environment by
performing a certain number of actions. Learning is done,
through trial and error, with the objective of optimizing a
reward function. This paradigm is used mostly in several
industrial contexts like [24]. But unlike the other techniques,
reinforcement learning doesn’t need labeled input/output
pairs used in the supervised learning, and maximize a reward
signal instead of trying to find hidden structure, unlike the un-
supervised learning. However, Deep reinforcement learning
mixes the RL with the usage of a neural network to overcome
the complexity of the problem. For example, [25] develops
a deep reinforcement learning technique so that the agent
learns to choose and then move towards the closest objective
among the multiple possible tasks. Another method, using
deep reinforcement learning, to control several AGVs was
proposed by [26]. [27] proposed a way to train the vehicle
agent to learn an automated lane change behavior such that it
can intelligently make a lane change under diverse and even
unexpected scenarios.

III. DEEP REINFORCEMENT LEARNING CONTROL
SYSTEM FOR AN AUTONOMOUS VEHICLE SYSTEM IN

LARGE DIMENSIONAL WAREHOUSES

Before we present our model of the high dimensional
warehouse control system, we should first detail the basic
framework expressed in [28]. It is, in fact, the core kernel
used in the new proposed model in order to overcome the
above presented issues.

A. Deep reinforcement learning control system of an Au-
tonomous Vehicle System

To construct a pure soft design for an autonomous
vehicle control system, several inputs and considerations
should first be defined. As examples, for vehicles, we
have the number of free robots in the environment, their
positions, and their accessibility to the untreated products.
For products, we specify their information, their localization,
and their accessibility to the entire set of vehicles. After
that, we should design an algorithm that can assign vehicles
to products and indicates the paths that avoid deadlock
situations and collisions in the environment during the
process.

According to [28], we can bypass all the complexity of
implementing algorithms for the control system by using a
neural network reinforcement learning approach. The idea
is to model the control system as a Reinforcement Learning
problem using Markov Decision Process [23] with the set of
vehicles as one big agent, interacting with the environment
by attributing actions to all vehicles in the environment, with
a reward system that promotes the collection of products
in minimum steps and of course avoiding the deadlock
situations.

The implementation of [28] illustrated at fig 1 uses the
Q-Learning [29] approximation approach and the D3QN
(Dueling Double Deep Q-Network) [30] algorithm for the
learning process. The training process is based on a reward
system described in the table I, giving reward values for each
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Fig. 1: Deep reinforcement learning control system kernel architecture. We use the state data extracted from the environment
(vehicle positions, vehicle status, product positions, product status), and we feed-forward them in a 3DQN architecture to
get Q values for each possible action. The best action to take is with the high Q value.

TABLE I: Kernel Reward system

Role Reward
staying without product -0.08
staying with product -0.2
collision with border without product -0.2
collision with border with product -0.4
collision with vehicle without product -0.6
collision with vehicle with product -0.3
stand by without product -0.1
stand by with product -0.2
loading product 0.8
delivered product 1

vehicle dispatched in the environment. The big agent will get
in each step the mean of all collected rewards. Besides, The
progression learning procedure applies a smooth dimensions
augmentation, using the transfer learning techniques between
each dimension transition.

The results show a significant performance with a small
number of vehicles. But with the growth of its number,
the action space increases exponentially, which drops the
system performance. It should also be mentioned that, as
the environment dimensions increase, the model loses its
performance progressively, due to the simplicity of the
policy proposed by the neural network. So as a problem
to solve, we need an approach to increase the environment
dimensions considerably and maintain at the same time a
good performance with such a control system model, which
we will propose in the next section.

B. Proposed model for high dimensions environment control
system

The proposed model contains three parts: path recognizer
and kernel input extractor, the transition system, and the
kernel control system.

Let us consider L a high dimensions environment of an
autonomous vehicle system with dimensions (L0, L1). To
decompose this environment into blocs of small zones, we
need a kernel model with neural network reinforcement
learning control system, and a small number of vehicles.
That kernel k should be of dimensions [L0

n0
, L1

n1
] to get a

rectangle grid of elements of it, with size (n0, n1).

Let’s consider a product in the environment L, with a
start position (i0, j0) and a destination position (i1, j1).

First, to build the path recognizer and kernel input
extractor, we define a virtual minimum path linking the
two positions of the product. Since we have a convex
shape environment, we can consider the minimum distance
between two points as the distance of the segment connecting
them. So the virtual minimum path, for the reason of the
discrete environment space, is the oriented Manhattan path
from the start to the destination positions.

We define the borders of a kernel as the set of all the
positions in the borders.

We extract all the borders’ positions that intersect with the
Manhattan path. We will have two situations for each kernel:

• Kernels that have not intersections with the Man-
hattan path of the product: These kernels will not
participate in delivering the product.

• Kernels that have one or two intersections with the
Manhattan path of the product: These kernels will
take over the delivery of the product. However, each of
them needs the start and the end positions with respect
to the relative landmark. So we will mix up the start and
destination positions for kernels with one intersection,
and define the two intersection positions as the start
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Fig. 2: The Performance of the autonomous vehicle system in the learning stage. The learning process starts with training
the agents with a 4x4 grid size until it gets a stable result. After that, it uses the saved model to tackle the 4x5 grid size to
get another stable result, and so on until we reach the 7x7 grid size. The spikes figured out between two environment size
configuration indicate the model disturbances at the beginning related to the environment configuration modification.

Fig. 3: High dimensional autonomous vehicle control system architecture

and the destination positions for the second type of
kernels, with respect to the orientation Manhattan
path. So as result, we will have p oriented kernels
{(K1, SK1

, DK1
), (K2, SK2

, DK2
), ..., (Kp, SKp

, DKp
)}

where Ki is the ith kernel position, and SKi , DKi

are respectively the start and the destination positions
where the vehicles in ith kernel will act.

Second, to construct the transition system between
kernels, which present technically a system picking up
product from the destination position of the kernel k−1 and
the start position of the kernel k, we need a pickup system
to deliver a product from the destination kernel position to
the desired adjacent start kernel position.

Finally, we need a kernel control system that takes advan-
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Fig. 4: Decomposition of Autonomous Vehicle environment into grid of kernels

Fig. 5: Manhattan paths for 3 random start/destination product positions. The presented environments are subdivided into
kernels (degraded dark regions) and the Manhattan path (light regions) which is determined with a start location and a
destination location..

tage of managing products inside its territory, which is in
our case the neural network reinforcement learning control
system.
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(a) (b)

Fig. 6: (a) Example of kernel borders for an warehouse environment, (b) Start/end kernels positions for a product Manhattan
path

Algorithm 1: Autonomous-Vehicle-Control-System
Result: no result
Initiate-Agents-Kernel-Positions()
while True do

if Has-Product-Delivering() then
Start, End = Start-End-Product-Positions()
Position-List = Manhattan-Path(Start, End)
Borders-Kernels-List = Get-All-Kernels-Border()
Start-End-Kernel-List = Get-Start-End-Borders-Kernels(Position-List, Borders-Kernels-List)
while Start-End-Kernel-List is not Empty do

Kernel-Position, Start-Position, End-Position = Get-Information(Start-End-Kernel-List[0])
Call-Kernel-Control-System(Kernel-Position, Start-Position, End-Position)
if Product-Position == End-Position in Kernel-Position landmark then

Old-End-Position =End-Position
Delete(Start-End-Kernel-List[0])
Kernel-Position, Start-Position, End-Position = Get-Information(Start-End-Kernel-List[0])
Product-Transition(Old-End-Position, Start-Position)

else
Wait()

end
end

else
Wait()

end
end

IV. SIMULATION AND RESULTS

Our model has been simulated with a pre-trained 7x7
size environment kernel with 2 agents and 5 products to
deliver, using a pseudo greedy policy for the control system
with 15% of exploration. The performance of our approach
will be judged on the set of kernel grid sizes (1,2), (2,2),
(2,3), (3,3). The construction of the kernel is made with the
procedures described in [28], and the source code of the
simulation is accessible in [31]

Our approach will be evaluated by making a comparison
with random policy. It presents the same environment
architecture with kernels that adopt a control system with a

fully random decision policy. The two policies will be tested
in two environments that start with 10 products with random
start and destination positions located in the environment
borders.

A video depicting a chronological set of the warehouse
state in the simulation of picking up five products with a
3x2 grid environment using our approach can be viewed here
[32].

For more clarification, the figure 7 details the full path
of each vehicle inside a 2x2 grid warehouse environment
with five products. Each product path will mentioned with
different color. The thin arrows present the transition inside
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Fig. 7: Simulation of picking up products by autonomous vehicle system in two by two kernel warehouse environment. In
this figure, we have the purpose of delivering five products. Five oriented paths are presenting the product picking up in
the warehouse with different colors, each one concerns one product. The fat arrows indicate the transition between kernels.

kernels. Moreover, the fat arrows indicate transition between
kernels.

For the purpose of evaluating our model, we will use
quantitative criteria that compare the model result with the
ideal scenario that can be get. In our situation, the best path
is the Manhattan one without conflict access or deadlock.
But we will consider the worst-case giving that the initial
vehicle position is exactly the product destination. In other
words, the vehicle should take the Manhattan path to pick
up the product, and another time using a different Manhattan
path to reach the destination. On the other hand, in order
to evaluate our model, we simply get the number of moves
made by all the vehicles in the warehouse.

Let’s consider Np, Nv respectively the number of
products, the number of vehicles, H(i) the Manhattan path
of ith product giving it start and end position, and S(j) is
the number of moves of the jth vehicle. We will use the ratio:

R =

∑Nv

j=1 S(j)−
∑Np

i=1 2H(i)∑Np

i=1 2H(i)

as a metric to compare the two approaches.

The results mentioned in the figure 9 show a great
performance for our approach. Firstly, compared with the
random approach, we can see a mean ratio between 1 and
2 for our model, versus mean ratio between 20 and 60 for
random approach, which can be estimated as |2−60|60 = 96%
our model is better than the random policy.

The large gap between the random policy and the model
policy maintains the same intensity in the four graphs, even
they present different grid size (2x1, 2x2, 3x2, 3x3). The
figure shows that the random policy uses 30 times more of
moves compared to our model.

So as result, our model guaranties a better and a stable
performance comparing to the random policy, giving an
unknown grid configuration.

By analyzing the figure 8, we can observe a smooth rise
of the mean ratio values referring to the grid size growth,
and that due to the pseudo greedy policy managing the
kernel control system. The 15% exploration characterized
the kernel control system policy can increase the error rate
as we enlarge the grid size.
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Fig. 8: Mean of R ratio values of autonomous vehicle design of 100 epochs with set of grid sizes. We can figure out a
smooth increase of the R values within the dimension size growth due to, in fact, the impact of the exploration rate applied
in the simulation.

Fig. 9: Ratio values of autonomous vehicle design versus random design in 1x2, 2x2, 3x2, and 3x3 grids in 100 epochs.
The four figures mention the R ratio values for the random policy and the proposed model policy.

V. CONCLUSION

In summary, we can say that our design approach
provides a stable alternative ensuring a good yield for high
dimensional warehouse with a convex environment shape.

Our approach uses simple implementation mixing the low
dimension kernel with a pre-trained control system and a

transition rule between kernels
.

However, such an approach requires the presence of
agents in each kernel in the warehouse environment, which
can be expensive as material in the case of using a high
number of kernels.

As perspectives, we can tackle two main issues:
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• The minimization of the number of vehicles:

In fact, we can add another control system dedicated
to making the vehicles transition between kernels, and
thus authorize it movement with no restriction in the
hole warehouse environment.

• The non-convex warehouse environment shape:

In this case, we cannot use the Manhattan path to
describe the product transition, so we can improve the
transition system in order to find first the feasible total
path, next it will solve the transitions to delegate the
tasks to the desired kernels.
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