
Modeling and Analyzing Imperfection in
Enterprise Models

Hector Florez, Mario Sánchez and Jorge Villalobos

Abstract—Nowadays, Enterprise Models are very important
assets because they allow documentation, communication, and
analysis about the current state and desirable future states
of an enterprise. These models are built supported on certain
information offered by enterprise sources with different char-
acteristics. Nevertheless, this information can be insufficient,
incomplete, or incorrect, as sources might fail to accurately
describe certain facts of the enterprise. For this reason, we
argue that Enterprise Models carry an inherent imperfection
that affects the conclusions that we can draw from these
models and their analysis. In this article, we propose an
approach to allow supporting the understanding and correction
of possible imperfection points in an enterprise model through
measurements with quantitative analysis techniques, based on
domain-specific and topological properties of the model. For this
purpose, domain and topological analysis techniques have been
developed on top of the tool iArchiMate, in order to support
the identification and resolution of model imperfection.

Index Terms—Enterprise Models, Enterprise Modeling, En-
terprise Analysis.

I. INTRODUCTION

HUMAN brains interpret reality by taking information
from sensory organs and making a model of the world

based on such information [1]. Modeling is an essential
activity for humans because every action in common life
is preceded by the explicit or implicit construction of a
model. Thus, if the model is incorrect, the action may be
inappropriate [2]. Humans create mental models observing
the reality in different ways. Most humans look directly at
the reality, but blind humans can make their observations by
listening or touching the reality; however, humans can also
make models using information provided by other humans,
documents, and other kinds of sources of information.

In the last decades, computer systems have gained great
importance around the world. In this area, it is possible to
represent the concepts of a system through a conceptual
model. Moreover, conceptual models can be specialized in
order to provide a representation of a specific context such
as the enterprise context. Thus, enterprise models are used
to abstract and represent various domains of enterprises;
nevertheless, these models get special importance, when they
are used to analyze the enterprise.

Enterprise Models allow representing Information Tech-
nologies (IT) and business elements as well as the rela-
tion between those elements in an enterprise under study.
These models are useful for understanding enterprise systems
through proper abstractions of the business and technological

Manuscript received June 24, 2020; revised January 21, 2021.
Hector Florez is Full Professor at the Universidad Distrital Francisco Jose

de Caldas, Bogota, Colombia. E-mail: haflorezf@udistrital.edu.co
Mario Sánchez is Associate Professor at the Universidad de los Andes,

Bogota, Colombia. E-mail: mar-san1@uniandes.edu.co
Jorge Villalobos is Full Professor at the Universidad de los Andes, Bogota,

Colombia. E-mail:jvillalo@uniandes.edu.co

perspectives of an enterprise [3], [4], [5]. They also serve
for multiple purposes such as documenting, communicating,
diagnosing, analyzing, and designing [6] the architecture of
the enterprise. Their construction is based on human system
observation [2], supported by different information sources
such as interviews, diagrams, and reports. In this construction
process, modelers must identify and classify these sources.
Later on, modelers capture the source knowledge using
the syntax and semantics of a modeling language (e.g.,
ArchiMate).

The difficulty of constructing a model that properly repre-
sents the enterprise lies in certain factors that might affect the
modeling process, such as the lack of sufficient information
or the quality of the information [7]. For example, if the mod-
eler asks an infrastructure technician about the availability of
a device, it is possible that he is uncertain about the up-time
of such a device, e.g., by claiming it is between 95% and
99%. In this case, the modeler might require one specific
value for the attribute; he could then decide to approximate
this availability as the average of both values (e.g., 97%),
which in some cases can be an incorrect assumption.

Thus, despite the modelers’ best intentions, enterprise
models are inevitably imperfect abstractions of the enterprise,
as the accumulated information could be inaccurate or miss-
ing. Modelers start the construction process of an enterprise
model by creating drafts, which are incomplete models
based on the initial information obtained [8]. These drafts
are gradually refined and enriched based on the available
sources; thus, imperfect information might be introduced at
any moment of the modeling process.

In this work, we focus on models that describe the current
state of the enterprise and we argue that it is better to create
models that explicitly describe this imperfection, instead of
assuming that the model accurately represents a desired state
of the enterprise. Following the example above, it is desirable
that the modeler can state the uncertainty of the source,
(e.g., with a range of values [95% - 99%]), instead of being
forced to provide just one value, in order to avoid incorrect
assumptions.

Identifying and measuring the imperfection of a model can
determine whether the model is useful for further purposes
such as documentation, communication, or analysis. Thus,
imperfection analyses allow finding the impact of an im-
perfect element or relationship to desired business analyses.
For instance, if one model built based on ArchiMate has a
high imperfection level in the elements that belong to the
application layer, it is very likely to have a high impact on
the accuracy of business analyses that are based on these
elements. In addition, imperfection analyses might provide
information for assessing how sensitive one specific business
analysis is regarding the imperfection level in the model.

Detecting imperfection while developing enterprise mod-

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



els can be an onerous task, given the size and complexity of
these models, as well as the different types of imperfection
that we can encounter: imprecision, inconsistency, vagueness,
uncertainty, or incompleteness [9]. Nevertheless, it is desir-
able to discover flaws in the model as early as possible. In
order to correct them, it is necessary to make them visible.
Then, we propose to use quantitative analyses, which is
composed of domain analysis and topological analysis to
measure how much imperfection a model has. Then, the
results provided by these analysis techniques allow us to
determine the model’s requirements for refinement and to
identify new necessary information.

The rest of the article has the following structure. Section
II briefly describes the concepts and processes of enterprise
modeling. Section III presents some fundamental concepts
about enterprise analysis. Section IV describes imperfection
in enterprise models, while our approach for modeling the
imperfection is presented in Section V. In section VI, we
present our analysis techniques for analyzing the imperfec-
tion. Section VIII presents a discussion of the presented
work, followed by Section IX, which discusses related work,
and Section X, which presents the conclusions.

II. ENTERPRISE MODELING

Enterprise modeling focuses on the use of multiple mod-
eling languages to describe and specify all desired compo-
nents of an organization in a coherent manner, as well as
the relationships between these components [10]. Models
produced with these languages are useful for understanding
the business and technological domains of an enterprise [11].
Their development is a cooperative process that involves
domain experts, modelers, and analysts [12].

The enterprise modeling process starts when a domain
expert understands the enterprise requirements and based on
them produces some concerns about the enterprise. These
enterprise requirements allow guiding experts to identify
insights regarding business issues and goals. Then, domain
experts select the relevant modeling languages needed to
address these concerns [13]. Usually, these languages are
public specifications (e.g., Business Process Modeling and
Notation BPMN, ArchiMate, Business Motivation Model
BMM) defined by committees and expert groups that produce
a language specification. However, when existing languages
are not satisfactory to address these concerns, the domain
expert can create enterprise-specific languages.

Once a modeling language with the corresponding meta-
model is chosen, a modeler identifies and consults the
enterprise sources that provide relevant data about these
concerns. The information provided by each of these sources
is extracted, consolidated, and interpreted, using the entities
and relationships specified in the metamodel. Then, the
modeler starts creating the enterprise model that implies
creating elements, relationships, and attributes in elements
or relationships.

An enterprise model can go through several rounds of
refinement. As soon as the model is finished (i.e., the model
includes the desired elements, relationships, and attributes of
the enterprise), an analyst starts analyzing the enterprise by
interacting with the model, usually by view generation, by the
formulation of queries, or by running specialized functions
while calculating a metric or while enriching the model.

Finally, the analyst draws some conclusions, based on the
observations and insights that come from his interaction with
the model [14].

The quality of the analysis depends on the quality of the
information that is present in the model. If this information
is not accurate for a set of concerns, the analyses made with
this model might be unreliable [15]. Then, we introduce the
notion of imperfect models to express inaccurate or missing
attributes, elements, and relationships. Creating an imperfect
model, for representing certain inaccurate information avoids
wrong interpretations regarding the correctness of the model
i.e., one model might be considered accurate despite it is not,
but one imperfect model is not an inaccurate model because
it represents certain problems through imperfect information
that is included with a specific notation. In this way, modelers
can identify imperfection points, and either correct them, or
take this imperfection into account in further uses.

A. Enterprise Modeling Requirements

Enterprise modeling demands a minimum set of require-
ments that DSMLs should accomplish to provide the nec-
essary characteristics in order to be able to properly create,
update, and manage large enterprise models.

• Extensibility. DSMLs must be extensible in order to
warrant that enterprise models may include further
elements, which are not defined in the DSML after the
model has been created.

• Flexibility. Enterprise models might be upgraded; then,
the DSML needs to be flexible in order to provide
the mechanisms to manipulate properly the conforming
models.

• Modularity. Since models are big and complex, they
used to be represented in smaller and simpler fragments.
It means that one model can have different kinds of
interconnected modules, which each one represents a
particular aspect of the enterprise.

• Points of view. Enterprise models may offer stakehold-
ers access to specific elements that may come from
different modules, in order to provide desirable portions
of the model that are useful to achieve intended goals.

• Separation of Concerns. Different stakeholders have
different backgrounds; thus, an enterprise might have
various models, where each model satisfies specific
concerns. Thus, models should also include concepts
to facilitate clear communication for diverse groups of
stakeholders [16].

B. Enterprise Modeling Domains

Enterprise modeling includes four domains, where each
domain might be represented by multiple enterprise models
[17]. Models from different domains can be used for dif-
ferent purposes. An enterprise model of a specific domain
can include various modules to fragment and facilitate its
comprehension as well as points of view to observe desired
elements of the model. These domains are:

• Business Domain presents a description of the enterprise
in order to provide an understanding of the organization.
The goal of this domain is to relate all business elements
such as business goals, business processes, business

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



functions, business capabilities, business actors among
others.

• Information Domain provides a common business lan-
guage to enable consistent communication between en-
terprise systems by defining kinds of data to provide
a basic vocabulary and assigning critical attributes of
the enterprise [18]. This domain includes data models,
which provide a well defined data structure used by
the organizational information systems [19]. There are
three different types of data models: conceptual data
models, which are used to identify domain concepts;
logical data models, which defined the specific enti-
ties, attributes and relations that belongs to a system
under study; and physical data models, which are used
to design the internal schema of a database enacting
its corresponding data tables, columns (placed on the
tables), and relations between tables. Data models aid
to assist business and IT staff to understand and use
the information of an enterprise and its information
systems as well as to to manage data as a resource in
order to foster the integration of information systems.
Data models are usually created during the analysis and
design phases of a project in order to warranty that the
business requirements regarding enterprise information
are included in the project design.

• Application Domain identifies the systems required to
support the business, defining their structure and behav-
ior making emphasis on the interaction between them
and with users. This domain defines sets of capabil-
ities to manage enterprise information and facilitates
identifying business improvements [18]. This domain
includes enterprise application and integration compo-
nents, custom application development models, services
definitions, processes alignment specifications, and ser-
vices architectures. This domain includes models for
describing the structure of the application systems of the
organization such as components models, architecture
models, and development models.

• Technology Domain enables capabilities required by
the enterprise. These capabilities are offered through
technology infrastructure systems such as hardware de-
vices, infrastructure services, software, networks among
others. In this domain, models are created to describe
infrastructure elements such as networking models,
which allows representing communication devices (e.g.,
routers, switches) with corresponding protocols as well
as their physical location; infrastructure models, which
represents hardware (e.g., servers) and software (appli-
cation servers, databases) systems.

There are five relations between the aforementioned do-
mains. The relation from Business to Information relates
business processes and indicators to business entities. The re-
lation from Business to Application relates business processes
and business services to application services. The relation
from Information to Application relates business entities
to application services. The relation from Information to
Infrastructure relates information structure to technological
support. Finally, the relation from Application to Infras-
tructure relates application components to infrastructures
services and software.

III. ENTERPRISE ANALYSIS

In a general context, analysis consists in the identification,
separation, and examination of the parts of a component in
order to study its function and meaning. An analysis performs
different actions that allow obtaining conclusions regarding
the component that is being analyzed. When the component
is represented by a model, the analysis of the component
can be performed by analyzing the corresponding model.
Nevertheless, analyzing a model is challenging because of its
size and complexity. In this chapter we cope with enterprise
analysis challenges through automated analysis methods.

In the enterprise context, enterprise models are mainly
used to support enterprise analysis. The analysis of an enter-
prise model is a complex human activity that involves for-
mulating hypotheses, discovering insights, and interpreting
results in order to communicate assessments. Thus, enterprise
analysis is the process of applying and evaluating certain
business criteria on enterprise models in order to obtain
results that might enrich the model and be used to make
assessments of the actual (AS-IS) or desired (TO-BE) state
of the enterprise.

Various enterprise analyses are currently used in the en-
terprise context. These analyses can be classified as internal,
external, or both. Internal analyses are those that are focused
on elements that belongs to the enterprise, while external
analyses are those that take into account elements that are
not part of the enterprise.

Some internal analyses are:
• Capabilities analysis is the study of enterprise processes

based on given specifications in order to determine
whether or not enterprise processes comply to desired
enterprise objectives.

• Risk analysis is the study of dangers to business and
people provoked by human events. Its results can be
quantitative or qualitative and are used to align business
and IT objectives.

• Business process analysis evaluates business processes
performance by measuring processes elements (e.g.,
events, activities, resources) in order to reduce overall
costs, increase efficiency of resources, and provide
better customer service and support.

• Change impact analysis allows identifying the conse-
quences on resources, effort, and schedule of a busi-
ness or IT change as well as estimating the required
adjustments in order to perform a desired change.

• Financial analysis evaluates the income statement, bal-
ance sheet, and cash flow statement of the enterprise in
order to determine its profitability, solvency, liquidity,
and stability, among others.

Some external analyses are:
• Market analysis studies the commercial viability and

dynamics of the market that belongs to a specific
industry, based on some desired characteristics such
as market segments, competitors, customers behavior,
potential demand, market trends, consumption patterns,
etc.

• Product life cycle analysis evaluates the evolution of a
product through its life span. This evaluation is done
along five stages: development, introduction, growth,
maturity and decline. This analysis allows assessing the

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



actual state of the product and the actions that should
be taken in order to increase the products profit.

• Competitors analysis is used to identify competitors of
an enterprise and to evaluate their business strategies in
order to predict their behavior. This analysis involves
the key aspects: objectives, assumptions, strategy and
capabilities.

Some internal and external analyses are:
• SWOT (Strengths, Weaknesses, Opportunities, and

Threats) analysis identifies internal and external char-
acteristics of an enterprise. Internal characteristics are:
strengths that give the business a competitive advantage
and weaknesses that place the business competitive
disadvantage provoking a reduction of progress. Exter-
nal characteristics are: opportunities that provide the
business a favorable position and threats that impacts
negatively the business.

• Stakeholders analysis determines the power and interest
of stakeholders, who are those individuals or groups
that have concerns in the enterprise. In this analysis,
stakeholders with high power and high interest are key
players. Stake holders can be internal (e.g., managers,
developers, finance department) or external (e.g., cus-
tomers, suppliers).

When the analyst performs a business analysis on an
enterprise model, according to the objectives of the analysis,
the analyst needs to browse the enterprise model supported
by a modeling tool to get the required information from
the model and obtain results that might enrich the model.
The analyst must interpret those to provide assessments.
For example, if an enterprise model is used to perform
a financial analysis in order to assess the annual product
profit, the analyst must verify that the attributes price, fixed
cost, variable cost, and sales are included in the model.
Using a modeling tool, the analyst collects the values of
said attributes and make calculations in order to provide the
products’ profit. Nevertheless, if the enterprise sells a great
amount of different products, which are classified by different
categories, the enterprise model might become huge; thus,
browsing the model might produce errors.

Since a business analysis might include several tasks (e.g.,
browsing the model, calculating numeric values), it might
be decomposed in various individual analyses in charge to
perform some procedures in order to solve specific tasks on
the model. These individual analyses are analysis methods
that provide specific results useful to business analyses.
For instance, continuing with the previous example, a full
financial analysis may require the calculation of partial infor-
mation such as income per product. Thus, an analysis method
created for this task provides such information. However, to
perform this method, it is necessary that the model includes
values to the attributes price and sales in every product. Then,
the metamodel of the modeling language needs to include
these attributes. In addition, if the results need to be stored in
the model, the metamodel also needs to include the attribute
income in the corresponding type.

IV. IMPERFECTION IN ENTERPRISE MODELS

The construction process of an enterprise model is com-
plex and normally requires certain tough activities such as

consulting heterogeneous sources, and interpreting unstruc-
tured information [2]. Thus, building an enterprise model that
represents an enterprise accurately is very difficult because
enterprise models have a lot of elements and a lot of relations
between those elements.

Enterprise models represent the state of an enterprise in
a specific moment; however, enterprises continuously have
changes, so they remain imprecise. Thus an enterprise model
usually lacks of complete information and even contains
imprecise or inconsistent information [20].

An enterprise model can be imperfect for two reasons. On
the one hand, modelers start the modeling process before
they obtain all the required information. Then, modelers
create drafts of the enterprise model, which are temporary
models and could include incomplete elements or imperfect
information [8]. On the other hand, modelers decide to in-
clude imperfect information because the collect information
is insufficient; nonetheless, it is not possible to obtain further
information from additional sources; as a result, the final
version of the model remains imperfect.

When modelers create imperfect models, it is possible to
represent inaccurate information of the enterprise instead of
incorrect information of the enterprise. However, it demands
the characterization of the imperfection, which implies un-
derstanding the sources of enterprise information.

A. Sources of Enterprise Information

Enterprise knowledge is usually fragmented in several
sources of information. These sources provide information
to modelers for building the enterprise model and they can
be observational (e.g., meetings and interviews with employ-
ees), factual (e.g., surveys, documents, reports, presentations,
diagrams), or reflective (i.e., based on the experience and
insights of the modeler). Thus, each source has a different
reliability and precision level. Consequently, it is usual to
consult various sources to get information about certain
aspects of the enterprise.

When approaching these sources, it is very likely to
find different issues such as lack of information, imprecise
statements, contradictions, conflicts, and other kinds of issues
that hinder the construction of the model. Moreover, it is also
likely to find certain information that was true in previous
states of the enterprise, but sources are not able to confirm
if this information remains valid in the present. Thus, based
on the quality of the information provided by sources, they
can fall into one or various of the following categories:

• A source is incorrect [7], when it provides false,
irrelevant, or unusable information. This might happen
when the source has obsolete information about certain
aspects of the enterprise.

• A source is imprecise [21], [22], [23], [24], when it
provides a range of values to a numeric attribute that
requires an individual value (e.g., based on various ex-
periments to measure the availability of the application
elements, the CTO informs that the availability of the
application component CRM is between 0.92 and 0.95).

• A source is inconsistent [25], when it provides different
values to an attribute or relationship (e.g., the CTO
makes an experiment to measure availability of the
application component CRM providing the value 0.92,

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



but later the same CTO based on a different experiments
asserts that the availability is 0.95). In addition, various
sources are inconsistent if they provide different values
for the same attribute or relation (e.g., the CEO asserts
that the expected increment of sales for the next year is
30%, but the sales committee asserts that the expected
increment of sales is 20%).

• A source is vague [26], when it provides a linguistic
value to one attribute that requires a numeric value.
(e.g., based on an experiment made to measure the
availability of application elements, the CTO asserts that
the availability of the application component CRM is
“High”)

• A source is uncertain [21], [27], [24], when it provides
a value with certainty degree (e.g., the CTO asserts that
the application component CRM is used by the busi-
ness process Customer Profile Analysis with a certainty
degree of 80%).

B. Imperfect Models

Modelers are in charge of assigning values to attributes, as
well as connecting model elements with relationships. Then,
once modelers receive information from imperfect enterprise
sources, they do not have a unique course of action when
dealing with various values for an attribute, or various targets
for a relationship. Then, they need to make decisions in
the construction of the enterprise model, which might cause
a loss of information. For instance, consider the following
situation: a CTO of an enterprise declares that the CRM (an
Application Component, which manages the customer data)
has availability of 96%; however, an IT employee asserts that
the availability of the CRM is 99%. Then, in this case, the
modeler has at least the following options to assign a value
to the attribute availability:

1) Assign one numeric value (e.g., the higher values or
the average).

2) Assign a range of values (e.g., [96% - 99%]), where
each value has the same occurrence probability. This
also requires modifications in the metamodel, e.g., by
creating the attributes minimumAvailability and maxi-
mumAvailability.

3) Assign a set of values (e.g., (96%, 99%)), where more
than one value with the same occurrence probability
of are provided by several sources.

4) Include a certainty degree to each conflicting value
based on the reliability level of the source, e.g., 96%
with a 60% of certainty, and 99% with 40% certainty.

5) Modify the attribute type to support qualitative values,
e.g., to describe availability as “High”.

6) Do not assign any value.
Taking the first option implies that the model is complete;

however, it is incorrect. Options two, three, and four are not
desirable because these options imply including information
that does not conform to the metamodel. The last option is
also undesired because it produces an incomplete model.

In addition, it is also possible to find imperfection in one
to one relationships with multiple elements i.e., relation-
ships with various possible targets or sources. For example,
continuing with the previous case, the CTO asserts that the
MySQL Database Service, which is an Application Service,

is realized by the Windows Server, which is an Application
Component, or the Linux Server, which is also an Application
Component, but being unsure by which one specifically. In
this case, modelers have four options:

1) Make the realization relationship with one component
realized by the Application Component.

2) Make two realization relationships, where each rela-
tionship has the same probability.

3) Make two realization relationships assigning to each
relationship a desired certainty degree.

4) Do not assign any relationship.

Taking the first option implies that the model is complete;
nevertheless, it might be incorrect. Options two and three
demands updating the metamodel of the modeling language.
Finally, option four produces an incomplete model.

In order to model imperfection, it is mandatory to adjust
the metamodel of the modeling language to allows describing
incompleteness, uncertainty, vagueness, inconsistency, and
imprecision of enterprise sources, while modeling the busi-
ness information they report to modelers [9], [28]. Then,
based on the information provided by sources, modelers
might create five types of models or a combination of them:

Imprecise model: Includes at least one attribute that has
a range of numeric values instead of a single numeric value,
when sources of information are inconsistent or imprecise.

Inconsistent model: Includes at least one attribute or
relationship that has multiple values. Attributes can have a
set of values when sources are inconsistent or imprecise. For
relationships, modelers can create various relationships with
the same name that share the same source or target element,
when sources of information are uncertain or inconsistent.

Uncertain model: Includes at least one attribute or re-
lationship that has a certainty degree, when sources of
information are uncertain, inconsistent or imprecise.

Vague model: Includes at least one attribute that has
a linguistic value. This happens when sources are vague,
uncertain, inconsistent, or imprecise.

Incomplete model: Includes at least one attribute with
empty value, or an absent element, when modelers do not
have enough information.

Then, with the purpose of making these issues explicit, we
use a notation for each kind of imperfection:

• Imprecise attributes include a minimum and a maxi-
mum numeric values separated by a dash inside square
braces (e.g., [0.8-0.9]). Fig. 1a presents the application
component CRM with the attribute availability that
contains the imprecise value [0.92-0.96].

• Inconsistent attributes include a list of values in paren-
theses separated by commas (e.g., (X, Y, Z)). Fig.
1b presents the application service MySQL Database
Service with the attribute version that contains the
inconsistent value (5.6.30,5.7.15).

• Uncertain attributes include two elements: the actual
value of the attribute and a numeric value that represents
a certain degree of the actual value. These elements
must be placed with braces and separated by comma
(e.g., {Z, 0.8}). Fig. 1c presents the device Linux Server
with the attribute provider that contains the uncertain
value {DELL, 0.9}, which implies that the provider is
DELL with a certainty degree of 90%.

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



(a) Imprecise Attribute (b) Inconsistent Attribute

(c) Uncertain Attribute (d) Vague Attribute

(e) Incomplete Attribute (f) Absent Element

(g) Inconsistent Relations

(h) Uncertain Relations

Fig. 1. Notation for imperfection

• Vague attributes include a linguistic value inside of
angle brackets (e.g. <High>). Fig. 1d presents the
system software JBoss Application Server with the
attribute availability that contains the vague value
<High>.

• Empty attributes of incomplete elements include a ques-
tion mark (?) as value. Fig. 1e presents the application
component BI with the attribute version that contains
as value the symbol ?.

• Absent elements are placed with uncolored squares.
Fig. 1f presents an element called Shorewall, which is
supposed to be system software, but its existence is not
proved.

• Inconsistent relationships are drawn in blue and in-
clude a set of relationships with the same type (e.g.,
UsedBy) from one source to various targets. Fig. 1g
presents the application component CRM supported by
the infrastructure services MySQL Database Service and
SQL Server Database Service; nevertheless, the CRM is

supposed to be supported by just one database service.
• Uncertain relationships are drawn in blue and have

an attribute that specifies its certain degree. Fig. 1h
presents the UsedBy relation from the application ser-
vice Analytics Service to the business process Indicator
Management with a certainty degree of 80%.

V. MODELING IMPERFECTION

Although imperfect enterprise models can be developed
using an arbitrary modeling language [29], we will focus on
the ArchiMate [30] modeling language. In order to address
modeling imperfection, we have used the distinction and
separation of linguistic and ontological conformance.

To achieve this, we developed a modeling tool called
iArchiMate1, which has been created on top of the Eclipse
Modeling Framework (EMF)2. Models created using the tool
iArchiMate conform to one metamodel called Imperfection
MetaModel (iMM), which is presented in Fig. 2 and includes
the required concepts and relationships for modeling imper-
fect ArchiMate models.

Thus, the imperfect model conforms linguistically to the
iMM that allows representing any element, attribute, and rela-
tionship, where attributes and relationships can be imperfect.
The imperfect model conforms ontologically to the domain
metamodel (e.g., ArchiMate); nevertheless, attributes and
relations of instances of the same metatype can have different
characteristics i.e., different kinds of imperfection; then,
imperfect information must follow the notation provided by
the modeling language.

The central element of iMM is the Model concept, with a
containment relationship to the other concepts. The abstract
type Component is specialized by concepts Element and
Group. Group allows defining collections of elements,
while Element serves to represent instances of a given
concept of a model. Each Element includes one attribute
named typeName, which must match the name of an
ArchiMate concept (e.g., BusinessProcess). The con-
cept Relation allows representing relationships between
two elements. Each Relation includes an attribute named
typeName, which has to match one of the relationship
types of ArchiMate (e.g., UsedBy). The type Attribute
allows representing the actual values of attributes included
in elements or relationships of the model.

The concept ImperfectAttribute is created to
represent imperfect attributes of the original enterprise
model, and contains the attribute imperfectionType,
which determines its kind of imperfection. This at-
tribute can have different values. NumericRange value
implies that the attribute is imprecise. The values
NumericSet and NumericString define an inconsistent
attribute. Also, the values NumberCertaintyDegree
and StringCertaintyDegree are used to describe
an uncertain attribute. When the attribute is vague, the
type LinguisticValue must be assigned. Incomplete
attributes have the literal NoValue.

The concept ImperfectRelation represents im-
perfect relationships. This concept has the attribute
imperfectionType, which determines its imperfection.

1http://iarchimate.virtual.uniandes.edu.co
2https://www.eclipse.org/modeling/emf

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 

http://iarchimate.virtual.uniandes.edu.co
https://www.eclipse.org/modeling/emf


Fig. 2. Metamodel of Imperfection iMM.

Finally, we use the concept AbsentElement for de-
scribing incomplete elements.

A. Running Example

This example uses the ArchiMate [30] modeling language
just for illustration purposes. We selected this language
because it allows creating enterprise models from a holistic
perspective, facilitating the execution of different business
and IT analyses. Furthermore, its widespread use and tool
support facilitated the implementation of our approach, and
its metamodel contains a well-defined collection of concepts
specific to enterprise modeling.

In order to illustrate the notion of imperfect models
and their imperfection analyses, we use one scenario of a
publisher scenario. The enterprise model of this scenario
was built using the iArchiMate modeling tool, and contains
184 elements in the Business Layer, 13 elements in the
Application Layer, 13 elements in the Infrastructure Layer,
28 elements in the Motivation Layer, and 432 relationships
arranged in 12 views. Having several elements that present
different kinds of imperfection, this scenario is appropriate
for our purposes in this work.

Fig. 3 illustrates a fragment of the layered view created
for the publisher scenario. This view contains elements of
the application and infrastructure layers, which includes the
following imperfect information:

1) Imprecise attribute availability and uncertain
attribute storageUsed in Windows Server.

2) Vague attribute availability and inconsistent at-
tribute provider in Linux Server.

3) Inconsistent attribute version, vague attribute
availability, and uncertain Realization relation-
ship to Analytics Service in BI.

4) Incomplete attribute availability, vague attribute
storageUsed, and uncertain Realization relation-
ship to Version Control Service in DMS.

5) Incomplete attribute version and uncertain Realiza-
tion relationship to Customer Management Service in
CRM.

6) Absent element Profile Service.
Imperfect relationships are depicted in blue, and absent

elements are filled uncolored but outlined with a blue square.
When selecting an imperfect relationship, the Properties view
of iArchiMate displays relevant information about the rela-
tionship such as certainty degree, imperfection type, name,
source, target, and type name.

By using our approach for modeling imperfection, it is
then possible to introduce in the model all the information
provided by sources even if such information is imperfect.
Nevertheless, we have identified some limitations:

• In some cases, sources might not provide the informa-
tion they are supposed to provide, and thus the modeler
is forced to leave the model incomplete.

• When several sources provide inconsistent information,
the modeler might decide to include them as a set of
values; nevertheless, if some of those values are already
imperfect, the modeler would need to include a set
of values in which some of them might be imprecise,
vague, or uncertain. So far, our approach is not able to
support this situation.

VI. ANALYZING IMPERFECTION

When an enterprise model is imperfect, it is important
to identify and measure its imperfection level in order
to understand how the model might be refined to reduce
or even remove certain imperfect information. Identifying
and measuring the imperfection of an enterprise model can

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 3. Layered view of publisher enterprise scenario using iArchiMate.

determine whether the model is useful for further purposes
such as documentation, communication, or business analysis.
Detecting imperfection while developing enterprise models
can be an onerous task, given the size and complexity of
these models, as well as the different types of imperfection
that we can encounter i.e., imprecision, inconsistency, vague-
ness, uncertainty, or incompleteness. Then, it is desirable to
discover flaws in the model as early as possible. In order to
correct them, it is necessary to make them visible, something
that can be done by different means.

Imperfection analyses offer modelers and analysts valuable
information, for studying and measuring imperfection prob-
lems in the models in order to understand and, if possible,
correct such problems. For instance, a modeler can realize
that a model is not finished because the imperfection level
of the model suggests that a) there is a lack of elements in
the whole model or in one specific ArchiMate layer, b) there
is a lack of relationships between elements placed in differ-
ent ArchiMate layers, or c) there are missing attributes in
elements or relations. The analyst can also conclude that the
enterprise model is not useful to perform a specific business
analysis because there are different kinds of imperfections in
elements, attributes, or relationships required for the analysis;
as a result, the analysis results might not be accurate or
reliable enough.

In this work, we propose two analysis techniques: a)

domain analysis, which analyses imperfection based on cer-
tain desired enterprise elements and b) topological analysis,
which analyses imperfection based on the structure of the
model. By using these techniques, an analyst can obtain
relevant insights regarding the imperfection in the model,
as well as a global perspective that facilitates the discovery
of additional imperfections.

A. Domain Analysis of Imperfection

In certain circumstances, an analyst needs to know the
imperfection level of a particular meta-type in order to focus
on specific issues on the model. In this case, the purpose
of domain-specific analysis of imperfection is to know the
imperfection level of the model by focusing on business rules
and patterns, as well as considering specific characteristics of
the modeling language used to create the enterprise model.
For instance, our model has a large number of business
elements, but a small number of technology elements.

Domain analysis of imperfection might suggest that 1) the
model does not contain the necessary technological elements
to support the business elements of the enterprise; as a result,
the model is incomplete, or 2) the enterprise is not working
properly. Thus, there might be a large number of domain
analyses; however, in this section, we just illustrate two
domain-specific analyses: incompleteness and uncertainty.

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 4. Results of Incompleteness Domain Analysis.

1) Incompleteness domain analysis: This analysis aims
to identify the possible absence of certain elements, rela-
tionships, or attributes in the enterprise model, based on
the specific characteristics of the modeling language. Thus,
the metamodel of the modeling language specifies structural
characteristics; however, in some cases, the metamodel can-
not define semantic characteristics. Consequently, modeling
languages might contain certain rules that this analysis must
take into account. In addition, this analysis must allow
the inclusion of parameters, for determining the values of
required variables and analysts might be able to include
certain rules in order to customize the analysis when it is
required.

For instance, based on the ArchiMate metamodel, each
Business Process in the model should be related to at
least one Business Role or Business Actor. This analysis
determines whether there are Business Processes that are not
performed by any role or actor. By performing this analysis
on our publisher scenario, we have obtained the results shown
in Fig. 4, which presents the number of business processes
that have been related to the number of business actors or
roles.

We can observe that 8 processes do not have an as-
signed business actor or role, and 17 processes just have
one business actor or role. On the one hand, these results
indicate that the model is incomplete because there is a
lack of business actors or roles and a lack of corresponding
relationships with business processes. On the other hand, the
results also suggest that there is a possible additional level
of incompleteness corresponding to the business processes
with just one business actor or role; thus, the lack of
relationships between business processes and business actors
or roles is very likely. The rest of the processes seem to be
complete, but analysts can also use these results to know how
many processes have been correctly modeled. This analysis
evidences incompleteness; nevertheless, this incompleteness
might be present because the reality is in that way; thus,
albeit the analysis reflects incompleteness, the model is not
necessarily representing correctly the enterprise.

Incompleteness might also be studied in other elements or
relations of the imperfect enterprise model. Thus, analysts
can focus their attention on some specific characteristics
that the model should accomplish regarding the modeling
language, in order to identify whether the imperfect model
lacks necessary elements or relations in such focused parts
of the model. Then, this incompleteness domain analysis
becomes a useful tool to measure the lack of certain elements
or relations needed for further uses such as performing
business analysis on the enterprise model.

2) Uncertainty domain analysis: This analysis provides
information about uncertain relationships of the model, based
on a given certainty degree. The analysis evaluates one
desired relationship type, of those available in the modeling
language. However, in several modeling languages one rela-
tionship type can have as a source and target elements, differ-
ent meta-types. Thus, the analysis might also be performed,
for one specific source meta-type and one specific target
meta-type, in order to obtain filtered results. The algorithm of
this analysis method browses the corresponding relationships
and compares their assigned certainty degree with the given
certainty degree.

For example, the enterprise model of our publisher sce-
nario has some uncertainty degree in the UsedBy relation-
ships that goes from the elements ApplicationService
to the elements BusinessProcess. In order to measure
the uncertainty of these relationships, the analyst considers
those with a certainty degree greater than 0.9 as valid.
Fig. 5 presents the results of the analysis method through
a report, which informs the amount of imperfect UsedBy
relationships with certainty degree greater than 0.9 that go
from the elements ApplicationService to the elements
BusinessProcess.

Based on these results, the analyst can not only identify
in which elements imperfect relations are located but also
the number of imperfect relations filtered by a criteria given
by the analyst. For example, the presented results alert
the presence of several imperfect relations concentrated in
just two elements: Customer Management Services and File

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 5. Results of Uncertainty Domain Analysis.

(a) TCF01 Overall Model Imperfection (b) TCF02 Imperfect Attributes

(c) TCF03 Imperfect Relations (d) TCF04 Imperfect Elements

Fig. 6. Topological Context-Free Analysis Methods Results

Management Service and more than the half of the imperfect
relations have a certain degree over 0.9% which demands
their refinement.

B. Topological Analysis of Imperfection

The last phase of our approach to analyze imperfection
is the topological analysis. This kind of analysis measures
the imperfection level of the model, based on the structural
properties of the model. It provides quantitative results
and can be done from different perspectives by running
topological analysis methods. We identified two classes of
topological analysis methods for measuring the imperfection
in enterprise models: Context-Free and Context-Dependent
analysis methods.

Context-Free analysis methods provide the number of
imperfect elements, attributes and relationships in the model,
while Context-Dependent analysis methods provide informa-
tion regarding the imperfection level of the model based
on the modeling language concepts. This work has been
instantiated in ArchiMate; consequently, Context-Dependent
analysis methods are based on ArchiMate elements (e.g.,
BusinessProcess), relationships (e.g., UsedBy) and
layers (e.g., business, application). Table I presents the set
of topological analysis methods for analyzing the imperfec-
tion that we have identified. For instance, the Context-Free
analysis method TCF02 presents the amount of imperfect
attributes classified by imperfection type (e.g., imprecise,
inconsistent, uncertain, vague, or incomplete), while the

Context-Dependent analysis method TCD02 presents imper-
fect elements classified by the ArchiMate layers Business,
Application, Infrastructure, Motivation, and Implementation.

TABLE I
TOPOLOGICAL ANALYSIS METHOD FOR ANALYZING IMPERFECTION

Type Id Name
Context- TCF01 Overall Model Imperfection
Free TCF02 Imperfect Attributes

TCF03 Imperfect Relationships
TCF04 Imperfect Elements

Context- TCD01 Imperfect Elements by Element Type
Dependent TCD02 Imperfect Elements by Layer

TCD03 Imperfect Attributes by Element Type
TCD04 Imperfect Attributes by Element Type and

Attribute Name
TCD05 Imperfect Relationships by Element Type
TCD06 Imperfect Relationships by Element Type

and relationship Type

1) Context-Free: Fig. 6 reports the results of the topologi-
cal Context-Free analysis methods for the complete model of
the publisher scenario, where sub-figures (a), (b), (c), and (d)
present the results of the analysis methods TCF01, TCF02,
TCF03, and TCF04 respectively.

The method TCF01 presents the percentage of imper-
fect attributes, relationships, and elements, where imper-
fect elements are those that have been instantiated as
AbsentElement, or those that include imperfect attributes
or relationships. The method TCF02 presents the percentage
of imperfect attributes classified by their imperfection type
(e.g., imprecise, inconsistent, uncertain, vague, or incom-

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 7. Chart of Imperfect Attributes.

plete). The method TCF03 presents the percentage of imper-
fect relationships based on their imperfection type (e.g., in-
consistent or uncertain). Finally, the method TCF04 presents
the percentage of imperfect elements grouping them in absent
elements, elements that contains imperfect attributes, and
elements that contain imperfect relationships.

The iArchiMate environment also displays the topological
analysis results through different charts. Fig. 7 is a pie 3D
chart that contains the results of the analysis method TCF02.
Based on this chart, it is possible to observe the proportion
of imperfect attributes by imperfection type in the model, as
well as the proportion of the non-imperfect attributes.

Using the results of the Context-Free analysis methods, an
analyst can make different conclusions such as:

• 61.31% of the attributes are imperfect which seems to
be a high amount of imperfect attributes; however, just
20.75% of the elements are imperfect, where 20.33%
of those elements are imperfect because they contain
imperfect attributes. This implies that most of the im-
perfect attributes are concentrated in a small set of the
model’s elements.

• Just 4 relations that correspond to the 0.92% are im-
perfect. This amount is very low and does not have a
strong impact.

• From the imperfect attributes (i.e., 61.31% of the at-
tributes), 32.85% are imprecise attributes. This suggests
that refining the model might be focused on reducing
or removing attributes imprecision.

2) Context-Dependent: Fig. 8 presents some reports with
the results of the topological Context-Dependent analysis
methods for the model of the publisher scenario, where sub-
figures (a), (b), (c), (d), (e), and (f) present the results of the
analysis methods TCD01, TCD02, TCD03, TCD04, TCD05,
and TCD06 respectively.

The results of the methods: i) TCD01 presents the per-
centage of imperfect elements grouped by the ArchiMate
element type, where imperfect elements are those that have
been instantiated as AbsentElement or those that include

imperfect attributes or relationships; ii) TCD02 presents
the imperfection level for each layer of ArchiMate such
as Business, Application, Implementation, and Motivation;
iii) TCD03 calculates the percentage of imperfect attributes
grouped by the element type; iv) TCD04 calculates the
percentage of imperfect attributes grouped by the name of
the attribute (e.g., availability) and the element type; v)
TCD05 calculates the percentage of imperfect relationships
grouped by the element type; and vi) TCD06 calculates the
percentage of imperfect relationships grouped by the element
type and the relationship type.

Fig. 9 presents a bar chart with the results of the analysis
method TCD01. Based on the chart, it is possible to observe
which ArchiMate elements include attributes and imperfect
attributes. In addition, the imperfection level (regarding the
number of imperfect attributes) for each ArchiMate element
is observable. The chart presents in red bars, the total
amount of attributes for each element type (e.g., 24 attributes
for business actors) and in blue bars, the total amount of
imperfect attributes for each element type (e.g., 15 imperfect
attributes for business actors).

The results of the Context-Dependent analysis methods
run on the model of the publisher scenario enable analysts
to make several additional conclusions such as:

• Imperfect elements in the model are concentrated in
just three element types which are BusinessActor,
BusinessObject, and ApplicationService.
Albeit the greater amount of imperfect elements are
placed in the Business layer, those imperfect elements
correspond to the 12.5% of Business elements. More-
over, 100% of the Application elements and 86.67% of
the Technology elements are imperfect. This suggests
that the Application and Technology layers need to be
refined.

• Imperfect elements are concentrated in few element
types of the model and some element types contain
only imperfect attributes. However, the greater
amount of imperfect elements are placed in just

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



(a) Imperfect Elements by Element Type (b) Imperfect Elements by Layer

(c) Imperfect Attributes by Element Type (d) Imperfect Attributes by Element Type and Attribute Name

(e) Imperfect Relationships by Element Type (f) Imperfect Relationships by Element Type and relationship Type

Fig. 8. Topological Context-Dependent Analysis Methods Results

four element types. In addition, some attributes
such as availability in ApplicationService
elements are always imperfect. These results suggest
that imperfection in the model must be refined
in the element types ApplicationService,
BusinessActor, SystemSoftware, and
ApplicationComponent.

• Few relations in the model are imperfect; however, all
of them are UsedBy relations, which are placed in
ApplicationService elements. Thus, it is impor-
tant to pay special attention to the relations placed in
the Application layer.

VII. APPROACH TO ANALYZE IMPERFECT ENTERPRISE
MODELS

When the enterprise model is imperfect, automated analy-
sis methods might not be performed because these methods
follow algorithms that make numeric calculations; as a result,
analyses must be done manually by analysts. Nevertheless,
manual analysis is a though task because imperfect enterprise
models are big, complex, and include all types of imperfec-
tion (i.e., imprecision, inconsistency, vagueness, uncertainty,
and incompleteness).

Thus, once the level of imperfection has been evaluated,
there are two courses of action. On the one hand, the modeler
tries to refine the imperfect model, if new useful information
can be gathered. On the other hand, the analyst tries to
perform analysis through automated analysis methods using

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



Fig. 9. Chart of Imperfect Attributes by Element Type.

the imperfect model. In this section, we focus on a solution
for the second course of action.

Due to automated analysis methods need to make numeric
calculations, some imperfection types cannot be used. For in-
stance, vague attributes because they contain linguistic values
(e.g., attribute availability with the value <High>);
inconsistent attributes that contain a set of textual values
(e.g., attribute provider with the value (Dell, SUN));
inconsistent attributes that contain a set of numeric values
(e.g., attribute memory with the value (4,8,16)) because it
would be necessary to make the calculations using all values
of the set; uncertainty attributes because they contain a values
and a certainty degree (e.g., attribute storage with the
value {1000,90%}).

However, imprecise attributes serve to make numeric cal-
culation because any calculation can be done using the mini-
mum and maximum values and thus the result is represented
with a range of values, which corresponds to a new imprecise
attribute. Then, if some automated analysis methods can be
upgraded in order to be performed on imprecise enterprise
models, it is necessary to prepare the imperfect information
involved in a desired analysis method to be able to make the
corresponding calculations.

We propose an approach that consist in transforming
imperfect information into imprecise information. However,
it is not possible in every case. Imperfect information that
can be transformed is the information assigned to numeric
attributes. Then, following information can be transformed
into imprecise information:

1) Inconsistency to imprecision. An inconsistent nu-
meric attribute contains a set of numeric values inside
of parenthesis and separated by commas (e.g., (0.9,
0.97, 0.93, 0.95)). This transformation puts a range
of values to the corresponding attribute, where the
minimum and maximum values are selected from the
set of values.

2) Vagueness to imprecision. Vague attributes include
a linguistic value inside of angle brackets (e.g.,
<Good>). The linguistic value must be selected from
a set of linguistic values defined for the corresponding
vague attribute (e.g., Outstanding, Good, Acceptable,
Bad). This transformation puts a range of values for
each linguistic value, where the range is equitable for
the set of linguistic values. This range is then assigned
to the numeric attribute.

Any transformation generates an alternative imprecise en-
terprise model, which is an approximation of the original
imperfect model. It means that the original imperfect enter-
prise model is not altered. An imperfect enterprise model can
be transformed in three different ways:

• Automatic. iArchiMate is able to make every transfor-
mation from inconsistent and vague values to imprecise
values. There are the following alternatives:

– AI1: For inconsistent values, the range of values
includes as minimum and maximum values the
minimum and maximum values of the set of values.
For instance, if the inconsistent value is (0.9, 0.97,
0.93, 0.95) the transformed imprecise value is [0.9
- 0.97].

– AV1: For vague values, a default range of values
is assigned to each linguistic value. The default
scale is from 0.1 to 1. For instance, if the vague
attribute can have one of the following linguistic
values: Outstanding, Good, Acceptable, Bad; then,
the equivalent ranges for each linguistic value are:
Outstanding: [0.76 - 1], Good: [0.54 - 0.75], Ac-
ceptable: [0.26 - 0.5], Bad: [0.1 - 0.25]; thus, if the
linguistic value is Good, the transformed imprecise
value is [0.54 - 0.75].

• Semiautomatic. iArchiMate offers analysts services to
customize the transformation. This customization has
different alternatives for each imperfection type.

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



TABLE II
ADVANTAGES AND DISADVANTAGES OF TRANSFORMATION ALTERNATIVES

Id Advantage Disadvantage
AI1 Every inconsistent attribute is transformed into a im-

precise attribute with just one process
Transformations cannot be done for just specific ele-
ments (e.g., BusinessProcess) or specific elements that
belong to a specific layer (e.g., business layer).

AV1 Vague attributes are transformed based on the amount
of linguistic values

The resultant ranges of values might have a big dif-
ference between the maximum and minimum value

SI1 Analysts can decide the imprecision to be introduced In the model has a lot of inconsistent attributes,
analysts have to make lot of selections

SI2 Analyst have to make just one operation for transform-
ing every inconsistent attribute of the model

This alternative might introduce incorrect information

SV1 Analysts can decide the scale of imprecision Analysts need to make one action for each vague
attribute in the model

SV2 Analyst can provide non equitable ranges of values for
linguistic values

Analyst has to provide one range of values for each
linguistic value for each vague attribute

– For inconsistent values, there are the following
alternatives:
∗ SI1: The analyst can select for each imprecise

attribute, the minimum and maximum values
from the set of values. iArchiMate validates that
the minimum value is less than the maximum
value.

∗ SI2: When the inconsistent value is a set of four
or more values, iArchiMate offers the analyst the
option to remove the lower and greater value of
the set, and proceeds to create a range of values
using the automatic way AI1.

– For vague values, there are the following alterna-
tives:
∗ SV1: The analyst can assign a scale for the set

of linguistic values and iArchiMate assigns the
corresponding range of values based on such
scale. For instance, if the linguistic values are:
High, Medium, Low and the analyst sets the scale
71-100, the equivalent ranges for each linguistic
value are: High: [91 - 100], Medium: [81 - 90],
Low: [71 - 80]; thus, if the linguistic value is
Medium, the transformed imprecise value is [81
- 90].

∗ SV2: The analyst can assign a range of values
for each linguistic value that belongs to a set
of linguistic values and iArchiMate assigns the
corresponding range of values. For instance, the
linguistic values are: High, Medium, Low and the
analysts assigns the following ranges: High: [95
- 100], Medium: [81 - 95], Low: [61 - 80];

• Manual. The analyst can decide to introduce impreci-
sion, for desired imperfect attributes. However, it might
produce an incorrect model and thus automated analysis
results might be incorrect as well.

These alternatives facilitates the transformation; however,
it is important to take into account their advantages and
disadvantages that are presented in Table II.

VIII. DISCUSSION

The value of an enterprise model is proportional to the
knowledge extracted by its analysis. However, different types
of imperfection can appear:

• Inaccurate, erroneous, contradictory, ambiguous, or un-
reliable information can be placed in attributes or rela-
tionships.

• Incorrect sources or targets of relations can be assigned.
• Missing information can emerge in attributes or rela-

tionships.
These imperfections affect the analysis stage of enterprise

modeling, as they imply inaccurate analysis results, as well
as additional costs each time the model is rejected, refined,
or more information is recollected.

Analyzing imperfection can be expensive, but it is better to
invest effort and time identifying the level of imperfection in
the model than using the model to perform business analysis
that might provide inaccurate, or even incorrect results. Then,
the initial cost of analyzing imperfection can be high, but
such cost is compensated when the model is ready to be
used for performing business analysis.

To minimize these risks, assessing the impact of im-
perfection to enterprise analysis, and discover new imper-
fection, two imperfection analysis techniques have been
presented, each one focusing on different characteristics of
the model. On the one hand, when the analyst is interested
in objectively measuring the imperfection of a model based
on the modeling language characteristics, domain analysis
techniques provide quantitative results taking into account
those characteristics. On the other hand, when the model is
considered as a graph and the analyst requires knowing the
number of imperfect elements, attributes, or relationships,
the topological analysis provides these kinds of results.
Consequently, each technique does not exclude the other one;
then, they should be used together in order to find the desired
information regarding imperfection.

IX. RELATED WORK

Some approach in the literature address quality metrics
in Enterprise Models, and provide methods and tools for
their modeling and analysis. Frank [3] presents an approach
called Multi-perspective Enterprise Modeling (MEMO) to
represent different perspectives of the enterprise. It offers
a framework that includes common enterprise abstractions,
represented by the languages Strategy Modeling Language
(MEMO-SML), Organization Modeling Language (MEMO-
OrgML), and Object-Oriented Modeling Language (MEMO-
OML). The MEMO architecture, which describes the spec-
ification and integration of these languages, provides ex-
tension mechanisms that allow the inclusion of additional
languages. MEMO does not consider imperfect information;
nevertheless, its extensibility allows including this kind of in-
formation by updating each metamodel, or even the MEMO

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



meta-metamodel. However, after modifying the metamodels,
and modeling imperfect elements, there is no explicit way
to know the degree of imperfection of the model, i.e. to
analyze the imperfection as such, in order to decide whether
the model is appropriate for a concrete purpose, such as the
analysis of the model, or the delivery of a diagram of a part
of the model to a stakeholder.

Narman et al. [31] propose a metamodel to support the cre-
ation of enterprise architecture models, which are suitable to
quality attributes analyses. The quality attributes proposed by
the authors are Accuracy, Efficiency, Interoperability, Main-
tainability, Reliability, Security, Suitability, and Usability.
This approach uses extended influence diagrams to describe
the enterprise architecture analysis, and allows the inclusion
of information related to the proposed quality attributes.
Our approach supports not only imprecise information [32],
which allows ranges of values, but also inconsistent, vague,
uncertain, and incomplete information, so modelers do not
need to transform any information taken from the sources.

Johnson et al. [33] present a tool for creating scenarios
to perform enterprise architecture analysis. Also, the tool
generates quantitative assessments of these scenarios around
various quality attributes such as: accuracy, availability,
functional suitability, information security, interoperability,
maintainability, performance, and usability. This tool allows
the decoration of model elements, based on the relevant
quality attributes. In our approach, we support the detailed
assessment of the imperfection of the model by allowing the
analyst to first navigate through the imperfect elements and
relationships of the model and then obtaining quantitative
results that facilitate this assessment.

Regarding Imperfection, some authors have proposed mul-
tiple classifications, as well as methods to identify and
mitigate specific kinds of imperfection. For instance, Smets
[21] proposes a classification for imperfect information, em-
phasizing on imprecision, inconsistency, and uncertainty. The
author also presents methods for modeling imprecision and
uncertainty, grouped into symbolic and quantitative models.

Henricksen et al. [7] depict four different kinds of im-
perfection in entity attributes: unknown, ambiguous, impre-
cise, and erroneous attributes. Based on this classification,
they propose a modeling approach based on Object Role
Modeling (ORM), designed to support a variety of tasks
across the software life cycle. Xiao et al. [24] propose a
method to represent uncertainty and imprecision in product
development processes. The authors formalize and integrate
these attributes into the modeling process through a workflow
based on an extension to UML (Unified Modeling Lan-
guage). In addition, they present a metamodel for uncertainty
and imprecision, which is the basis for their UML profile.

Even though these proposals [21], [7], [24] identify some
kinds of imperfections, our proposal allows to model im-
perfection in a more detailed manner, as we consider other
imperfection attributes such as inconsistency, uncertainty,
and incompleteness, and apply these imperfection types to
elements, attributes, and relationships of the model.

The elicitation process concerns with the recollection of
information for constructing a model through interviews,
documents, and observation. In the discipline of Require-
ments Engineering, authors have been interested in imperfec-
tion properties such as vagueness, ambiguity, and uncertainty

during the elicitation of requirements.
For instance, Bhatia et al. [34] propose a theory of

vagueness and privacy risk perception, based on the empirical
analysis of domain-specific documents. This theory consists
of a description of vagueness through exclusive semantic
categories, a prediction of the variation of this vagueness,
semantic functions to determine how semantic categories pre-
dict vagueness, and remarks on people’s behavior based on
vagueness variations. This theory is useful in the elicitation
process, as it helps to identify natural language modifiers
that suggest vagueness in the information provided by a
source. Furthermore, Ferrari et al. [35] present an approach
to identify ambiguity in interviews. In their work, the authors
classify the types of ambiguity based on term cues in natural
language that might reveal the presence of tacit knowledge:
under-specified, vague, quantifiers, pronoun, and domain-
specific terms. In order to illustrate this classification, the
authors present fifteen situations where these categories of
term cues arise.

Given that in enterprise modeling there is also an elicita-
tion process where information is gathered from imperfect
sources of information, we consider that approaches such
as [34], [35] can be useful for starting with less ambiguous
and less vague enterprise models. In this paper, we present a
classification of enterprise sources based on the information
they provide and contemplate additional imperfection types.
In addition, we argue that the imperfection of the model is
relative to the purposes at hand, and therefore, analysts might
identify these imperfections too late in the analysis process,
thus raising the cost of obtaining insights from the model.

Famelis and Chechik [36] propose the methodology:
“Design-Time Uncertainty Management” (DeTUM), in
which modelers develop partial models that contain several
possible situations, which collapse to a single one when
enough information is available. This methodology describes
the life cycle of design-time uncertainty, divided into three
stages: Articulation, Deferral, and Resolution. Articulation
pertains to the identification and modeling of uncertain
elements. The second stage, Deferral, consists of circumvent-
ing uncertain aspects of the model, which allows working
on fragments of the model that are not impacted by this
uncertainty. Finally, Resolution pertains to the refinement
of the uncertain points of the model as soon as additional
information is available. In this paper, we argue that this
lifecycle can be adapted to manage the imperfection of
enterprise models.

In the realm of Cyber-Physical Systems Testing, Zhang et
al. [37], [38] present an uncertainty-wise Modeling Frame-
work called UncerTum, with the purpose of applying model-
based testing techniques that take into account environmental
uncertainty. The core of UncerTum is the UML Uncertainty
Profile (UUP), which allows the modeling of uncertain and
vague aspects of UML model elements, and is based on
the U-Model. Furthermore, the authors propose a modeling
methodology that fosters completeness of the uncertainty
description, as well as a validation process for eliminating
errors introduced by a test modeler. While the authors
underscore that “UncerTum only supports test modeling
for enabling the generation of executable test cases”, and
thus is applicable to test models –much less detailed than
enterprise models– this approach reflects the importance of

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 



providing tools that support the identification and analysis of
imperfection with effort.

The practice of using visualization techniques to discover
new facts has been examined since the widespread use of
enterprise models. Lagerström et al. [39] use a visibility
matrix in order to uncover the internal structure of enterprise
applications. On another note, Fill [40] describes different
visualization techniques commonly used for ontology analy-
sis, and proposes a framework for ontology visualization.
However, we consider that interactivity is necessary for
navigation and exploration of the model, something that is
out of the scope of this framework.

X. CONCLUSION

Enterprise models are created based on information pro-
vided by different and heterogeneous enterprise sources.
Usually, these sources do not provide perfect information.
In addition, it is likely that modelers consider that the
information gathered is not enough to be included in the
enterprise model. Consequently, enterprise models might not
represent the enterprise accurately. Thus, imperfect models
represent and structure imperfect information regarding the
metamodel of the modeling language. We have identified five
types of imperfection; however, further types of imperfection
might be found.

When models are imperfect, it is necessary to study
and measure the imperfection level of the model in order
to 1) determine whether the model is usable for further
purposes such as business analysis; 2) take into account
the imperfection during the business analysis process; and
3) discover which elements of the model need to be fixed
or complemented. Thus, analysis methods for analyzing the
imperfection can inform the imperfection level of the model
in different ways.

Thus, we have proposed mechanisms to properly manage
and keep the information about imperfection. In addition,
we provided analysis methods for analyzing the imperfection
focusing on two techniques: domain analysis of imperfection,
which provides results regarding the concepts and standard
characteristics of the modeling language and topological
analysis of imperfection, which provides results regarding
the entire model.

Using the presented techniques together, analysts can
identify and navigate the imperfect elements, attributes, and
relationships of the model, for obtaining visual and quantita-
tive results, which are useful for determining how imperfect
the model is, where the imperfection is located, and whether
or not the model can be used for further purposes.

In addition, these techniques can also help analysts on
discovering possible incompleteness points that were ignored
in the modeling phase.

REFERENCES

[1] S. Hawking and L. Mlodinow, The grand design. Random House
LLC, 2010.

[2] J. Bézivin, “On the unification power of models,” Software and Systems
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[3] U. Frank, “Multi-perspective enterprise modeling: foundational con-
cepts, prospects and future research challenges,” Software and Systems
Modeling, vol. 13, no. 3, pp. 941–962, 2014.

[4] M. Lankhorst, Enterprise architecture at work: Modelling, communi-
cation and analysis. Springer, 2013.

[5] R. Lagerström, U. Franke, P. Johnson, and J. Ullberg, “A method
for creating enterprise architecture metamodels–applied to systems
modifiability analysis,” International Journal of Computer Science and
Applications, vol. 6, no. 5, pp. 89–120, 2009.

[6] S. Kurpjuweit and R. Winter, “Viewpoint-based Meta Model Engineer-
ing.” in Proceedings of the 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures, 2007, pp. 143–161.

[7] K. Henricksen and J. Indulska, “Modelling and using imperfect
context information,” in Pervasive Computing and Communications
Workshops, 2004. Proceedings of the Second IEEE Annual Conference
on. IEEE, 2004, pp. 33–37.

[8] H. Florez, M. Sanchez, and J. Villalobos, “Supporting drafts for enter-
prise modeling,” in 2014 IEEE 9th Computing Colombian Conference
(9CCC). IEEE, 2014, pp. 200–206.

[9] H. Florez, M. Sánchez, and J. Villalobos, “Embracing Imperfection in
Enterprise Architecture Models,” CEUR Workshop Proceedings, vol.
1023, pp. 8–17, 2013.

[10] H. Jonkers, M. Lankhorst, R. Van Buuren, S. Hoppenbrouwers,
M. Bonsangue, and L. Van Der Torre, “Concepts for modeling enter-
prise architectures,” International Journal of Cooperative Information
Systems, vol. 13, no. 03, pp. 257–287, 2004.

[11] M. Y. Haouam and D. Meslati, “Towards automated traceability main-
tenance in model driven engineering,” IAENG International Journal
of Computer Science, vol. 43, no. 2, pp. 147–155, 2016.

[12] Y. Rhazali, Y. Hadi, I. Chana, M. Lahmer, and A. Rhattoy, “A model
transformation in model driven architecture from business model
to web model,” IAENG International Journal of Computer Science,
vol. 45, no. 1, pp. 104–117, 2018.

[13] A. Becker and D. Görlich, “What is game balancing?-an examination
of concepts,” ParadigmPlus, vol. 1, no. 1, pp. 22–41, 2020.

[14] C. Balsa, C. V. Rodrigues, I. Lopes, and J. Rufino, “Using analog
ensembles with alternative metrics for hindcasting with multistations,”
ParadigmPlus, vol. 1, no. 2, pp. 1–17, 2020. [Online]. Available:
https://journals.itiud.org/index.php/paradigmplus/article/view/11

[15] D. Sanchez and H. Florez, “Model driven engineering approach to
manage peripherals in mobile devices,” in International Conference
on Computational Science and Its Applications. Springer, 2018, pp.
353–364.

[16] S. M. Sutton Jr and I. Rouvellou, “Modeling of software concerns in
cosmos,” in Proceedings of the 1st international conference on Aspect-
oriented software development. ACM, 2002, pp. 127–133.

[17] S. H. Spewak and S. C. Hill, Enterprise architecture planning:
developing a blueprint for data, applications and technology. QED
Information Sciences, Inc., 1993.

[18] S. H. Spewak and M. Tiemann, “Updating the enterprise architecture
planning model,” Journal of Enterprise Architecture, vol. 2, no. 2, pp.
11–19, 2006.

[19] M. West, Developing high quality data models. Elsevier, 2011.
[20] H. Astudillo, J. Pereira, and C. López, “Identifying “interesting”

component assemblies for NFRs using imperfect information,” in
European Workshop on Software Architecture. Springer, 2006, pp.
204–211.

[21] P. Smets, “Imperfect information: Imprecision, and uncertainty,” Un-
certainty Management in Information Systems, vol. 1996, pp. 225–254,
1996.

[22] T. Hayashi and R. Wada, “Choice with imprecise information: an
experimental approach,” Theory and Decision, vol. 69, no. 3, pp. 355–
373, 2010.

[23] X. Li, X. Dai, J. Dezert, and F. Smarandache, “Fusion of imprecise
qualitative information,” Applied Intelligence, vol. 33, no. 3, pp. 340–
351, 2010.

[24] J. Xiao, P. Pinel, L. Pi, V. Aranega, and C. Baron, “Modeling uncertain
and imprecise information in process modeling with uml,” in Four-
teenth International Conference on Management of Data (COMAD),
Mumbai, 2008.

[25] A. Hunter and S. Konieczny, “Approaches to measuring inconsistent
information,” in Inconsistency Tolerance. Springer, 2005, pp. 191–
236.

[26] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymiades,
“Situation awareness: Dealing with vague context,” in ACS/IEEE
International Conference on Pervasive Services, 2006, pp. 131–140.

[27] J. Dai and Q. Xu, “Approximations and uncertainty measures in
incomplete information systems,” Information Sciences, 2012.

[28] H. Florez, M. Sanchez, and J. Villalobos, “iArchiMate: A Tool
for Managing Imperfection in Enterprise Models,” in 18th IEEE
International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations (EDOCW). IEEE, 2014, pp. 201–
210.

[29] H. Florez, M. Sánchez, and J. Villalobos, “Drafting enterprise models,”
in Modeling Methods for Business Information Systems Analysis and
Design. IGI Global, 2019, pp. 183–214.

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 

https://journals.itiud.org/index.php/paradigmplus/article/view/11


[30] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[31] P. Närman, P. Johnson, and L. Nordstrom, “Enterprise Architecture:
A Framework Supporting System Quality Analysis,” in 11th IEEE
International Enterprise Distributed Object Computing Conference
(EDOC 2007). IEEE, oct 2007, pp. 130–141.

[32] H. Florez, M. Sánchez, and J. Villalobos, “Analysis of Imprecise
Enterprise Models,” in International Workshop on Business Process
Modeling, Development and Support. Springer International Publish-
ing, 2016, pp. 349–364.

[33] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg, “A Tool
for Enterprise Architecture Analysis,” in 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007).
IEEE, oct 2007, pp. 142–153.

[34] J. Bhatia, T. D. Breaux, J. R. Reidenberg, and T. B. Norton, “A
theory of vagueness and privacy risk perception,” in 2016 IEEE 24th
International Requirements Engineering Conference (RE), Sep. 2016,
pp. 26–35.

[35] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity Cues in Re-
quirements Elicitation Interviews,” in 2016 IEEE 24th International
Requirements Engineering Conference (RE), Sep. 2016, pp. 56–65.

[36] M. Famelis and M. Chechik, “Managing design-time uncertainty,”
Software & Systems Modeling, pp. 1–36, Mar. 2017.

[37] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren,
“Understanding Uncertainty in Cyber-Physical Systems: A Conceptual
Model,” in Modelling Foundations and Applications. Springer, Cham,
Jul. 2016, pp. 247–264.

[38] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-
Wise Cyber-Physical System test modeling,” Software & Systems
Modeling, pp. 1–40, Jul. 2017.

[39] R. Lagerstrom, C. Baldwin, A. MacCormack, and S. Aier, “Visualiz-
ing and measuring enterprise application architecture: an exploratory
telecom case,” in System Sciences (HICSS), 2014 47th Hawaii Inter-
national Conference on. IEEE, 2014, pp. 3847–3856.

[40] H.-G. Fill, Visualisation for Semantic Information Systems. Gabler
Verlag, 2009.

Hector Florez is Full Professor at the Universidad Distrital Francisco Jose
de Caldas, Bogota, Colombia. He is Ph.D. in Engineering at the Universidad
de los Andes. His research interests are: enterprise modeling, model driven
engineering, and enterprise analysis.

Mario Sanchez is Associate Professor at the Universidad de los Andes,
Bogota, Colombia. He is Ph.D. in Engineering at the Universidad de los
Andes. His research interests are: enterprise architectures, and executable
models.

Jorge Villalobos is Full Professor at the Universidad de los Andes,
Bogota, Colombia. He is Ph.D. in Informatics at the Université Joseph
Fourier, Grenoble, France. His research interests are: enterprise modeling
and software design.

Engineering Letters, 29:1, EL_29_1_31

Volume 29, Issue 1: March 2021

 
______________________________________________________________________________________ 


	Introduction
	Enterprise Modeling
	Enterprise Modeling Requirements
	Enterprise Modeling Domains

	Enterprise Analysis
	Imperfection in Enterprise Models
	Sources of Enterprise Information
	Imperfect Models

	Modeling Imperfection
	Running Example

	Analyzing Imperfection
	Domain Analysis of Imperfection
	Incompleteness domain analysis
	Uncertainty domain analysis

	Topological Analysis of Imperfection
	Context-Free
	Context-Dependent


	Approach to Analyze Imperfect Enterprise Models
	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Hector Florez
	Mario Sanchez
	Jorge Villalobos




