
 

  

Abstract—Beach erosion is a natural process that occurs 

when conveying sediment away from the shoreline is not 

balanced by depositing new material on the shoreline. This is a 

problem that is causing beach areas to decline. To avoid beach 

erosion and flooding, a sea wall and groin have been built. 

Shoreline evolution prediction is used to investigate the beach 

topography in the future. There are three phenomena give a 

large effect to the coastal structure such as the erosion, the 

accretion and the water level changes. To investigate of beach 

erosion and beach deposition is needed qualitative 

understanding of idealized shoreline response to the governing 

process. In this research, we introduce a governing equation of 

a one-dimensional shoreline evolution model when a couple of 

groins is added. The introduced model is a transient one-line 

model. The manipulation of physical parameters for the model 

is introduced. The setting method of the initial condition and 

the boundary conditions techniques when a couple of groin 

structure effect are also proposed. The traditional forward 

time centered space method and the unconditionally stable 

Saulyev finite difference methods are employed to approximate 

the incremental model in each year. The proposed numerical 

models give practically simulation for long-term shoreline 

evolution investigation. The proposed simulation can be used to 

predict the efficiency of a groin system construction in a local 

beach. The model is a tool for environment impact assessment 

of a installing groin structure project. 

 
Index Terms—shoreline evolution, groin system, one-

dimension, mathematical model, finite difference method  

 

I. INTRODUCTION 

each erosion is a natural process which occurs 

whenever the transport of material away from the 

shoreline is not balanced by new material being deposited 

onto the shoreline. This is a problem that causes a decrease 

in beach areas. In order to prevent beach erosion and beach 

deposition so it has devised a sea wall and groin. In [9], they 

proposed a new approach to practical groin modeling is 

explained by the use of the GENESIS shoreline response 

model to demonstrate the action of single and multiple 

groins. Predictions of the study are tested in the replication 
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of the shoreline modification found in the 15 groins of 

Westhampton, Long Island, New York. In [7] reported 

changes in beach profile due to the construction of a single 

zigzag type of porous groins named GROPOZAG. 

Qualitative awareness of the idealized reaction of the 

shoreline to the governance process is required to examine 

beach erosion and beach deposition. Analytical solution, 

based on the mathematical model that explains basic 

physics, is the only means of understanding it. Many authors 

have achieved an analytical solution to the evolution of the 

shoreline using a basic mathematical method. Many authors 

have developed one-line theory, and several contributors 

include [3], [4], [2], [1], [6], [12], and [8] in the analytical 

solution of the evolution of the shoreline. Analytical 

solutions cannot be assumed to present quantitatively 

precise solutions to the problems containing complex 

boundary conditions and wave inputs. A numerical model of 

shoreline evolution would be more fitting in the actual case. 

A general expression for the long-shore sand transport 

rate was developed by [10]. The empirical predictive 

formula for the amplitude of the long-shore sand transport 

rate presented by [5]. In [11], they have examined and 

presented two numerical schemes of shoreline evolution for 

simplified configuration beach. In [13], [14], [29], [30], 

[31], they have used the conditionally stable explicit finite 

difference methods to approximate their model solutions. In 

[28], [32], [33], [34], they have used the numerical methods 

to approximate their model solution. 

In [15], they proposed the Equilibrium energy function 

(EEF) analytical method and the shoreline evolution model. 

Testing of the proposed model at Nova Icaria reveals the 

same capabilities with only one measurement parameter as 

state-of-the-art models with more than 4 free parameters. In 

[16], they proposed one-line model concept has been applied 

to achieve long-term shoreline simulation, as well as to 

assist and produce improved coastal engineering techniques 

to manage erosion. The model was applied to the two 

northwest coasts of Portugal: Aveiro and Figueira da Foz. 

The results make the qualitative evaluation of the main 

possible implications of continuous erosion. a general and 

replicable chain method was proposed, tested at fragile 

shorelines in Southern Italy and based on a collaborative 

analysis of data collected, computational methods and 

computational modelling. This will help to best explain the 

complexities of the shoreline climate, recognize normal and 

repeated erosion-related mechanisms, and forecast potential 

future trends that are useful for shoreline activity preparing. 

In [18], they proposed probabilistic changes to the shoreline 
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are calculated by using two simulations. The first simulation 

is GenCade simulation, which is used to predict the long-

term evolution of the shoreline induced by natural offshore 

waves. The second is the Monte Carlo simulation, which is 

used to simulate the evolution of the shoreline in response to 

changes in sea level. In [19], a basic coastline profile model 

behavioral template was proposed to be calibrated and tested 

against a 6-year coastline location time series derived from a 

shoreline imaging system on the Gold Coast, Australia. 

Monitoring the model on unknown data shows that it can 

reproduce the dominant different seasons coastline transition 

observed at this site and up to 77% of the degraded coastline 

variability. In [20], they proposed the ONELINE modelling 

approach and demonstrated its capabilities through concept 

testing and case studies. This outlines two case studies in 

which complicated beach structure architectures are 

represented. The first is a groin area at Sea Isle City, New 

Jersey, in the East Coast of the United States. The second is 

along the coast of the Nile Delta in Egypt. In [21], they 

proposed the comparison of analytical and numerical 

solutions in the idealized wave condition for four different 

shoreline situations.  

In this research, we introduce a governing equation of a 

one-dimensional shoreline evolution model when a couple 

of groins is added. 

II. GOVERNING EQUATION  

A. Shoreline evolution model 

In a one-dimensional shoreline evolution model, while 

maintaining the same shape, the beach shape is supposed to 

move towards land and towards the sea, meaning that all the 

bottom outlines become parallel. 
Consequently, under this premise, this is necessary to 

define the horizontal direction of the profile with respect to 

the baseline, and one contour line should be used to define 

changes to the design and volume of the beach plane as the 

beach erosions and accretes. The main premise of the model 

is that the sand is moved along the coast on a profile 

between two well-defined limit elevations. A contribution to 

the adjustment in volume occurs where there is a 

discrepancy in the rate of longshore sand transfer on the side 

of the segment and the related sand consistency. The 

principles of conservation of mass must be always adapted 

to the system. The following differential equation for the 

evolution of the shoreline is generated by considering the 

above concepts, 

1
,

B C

y Q

t D D x

  
= − 

 +  
                      (1) 

where x  is the co-ordinate on the shores (m), y  is the 

location of the shoreline (m) and perpendicular to the x-axis, 

t  is time (day), Q  is the long-shore sand transport rate 

(m3/day), BD  is the average height of the berm (m) and CD  

is the average depth of closure (m). 

To solve (1), it was necessary to define a term for the 

longshore sand transport rate Q . This quantity is assumed 

to have been obtained by the oblique wave occurring to the 

shoreline. The US Army Corp has created a generalized 

term for long-shore sand transport rate [11], 

( )0 sin 2 ,bQ Q =                                   (2) 

where 0Q  is the long-shore sand transport rate amplitude. 

The general formula for the long-shore sand transport rate 

amplitude is as follows [6], 

( )2

0 ,
16 ( )(1 )

b gb

s

K
Q H c

n



 
=

− −
          (3) 

The quantity b  the angle between breaking wave crest 

impact angle and local shoreline, and can be written as, 

1

0 tan ,b

y

x
  −  

= −  
 

                          (4)  

where 0  is the angle between breaking wave crests impact 

angle and x-axis. In the case of beaches with a slight slope, 

it can be concluded that the angle of the wave breaking to 

the shoreline is minimal. 

Assuming that, ( )sin 2 2b b  , and 1tan
y y

x x

−     
   

    
.  

Substituting (4), in (2), and assuming a beach with a 

slight slope, we are obtaining, 

0 2 2 ,b

y
Q Q

x


 
= − 

 
                        (5) 

substituting (5), in (1), and ignoring the sources or sinks 

along the shoreline provides the following: 

2

2
,

y
D

x

y

t






=


                                   (6) 

for all ( ) ( ), ,x t L T  , where 02

B C

D
Q

D D
=

+
. 

B. Physical parameters 

Physical parameter of the model can be illustrated as show 

in Fig. 1-2. that are listed below. 

0  is the angle between breaking wave crests impact angle 

and x-axis. 

0Q  is the long-shore sand transport rate amplitude.  

BD  is the averaged berm height. 

CD  is the averaged closure depth. 

L  is Alongshore. 

T  is Time of simulation. 
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Fig. 1. Breaking wave crests impact angle 

 

Fig. 2. Shoreline physical parameters 

C. The initial and boundary conditions  

Straight Impermeable groin system. 

The initial shoreline is assumed to be parallel to the x-axis.   
Assuming that, the angle between breaking wave crests 

impact angle to the shoreline is 0  as shown in Fig. 3. It 

follows that the sand transport rate along the shoreline is 

uniform. The groin is instantaneously added at 0x =  as 

shown in Fig. 3. These means that the initial condition 

becomes, 

( ),0 0,y x =                                       (7) 

boundary conditions are also assumed by, 

0tan
y

x



= −


  at   0,x =                  (8) 

and 

0tan
y

x



=


   at    ,x L=                   (9) 

 

Fig. 3. Initial shoreline with configuration straight impermeable groins. 

 

III. NUMERICAL TECHNIQUES 

A. Grid Spacing 

We are discretizing (6) by splitting the interval  0, L  into 

M  subintervals such as M x L =  and the interval  0,T  

into N  subintervals such as N t T = . We then 

approximate ( ),i ny x t  by n

iy , at the point ix i x=   and 

nt n t=  , where 0 i M   and 0 n N  in which there 

are positive integers of M  and N . 

B. Traditional forward time centered space techniques 

The forward time centered space techniques will also be 

used. Consequently, the finite difference approximation 

becomes [22], 

,n

iy y                                               (10) 

1

,
n n

i iy yy

t t

+ −


 
                                   (11) 

1 1 ,
2

n n

i iy yy

x x

+ −−


 
                                    (12) 

( )

2

1 1

2 2

2
,

n n n

i i iy y yy

x x

+ −− +


 
                         (13) 

where 
( )

2
A

x

D t




= .  

Substituting (10) - (13), in (6), we are obtaining, 

( )

1

1 1

2

2
,

n n n n n

i i i i iy y y y y
D

t x

+

+ −
 − − +
 =
   

              (14) 

for 1 1i M  − and 0 1n N  − . (14), can be written in 

an explicit form of finite difference as follows, 

( )1

1 11 2 ,n n n n

i i i iy Ay A y Ay+

+ −= + − +                (15) 

for 1 1i M  − and 0 1n N  − .  

C. An unconditionally Saulyev finite difference 

techniques 

The Saulyev finite difference techniques will also be 

used. We can obtain that the finite difference approximation 

is 

,n

iy y                                        (16) 

1

,
n n

i iy yy

t t

+ −


 
                             (17) 

( )

1 12

1 1

2 2
,

n n n n

i i i iy y y yy

x x

+ +

+ −− − +


 
           (18) 

where 
( )

2
A

x

D t




= .  

Substituting (16) - (18), in (6), we are obtaining, 
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( )

1 1 1

1 1

2
,

n n n n n n

i i i i i iy y y y y y
D

t x

+ + +

+ −
 − − − +
 =
   

        (19) 

for 1 1i M  − and 0 1n N  − . (19), can be written in 

an explicit form of finite difference as follows, 

( )
( )( )1 1

1 1

1
1 ,

1

n n n n

i i i iy Ay A y Ay
A

+ +

+ −= + − +
+

       (20)  

for 1 1i M  − and 0 1n N  − . 

D. The employment of traditional forward time centered 

space techniques to the left and the right boundary 

conditions  

The forward time centered space techniques will also be 

used. Consequently, the finite difference approximation 

becomes, 

,n

iy y                                             (21) 

1

,
n n

i iy yy

t t

+ −


 
                                  (22) 

1 1 ,
2

n n

i iy yy

x x

+ −−


 
                                   (23) 

where 
( )

2
A

x

D t




= .  

Substituting (21) - (23), in (6), we are obtaining, 

( )

1

1 1

2

2
,

n n n n n

i i i i iy y y y y
D

t x

+

+ −
 − − +
 =
   

               (24) 

For i = 0, substitution of the uncertain value of the left 

boundary is approximated by the method of center 

difference with the specified left boundary condition. We 

are obtaining, 

( )( )1 1 02 tan ,n ny y x − = −  −                      (25) 

substituting (25), in (24), we are obtaining, 

( )( )1

1 0(1 2 ) 2 2 tan ,n n n

i i iy A y Ay A x +

+= − + −  −       (26) 

For i = M, substitution of the uncertain value of the right 

boundary is approximated by the method of center 

difference with the specified right boundary condition. We 

are obtaining, 

( )( )1 1 02 tan ,n n

M My y x + −= +                     (27) 

substituting (27), in (24), we are obtaining, 

( )( )1

1 02 (1 2 ) 2 tan ,n n n

i i iy Ay A y A x +

−= + − +         (28) 

(26), and (28), could be used to approximate the values 
n

iy  of the solution domain grid points. 

 

IV. SAND TRANSPORT RATE SETTING 

Assuming that the sediment density ( )s  [23], the sea 

water's density ( )  [24], the porosity ( )n  [25], the non-

dimensional coefficient which is a function of particle size 

( )K  [26], The averaged berm height ( )BD  and the 

averaged closure depth ( )CD as listed below. 

 

     The wave group velocity ( )gc and the wave height 

( )H in each month along a year is measured by field data on 

the gulf of Thailand such that data are collected by Geo 

Informatics and Space Technology Development Agency 

(Public Organization) (GISTDA) [27] as listed below. 

The long-shore sand transport rate amplitude ( )0Q  are 

obtained by (3), and the long-shore transport rates ( )D  are 

obtained by (6), as listed below. 

V. NUMERICAL EXPERIMENT 

To examine the long-term evolution of the shoreline. The 

numerical results of the various beach scenarios are 

considered and the solution to the idealized problem is 

introduced. Assuming, during the experiments, that the 

length of the shoreline considered is L = 100, 200, 300 and 

TABLE I 
PARAMETERS OF SAND TRANSPORT RATE 

The sediment density ( )( )3/s kg m  1700 

The sea water's density ( )( )3/kg m  
1020 

The porosity ( )n  0.406 

The non-dimensional coefficient which is a function of 

particle size ( )K  

0.375 

The averaged berm height ( )( )BD m  2 

The averaged closure depth ( )( )CD m  
28 

 

 

TABLE II 

THE WAVE GROUP VELOCITY AND THE WAVE HEIGHT 

Month ( )/gc m day  ( )H m  

Jan 2019 8951.04 1.5 
Feb 2019 6998.4 1.5 

Mar 2019 5866.56 0.5 

Apr 2019 6920.64 1.5 
May 2019 5719.68 0.5 

Jun 2019 5546.88 0.5 

Jul 2018 8225.28 1.5 
Aug 2018 9357.12 1.5 

Sep 2018 13711.68 1.5 

Oct 2018 15085.44 2.5 
Nov 2018 10877.76 1.5 

Dec 2018 11396.16 1.5 

 

TABLE III 

THE LONG-SHORE SAND TRANSPORT RATE AMPLITUDE AND THE LONG-
SHORE TRANSPORT RATE 

Month ( )0 /Q m day  ( )/D m day  

Jan 2019 1191.99 79.4659 

Feb 2019 931.96 62.1307 

Mar 2019 86.80 5.7869 
Apr 2019 921.61 61.4403 

May 2019 84.63 5.6420 

Jun 2019 82.07 5.4716 
Jul 2018 1095.34 73.0227 

Aug 2018 1246.07 83.071 

Sep 2018 1825.95 121.7301 
Oct 2018 5580.26 372.017 

Nov 2018 1448.57 96.5710 

Dec 2018 1517.60 101.1233 
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400 m. The averaged berm height BD  is 2 m. The closure 

depth CD  is 28 m. The breaking wave impact angle 0 is 

0.02. The simulation setting is illustrated in Fig. 4. 

We are going to employ the traditional forward time 

centered space techniques (15), and the Saulyev finite 

difference techniques (20), to approximate the model 

solution. The calculated results L = 100, 200, 300 and 400 m 

are shown in Fig. 5-12. 

The approximated solutions of the traditional forward 

time centered space techniques and Saulyev finite difference 

techniques gives approximated solutions in Table 4-11. 

 

Fig. 4. Initial shoreline. 

 

Fig. 5. Shoreline evolution with distance between groin 100 m in 0-7 years. 

 

Fig. 6. Shoreline evolution with distance between groin 100 m in 8-15 

years. 

 

Fig. 7. Shoreline evolution with distance between groin 200 m in 0-7 years. 

 

Fig. 8. Shoreline evolution with distance between groin 200 m in 8-15 

years. 

 

Fig. 9. Shoreline evolution with distance between groin 300 m in 0-7 years. 

 

Fig. 10. Shoreline evolution with distance between groin 300 m in 8-15 

years. 
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Fig. 11. Shoreline evolution with distance between groin 400 m in 0-7 

years. 

 

Fig. 12. Shoreline evolution with distance between groin 400 m in 8-15 

years. 

 

 

 

 

 

 

 

 

TABLE IV 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

TRADITIONAL FORWARD TIME CENTERED SPACE TECHNIQUES L IS 100 

M 

Time 

(Years) 

Distance(m) 

0 20 40 60 80 100 

1 0.5679 0.2604 0.1206 0.1206 0.2604 0.5679 

5 1.6102 1.2902 1.1302 1.1302 1.2902 1.6102 

10 2.8905 2.5705 2.4104 2.4104 2.5705 2.8905 

15 4.1708 3.8507 3.6907 3.6907 3.8507 4.1708 

 

TABLE V 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

SAULYEV FINITE DIFFERENCE TECHNIQUES L IS 100 M 

Time 

(Years) 

Distance (m) 

0 20 40 60 80 100 

1 0.5682 0.2607 0.1208 0.1206 0.2602 0.5676 

5 1.6103 1.2903 1.1303 1.1302 1.2902 1.6103 

10 2.8906 2.5705 2.4105 2.4105 2.5705 2.8906 

15 4.1708 3.8508 3.6908 3.6908 3.8508 4.1708 

 

TABLE VI 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

TRADITIONAL FORWARD TIME CENTERED SPACE TECHNIQUES L IS 200 

M 

Time 
(Years) 

Distance(m) 

0 20 40 60 80 100 

1 0.8036 0.4664 0.2455 0.1176 0.0551 0.0369 

5 1.9445 1.5846 1.3050 1.1054 0.9858 0.9459 

10 3.2256 2.8655 2.5855 2.3854 2.2654 2.2254 

15 4.5058 4.1458 3.8657 3.6657 3.5457 3.5057 

Time 

(Years) 

Distance(m) 

120 140 160 180 200  

1 0.0551 0.1176 0.2455 0.4664 0.8036  

5 0.9858 1.1054 1.3050 1.5846 1.9445  

10 2.2654 2.3854 2.5855 2.8655 3.2256  

15 3.5457 3.6657 3.8657 4.1458 4.5058  

 

TABLE VII 
APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

SAULYEV FINITE DIFFERENCE TECHNIQUES L IS 200 M 

Time 

(Years) 

Distance(m) 

0 20 40 60 80 100 

1 0.8043 0.4671 0.2463 0.1182 0.0555 0.0369 

5 1.9449 1.5850 1.3053 1.1057 0.9859 0.9460 

10 3.2257 2.8656 2.5856 2.3855 2.2655 2.2255 

15 4.5059 4.1459 3.8658 3.6658 3.5458 3.5058 

Time 

(Years) 

Distance(m) 

120 140 160 180 200  

1 0.0549 0.1172 0.2449 0.4656 0.8029  

5 0.9857 1.1053 1.3047 1.5843 1.9442  

10 2.2655 2.3855 2.5855 2.8655 3.2255  

15 3.5458 3.6658 3.8658 4.1458 4.5059  

 
TABLE VIII 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

TRADITIONAL FORWARD TIME CENTERED SPACE TECHNIQUES L IS 300 

M 

Time 
(Years) 

Distance(m) 

0 20 40 60 80 100 

1 0.9857 0.6370 0.3858 0.2179 0.1145 0.0560 

5 2.2700 1.8974 1.5796 1.3162 1.1067 0.9503 

10 3.5593 3.1860 2.8660 2.5993 2.3860 2.2260 

15 4.8398 4.4664 4.1463 3.8796 3.6663 3.5062 

Time 

(Years) 

Distance(m) 

120 140 160 180 200 220 

1 0.0143 0.0143 0.0264 0.0560 0.1145 0.0143 

5 0.7947 0.7947 0.8464 0.9503 1.1067 0.7947 

10 2.0661 2.0661 2.1194 2.2260 2.3860 2.0661 

15 3.3462 3.3462 3.3996 3.5062 3.6663 3.3462 

Time 
(Years) 

Distance(m) 

240 260 280 300   

1 0.2179 0.3858 0.6370 0.9857   

5 1.3162 1.5796 1.8974 2.2700   

10 2.5993 2.8660 3.1860 3.5593   

15 3.8796 4.1463 4.4664 4.8398   
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VI. DISCUSSION 

In this paper, we measure the long-shore transport rates 

( D ) in each month along a year by field data. We obtain the 

long-shore transport rates ( D ) from (6), 02

B C

D
Q

D D
=

+
. 

The averaged berm height ( BD ). The averaged closure 

depth ( CD ). The long-shore sand transport rate amplitude 

( 0Q ). We obtain the long-shore sand transport rate 

amplitude ( 0Q ) from (3), ( )2

0 .
16 ( )(1 )

b gb

s

K
Q H c

n



 
=

− −
 

The sediment density ( s ), the sea water's density (  ), the 

porosity ( n ) and the non-dimensional coefficient which is a 

function of particle size ( K ) as shown in Table 1. The wave 

group velocity ( gc ) and the wave height ( H ) in each month 

along a year is measured by field data as shown in Table 2. 

The long-shore sand transport rate amplitude ( 0Q ) and the 

long-shore transport rates ( D ) as shown in Table 3.  

The shoreline evolution in each year can be obtained by 

the traditional forward time centered space techniques and 

the Saulyev finite difference techniques. 

The length of the considered shoreline is 100 m as shown 

in Tables 4, 5 and Fig. 5, 6. The distance from the farthest 

shoreline evolution is 4.1708 m. The shortest distance from 

the shoreline evolution is 3.6707 m. 

The length of the considered shoreline is 200 m as shown 

in Tables 6, 7 and Fig. 7, 8. The distance from the farthest 

shoreline evolution is 4.5059 m. The shortest distance from 

the shoreline evolution is 3.5707 m. 

The length of the considered shoreline is 300 m as shown 

in Tables 8, 9 and Fig. 9, 10. The distance from the farthest 

TABLE X 
APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

TRADITIONAL FORWARD TIME CENTERED SPACE TECHNIQUES L IS 400 

M 

Time 

(Years) 

Distance(m) 

0 20 40 60 80 100 

1 1.1392 0.7836 0.5136 0.3198 0.1886 0.1051 

5 2.5781 2.1998 1.8647 1.5723 1.3220 1.1127 

10 3.8917 3.5117 3.1718 2.8721 2.6125 2.3929 

15 5.1733 4.7933 4.4533 4.1532 3.8932 3.6732 

Time 

(Years) 

Distance(m) 

120 140 160 180 200 220 

1 0.0553 0.0274 0.0130 0.0064 0.0046 0.0064 

5 0.9434 0.8130 0.7207 0.6656 0.6473 0.6656 

10 2.2134 2.0738 1.9741 1.9143 1.8944 1.9143 

15 3.4932 3.3532 3.2532 3.1932 3.1732 3.1932 

Time 

(Years) 

Distance(m) 

240 260 280 300 320 340 

1 0.0130 0.0274 0.0553 0.1051 0.1886 0.3198 

5 0.7207 0.8130 0.9434 1.1127 1.3220 1.5723 

10 1.9741 2.0738 2.2134 2.3929 2.6125 2.8721 

15 3.2532 3.3532 3.4932 3.6732 3.8932 4.1532 

Time 
(Years) 

Distance(m) 

360 380 400    

1 0.5136 0.7836 1.1392    

5 1.8647 2.1998 2.5781    

10 3.1718 3.5117 3.8917    

15 4.4533 4.7933 5.1733    

 

TABLE XI 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

SAULYEV FINITE DIFFERENCE TECHNIQUES L IS 400 M 

Time 

(Years) 

Distance(m) 

0 20 40 60 80 100 

1 1.1407 0.7852 0.5152 0.3212 0.1899 0.1061 

5 2.5796 2.2012 1.8661 1.5737 1.3232 1.1138 

10 3.8924 3.5124 3.1726 2.8728 2.6131 2.3935 

15 5.1737 4.7937 4.4536 4.1536 3.8935 3.6735 

Time 
(Years) 

Distance(m) 

120 140 160 180 200 220 

1 0.0560 0.0280 0.0134 0.0066 0.0046 0.0064 

5 0.9443 0.8138 0.7213 0.6659 0.6474 0.6655 

10 2.2138 2.0741 1.9744 1.9145 1.8944 1.9142 

15 3.4935 3.3534 3.2534 3.1933 3.1733 3.1932 

Time 

(Years) 

Distance(m) 

240 260 280 300 320 340 

1 0.0128 0.0270 0.0546 0.1042 0.1874 0.3184 

5 0.7203 0.8124 0.9425 1.1117 1.3208 1.5711 

10 1.9739 2.0735 2.2130 2.3925 2.6120 2.8716 

15 3.2532 3.3531 3.4931 3.6730 3.8930 4.1530 

Time 
(Years) 

Distance(m) 

360 380 400    

1 0.5121 0.7821 1.1376    

5 1.8634 2.1984 2.5768    

10 3.1712 3.5110 3.8910    

15 4.4530 4.7930 5.1731    

 

TABLE IX 

APPROXIMATED SHORELINE EVOLUTION ALONG 15 YEARS USING THE 

SAULYEV FINITE DIFFERENCE TECHNIQUES L IS 300 M 

Time 

(Years) 

Distance(m) 

0 20 40 60 80 100 

1 0.9869 0.6382 0.3869 0.2190 0.1153 0.0567 

5 2.2709 1.8983 1.5805 1.3170 1.1073 0.9508 

10 3.5597 3.1863 2.8663 2.5996 2.3863 2.2263 

15 4.8399 4.4665 4.1465 3.8798 3.6664 3.5064 

Time 
(Years) 

Distance(m) 

120 140 160 180 200 220 

1 0.0268 0.0145 0.0143 0.0261 0.0556 0.1138 

5 0.8468 0.7948 0.7946 0.8462 0.9499 1.1062 

10 2.1196 2.0662 2.0661 2.1194 2.2259 2.3859 

15 3.3997 3.3463 3.3463 3.3996 3.5062 3.6663 

Time 

(Years) 

Distance(m) 

240 260 280 300   

1 0.2170 0.3847 0.6359 0.9846   

5 1.3156 1.5789 1.8967 2.2692   

10 2.5991 2.8657 3.1857 3.5591   

15 3.8796 4.1463 4.4663 4.8397   
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shoreline evolution is 4.8398 m. The shortest distance from 

the shoreline evolution is 3.3396 m. 

The length of the considered shoreline is 400 m as shown 

in Tables 10, 11 and Fig. 11, 12. The distance from the 

farthest shoreline evolution is 5.1737 m. The shortest 

distance from the shoreline evolution is 3.1732 m. 

Approximate shoreline evolutions of all numerical 

approaches in 4 lengths of the considered shoreline are 

compatible. 

VII. CONCLUSION 

In this study, when a couple of groins are installed, we 

introduce a governing equation of a one-dimensional model 

of shoreline evolution. The implemented model is a one-line 

model, which is transient. The modification is implemented 

of physical parameters for the model. The initial condition 

setting approach and the boundary conditions techniques 

while also proposing some groin structure effect. The 

classical forward-time centered-space method and the 

unconditionally stable Saulyev finite differential methods 

are used to measure the incremental model in each year. The 

proposed numerical models give practical simulation for 

long-term shoreline evolution investigation. The simulation 

proposed can be used to predict the efficiency of 

constructing a groin network at a local beach. The classical 

forward-time centered-space method provides more precise 

solutions than the solutions approximated by the Saulyev. 

For many cases, when the time increment for the classical 

forward-time centered-space method has increased, solution 

cannot be handled. However, the Saulyev method can still 

handle numerical solutions for any case because the stability 

condition is not limited. This means the Saulyev method 

proposed is a functional computational approach for the 

concept of shoreline evolution. The model is a tool for 

environment impact assessment of an installing groin 

structure project. It can be used to evaluate the groin system 

in a focused area. 
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