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Existence andteration of Monotone Positive
Solutions for Fractional Boundary Value Problems
with Riesz-Caputo Derivative

Meiling Li, Yunging Wang

Abstract—As we all know, both the past and the future Whereaa‘“Tli is the Riesz fractional derivative.
nonlocal memory effects can be characterized by the Riesz-
Caputo derivative. A class of three-point boundary value 8%u(x,t) +200u@t) | B2u(z,t)
problems for fractional differential equations with the Riesz- ot? -2t ’
Caputo derivative is studied in this paper. We find the positive =n"Dlu(z,t) + f(z,1),
solutions for the fractional problem by applying the technique of a<x<b 0<t<T, 1<~y<2

monotone iterative. Moreover, an iterative scheme for approxi- ) . )
mating the solutions is given in the paper. Finally, an example wherea > 3 > 0, n > 0, #D) is the Riesz fractional

is given. derivative. The above equation can be used to represent the
Index Terms—lteration; Monotone positive solution; Frac- fractlonal_ telegraph. equation. _ _
tional differential equation; Riesz-Caputo derivative. There is a lot of literature on numerical solutions of space

fractional diffusion equations with Riesz derivative [16-19]
and fractional variational problems with the Riesz Caputo
I. INTRODUCTION derivative [20]. Nevertheless, there are less results about
positive solutions for fractional boundary value problems
W HEN we describe the hereditary properties and menyjip Riesz-Caputo derivative.
ory of various processes and materials, the fractionalthe authors of [21] discussed positive solutions of frac-

derivative plays a very important role. As a result, fractionglong| gifferential equations with the Riesz space derivative
differential equations is attracting more and more attention,

see [1-5] and the references therein. Recently, there have f°D¢z(¢) = h(&, 2(€)), €€[0,1], 0<a <1,

been many discussions on the existence of solutions for frac-

tional initial value problems and boundary value problems z(0) =z, x(1)=ux,

(see [6-15]). Most of the results where provided by use of RC e . o

the left Riemann-Liouville and Caputo derivative, these twhereo Di' is the Riesz Caputo derivative.
fractional operators only reflected the past or future memory[24] obtained the existence results for anti-periodic bound-
effect. ary value problems with Riesz Caputo derivative

In the application of real world, there are many processes' v _ -
which starl:gd at the past states, also relying onyitz deveIéJp-DTy(T) =9(ny(m), reld J=[0T1), 1<y<2
ment in the future, for gxample, stock price_optipn. Another y(0) +y(T) =0, o(0)+vy'(T)=0,
example is the applications to anomalous diffusion problem,
among which there is Riesz derivative. Nonlocality is implicivhere £ D7. is the Riesz Caputo derivative.
in the Riesz derivative, so it can be used to describe the diffu-Motivated by the above mentioned results, in this paper,
sion concentration’s dependence on path. All these practigad discussed the following fractional problem
problems prompt us to introduce Riesz fractional derivatives, R
which is a two-sided fractional operator including both left o Diy(t) = f(t,y(t)), te[0,1], 0<~y<1, (1)
and right derivative. Past and future memory effects can be
realized by Riesz fractional derivatives. Some natural systems y(0) =a, y(1) =by(n), @)

including aquifers, rivers and heterogeneous soils inVOIWhereRCDV is the Riesz Caputo derivativé, c C([0, 1] x
space Riesz fractional diffusion equations. It is typicall +OOO) 0 1+oo)) O<n<l a>00 < b < 2’ We

observed to be non—F|ck|an., also called anomalous (;ee [2 1nd the positive solutions for the fractional problem (1), (2)
A one component system is governed by the equation by applying the technique of monotone iterative. Moreover,
ou 9% an iterative scheme for approximating the solutions was given
T Bzl + f(u,t), in the paper. To our knowledge, tr_ns is the flrst.paper tp use
the technique of monotone iterative to deal with fractional
Manuscript received October 5, 2020; revised January 6,2021. boundary value problem with Riesz Caputo derivative.
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Definition 2.1 [2] For a functionz(t), 0 < ¢t < T, the is a unique solution of the following fractional boundary

Riesz-Caputo fractional derivative is value problem
1 T (y 0CDYy(t) = f(t), telo,1], 0<y<1, (5
ch%Z(t) = F(n—a) / |t_u|o€+3—ndu ’ '
i o y(0) =a, y(1)=byn). (6)
= 5(0 D + (~1)"t“ Dg) (1), Proof:
here § D¢ and ¢ Dg. stand for the left and right Caputo _ 1 1 / -1
derivative respectively. yt) = 2y(0) 2Y [t =ul f
1 1
L ) = Su(0) + <>+—/<t— O
C na _ Y 5Y u
o Dfz(t) = T —a) /0 T werin du 21 . 2 r'(y) Jo
and +W /t (u— )" f(u)du
TSP G VL RG] () | ™
t= Dyz(t) = T(n—a) /t (u—f)orin du. can begot by (3) and the equality (?). Then
In particular if 0 < o <1 andz(t) € C(0,T), then yln) = %y(o) + %y(l) + ﬁ/ (n —u)?~t f(u)du
0
o€ D= (t) = 5(0 Dff — tCDT)Z(t)- —&-% / (u — )" f(u)du
7) I

Definition 2.2 [3] By the boundary conditiong/(0) = a, y(1) = by(n), we

t
oI+ () = e [ (= 0w get
T'(a) Jo 1 b n .
1 T y(1) = 5@17 + 559(1) + ) (n—u)""" f(u)du
J82(t) = 7/ (u — ) 2(u)du, b 1 0
(@) J; b [ e
1 T F(’Y) n
I%z(t :—/ u—t]* " z(u)du. thus,
oir () F(Ot) 0 | | ( ) .
. . . L ab b 1
stand forthe fractional left, right and Riemann-Liouville y(1) = 5] 0 + [T (n—uw)""" f(u)du
integrals of order respectively. ( —bé) ( - () Jo
Lemma 2.1[3] If z(¢) € C™[0,T], then +(1b)1“(7)/ (u—n)"" f(u)du.
n—1 ) 2 n
oI EDY2(t) = 2(t) — Z z 11(0) (t —0)! Substitutingy (1) into (7), we have
=0 ’ ab b n
t) =- —u)" f(u)d
and y(®) 2+4—2b+1(2—b)1“(7)/0 (= w) f(w)du
n—1 b
DO / _oyr—1
13 £ Dg=(0) = (-1 =0 - > T gy, Faoprg) J, o
=0 ) 1 t
+— t—u)"" L f(u)du
ol7 £ D321 iy J, (0w
_ 1 a C na a C na 1 ! -1
=5t o Ve Tedp o Uy ESYnY U u)au.
S (I8 DF + I3 § DY) (1) +r(7)/ (= £ f(u)d
1 « o (0% « ¢
+<*1)n§(01f, C DG+ I D3 2(t) [
1
= §(OI?OCD? + (=1){ I ¢ DF)=(t) I11. MAIN RESULTS
can be got from the above definitions and lemmas. Let the space¥ = C'[0, 1] be endowed with the maximum
In particular, if0 < a < 1 and 2(t) € C(0, T), then norm|y|| = Jnax ly(t)]. It is well known thatX is a Banach
e 1 space. Define the con& c X by

y € C[0,1] given by

oven : Ty =5+
ylt) = 2+§—b2b+1(2—:)F(73/0 R +(22—5)_(2? /On(ﬁu)v (. y(w)du
+<21—b>F<’V>/ e +b>/ e @) @)
+w/01(t—u)7 1f() L/ ’Ylfuy( ))du
i | w0 F(f/o g
4 F(’y (u (u, y(u))du.
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Lemma 3.1 The operatorT : K — K is completely we get

continuous.
a ab
Proof: Firstly, we claim thatl’ : K — K is continuous. Ty(1) = ) + 4_
Sincef € C([0,1]x[0, +00),[0,+00)), lety;,y2 € [0, +00) b " W) f ()
and forV e > 0, 30 > 0, when |y, (t) — y2(t)| < 6, we have 2-0T() J, u) wylu))au
b

e / 1),y

(2—=b)T(y+1)e 1 !
(10 (8) = S0 < g iy 0= )
ST 2=y +1r
2 2[b(my 7;(1 —n)7) + (2 -b)]
Thus, we have [(2 — :)T(W) /0 (n—u)""du
+L /1(u )7 du
|Ty1< )~ Tua(1)] @=0LG) Jy
77 1
© _5 01 w7 f (w1 () — fu, yo(w))|du +W/0 a ;2“):));CEUL .
b . n g 1
2=0re) / () = S 2 ()l ~ T T (- ) £ 2 0]
1 et [b(n” +d=n7) 1
5 / (#5103 L e=omn " Ton
L u—1t1)Y u u)) — u u))|du N '
+r(v)/t (=71 (g w)) = £l a(w) So, | Tyl = r1 = |ly|| for y € K NoQ,.
< (2= 0)l(y +1)e Let Oy = {y € K : |ly|| < r2}. Fory € K N9, one
bWbJr (1- 7727 | +2(2-0) has0 < y(t) < rs, 0 <t < 1. From (H;), we have
1
{(2 T Ty =&
b /1 - R T
e-orm J, T sy [ 0w )
2 t( o /1( - =0T Jo Y
+— — )7 dqu— ut”du] b
r r . S — )" f(u, d
T8 e T | sy
by + (1 —n)"]+2(2-b 1 —u)"  Hf(u, y(u))du
[b[n[gﬂl(—n;]”)} L t7(+ (1)—t)7] +F(lv) /ol(t J Iyt
(2- E)%F_(Vb))%w n 1);(7)7 +F77) /t (uw—1)""" fu, y(uw))du
bl + (1 —n)]+2(2—b) <2 (2-b)L(y+1)r
b + (1 =n)"+22-b) _ 2 bQ[b(mt](l—W)”)Jr?(?—b)]
2-bl'(v+1 -
( JING ) {(2—[))1‘(7) i 1(77—u)7 Ldu
b B 1
which implies thatT" is continuous. Similar to [21], we can +(2 - 5)1;(7) /n (w=m)" du X
proveT is compact. [ ] 1 _1 1 _1 }
+— [ t—u) " du+ — — )71
Theorem 32 Let 0 < v < 1, f e C([0,1] x I(y) /o ( Z) ) Fu Fl(W) /t (=t
[0,400),[0,400)), 0 <y <1, a>0,0<b< 2 <2, (2 BTy +
Suppoie that there exist two positive constants, (ro > b(?ﬂ +2([1b(_7/”n)+)(1 o 77)2 ) +2(2-0)]
a+ QG—_b > r1) satisfying (2—b)(7)y - T(v)y
(2= b)T(y + 1)y -
(H1) f(tv) < 20b(n7 + (1 —n)7) +2(2 — b)] for (t,v) € So, || Ty|| < |ly|| for y € K NdQy,. Therefore, an application
[0, 1] x [0, r2]; of Krasnosel'skii fixed point theorem implies the fractional
2-=bI(v+ )r boundary value problem (1)(2) has at least one positive
(H2) f(t,v) 2 2[b(n7 + (1 —n)7) + (; —b)] for (#,v) € solution. u
[0,1] x [0,74]. Theorem 33 Let 0 < ~ < 1, f e C([0,1] x
Then there is at least one positive solution of fractiona?: +20), [0, +00))= 0 < n<1la>00<b<2If
boundary value problem (1)(2). there exists: > — 5 + 19 such that

Proof: Let Oy = {y € K : |ly|| < r1}. Fory € (Hs) f(t,z1) < f(t,ze) forany 0 <t <1, 0<
KnNoQy, one hasd < y(t) < ry, 0 <t < 1. From (Hsy), x1 <z <
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(Ha) ax, f(tc) <

[c (g + 4fl’2b)} (2 - b)T(y+1)
b + (1 =n)7) +2(2-b)

Let w; = Twy, we = Tw; = T?wy, then we write
Wn41 :Twn :TnW07 n= 172737"'7 (10)

SinceT : K. — K., we hae

Then the fractional boundary value problem (1)(2) has w, €TK, CK,, n=1,2,3,- -

at least one positive solution* with 0 < w* < ¢ and

lim w, = lim T"wy = w*,wherewy(t) =¢, 0 <t <1.
Proof: Let
Ke={ye K| [yl <c}

and o
K.={ye K| [yl <c}.

Theni,in what follows, we first provd : K. — K,. Let
y € K., then||y|| < ¢, which implies

< < < <ec.
0= y(t) < max ly(t)| < 1yl < c

By (H3)7 (H4)7 we QEt
0 < fty(t)) < f(t,c) < max f(t,c)

o= (5412 )| oree)
)

b+ (A—ny)+2—p  o=stsl
Then by (9), we have
Ty(t)_b;J%i:zb
MCET ey /01(77 — )" f(u, y(u))du
g J, T )
+ﬁ / (t — ) f(u, ()
I 1
S / (u— £, ()
u ab
2 b472b L b ) 22 - h)
T 1du
+<2—b>r<v>/,, (w=n)""d
1 t ~—1 1 ! ~y—1
T Sy T o A
S99 )
{c— <;+4f2b)]( BT (7 + 1)
T T () 122 - b)
[b(n7+(1—n)’y 42
(2 — b)F(’y + 1) F(’y + 1)

Thus, wehave
1Tyl < e

So, we obtaifl" : K, — K.. Denote
wo(t) =¢, 0<t< 1.

By Lemma 3.17T is compact. We claim thafw, }7° ; has a
convergent subsequenge,,;; }7° ; and there exists™* € K.,
such thatv,,; — w*. Now since

a ab

wi(t) =Two(t) = >t T

Jr
+ - / = )
+ / (= 0" (s wolu))
+— — u)vflf(u, wo(u))du

0
1
y L /t (u =) f(u, wo(u))du

b
[b(n7 td-nn) 2
2-)I'(v+1) TH+1)
_a ab a ab
R {C (2+4—2b>}
=c=uwp(t), 0<t<1
Then wehavew, (t) < wp(t), 0<t<1.So,

WQ(t) = Twl(t) S Two(t) = wl(t), 0 S t S 1.

Hence, by induction, we have,, 11 (t) < w,(t), 0<t<
1, (n=0,1,2--). Thus, we assert that,, — w*. Let
n — oo in (10), we havel'w* = w* sinceT is continuous.
. a ab L
Since 3 + - > 0, then thezero function is not the
solution of (1)(2). Thusoxgtagcl |w*| > 0, we conclude that
w*(t) >0, te(0,1). Thereforew* is a positive solution
of problem (1)(2). [ ]

V. EXAMPLE
Example 4.1Consider the fractional boundary value prob-
lem ) !
0Dyt = gttt te] (1)
1

we noticethaty = 3, a =1, b=1, n =3, f(t,y
T5t+e7Y, it follows from adlrect calculatlont a(y+1
(*)~0886 n = (3)2 ~0.707, (1—n) =(%)

ab
0.707. Chooser; =1, ro =10, we geta + 3= 2, S0,

N\*—‘\/v

b
ro > a+ ﬁ > ry holds. Furthermore,

flty) =q5t+e¥<11<1.296

2=0)T(y+1)re
2[b(n” + (1 —n)7) +2(2 - b)]
for (¢,y) € [0, 1] x [0, 10];

IN
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ft,y) St+e v >e v >0.368 >0.184
2-bl(y+1)m

2[b(n7 + (1 —n)7) + (2 - )]

for (¢,y) € [0,1] x [0, 1].

Y

Then, all conditions of Theorem 3.2 hold. Thus, with Theo-
rem 3.2, fractional boundary value problem (11)(12) has at
least one positive solution.
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