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Abstract—As we all know, both the past and the future
nonlocal memory effects can be characterized by the Riesz-
Caputo derivative. A class of three-point boundary value
problems for fractional differential equations with the Riesz-
Caputo derivative is studied in this paper. We find the positive
solutions for the fractional problem by applying the technique of
monotone iterative. Moreover, an iterative scheme for approxi-
mating the solutions is given in the paper. Finally, an example
is given.

Index Terms—Iteration; Monotone positive solution; Frac-
tional differential equation; Riesz-Caputo derivative.

I. I NTRODUCTION

W HEN we describe the hereditary properties and mem-
ory of various processes and materials, the fractional

derivative plays a very important role. As a result, fractional
differential equations is attracting more and more attention,
see [1-5] and the references therein. Recently, there have
been many discussions on the existence of solutions for frac-
tional initial value problems and boundary value problems
(see [6-15]). Most of the results where provided by use of
the left Riemann-Liouville and Caputo derivative, these two
fractional operators only reflected the past or future memory
effect.

In the application of real world, there are many processes
which started at the past states, also relying on its develop-
ment in the future, for example, stock price option. Another
example is the applications to anomalous diffusion problem,
among which there is Riesz derivative. Nonlocality is implicit
in the Riesz derivative, so it can be used to describe the diffu-
sion concentration’s dependence on path. All these practical
problems prompt us to introduce Riesz fractional derivatives,
which is a two-sided fractional operator including both left
and right derivative. Past and future memory effects can be
realized by Riesz fractional derivatives. Some natural systems
including aquifers, rivers and heterogeneous soils involve
space Riesz fractional diffusion equations. It is typically
observed to be non-Fickian, also called anomalous (see [25]).
A one component system is governed by the equation

∂u

∂t
= K

∂αu

∂|x|α + f(u, t),
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where ∂αu
∂|x|α is theRiesz fractional derivative.

∂2u(x,t)
∂t2 +2α∂u(x,t)

∂t + β2u(x, t)
= ηRDγ

xu(x, t) + f(x, t),
a ≤ x ≤ b, 0 ≤ t ≤ T, 1 < γ ≤ 2,

where α > β ≥ 0, η > 0, RDγ
x is the Riesz fractional

derivative. The above equation can be used to represent the
fractional telegraph equation.

There is a lot of literature on numerical solutions of space
fractional diffusion equations with Riesz derivative [16-19]
and fractional variational problems with the Riesz Caputo
derivative [20]. Nevertheless, there are less results about
positive solutions for fractional boundary value problems
with Riesz-Caputo derivative.

The authors of [21] discussed positive solutions of frac-
tional differential equations with the Riesz space derivative

RC
0 Dα

1 x(ξ) = h(ξ, x(ξ)), ξ ∈ [0, 1], 0 < α ≤ 1,

x(0) = x0, x(1) = x1,

whereRC
0 Dα

1 is the Riesz Caputo derivative.
[24] obtained the existence results for anti-periodic bound-

ary value problems with Riesz Caputo derivative

RC
0 Dγ

T y(τ) = g(τ, y(τ)), τ ∈ J, J = [0, T ], 1 < γ ≤ 2,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,

whereRC
0 Dγ

T is the Riesz Caputo derivative.
Motivated by the above mentioned results, in this paper,

we discussed the following fractional problem

RC
0 Dγ

1y(t) = f(t, y(t)), t ∈ [0, 1], 0 < γ ≤ 1, (1)

y(0) = a, y(1) = by(η), (2)

whereRC
0 Dγ

1 is the Riesz Caputo derivative,f ∈ C([0, 1]×
[0,+∞), [0,+∞)), 0 < η < 1, a > 0, 0 < b < 2. We
found the positive solutions for the fractional problem (1), (2)
by applying the technique of monotone iterative. Moreover,
an iterative scheme for approximating the solutions was given
in the paper. To our knowledge, this is the first paper to use
the technique of monotone iterative to deal with fractional
boundary value problem with Riesz Caputo derivative.

II. T HE PRELIMINARY LEMMAS

Let α > 0 andn− 1 < α ≤ n, n ∈ N andn = [ν], and
[·] the ceiling of a number.
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Definition 2.1 [2] For a functionz(t), 0 ≤ t ≤ T, the
Riesz-Caputo fractional derivative is

RC
0 Dα

T z(t) =
1

Γ(n− α)

∫ T

0

z(n)(u)
|t− u|α+1−n

du

=
1
2
(C

0
Dα

t + (−1)ntCDα
T

)
z(t),

here C
0 Dα

t and C
t Dα

T stand for the left and right Caputo
derivative respectively.

C
0 Dα

t z(t) =
1

Γ(n− α)

∫ t

0

z(n)(u)
(t− u)α+1−n

du

and

tCDα
T z(t) =

(−1)n

Γ(n− α)

∫ T

t

z(n)(u)
(u− t)α+1−n

du.

In particular, if 0 < α ≤ 1 andz(t) ∈ C(0, T ), then

RC
0 Dα

T z(t) =
1
2
(C

0
Dα

t − tCDα
T

)
z(t).

Definition 2.2 [3]

0I
α
t z(t) =

1
Γ(α)

∫ t

0

(t− u)α−1z(u)du,

tI
α
T z(t) =

1
Γ(α)

∫ T

t

(u− t)α−1z(u)du,

0I
α
T z(t) =

1
Γ(α)

∫ T

0

|u− t|α−1z(u)du.

stand for the fractional left, right and Riemann-Liouville
integrals of orderα respectively.

Lemma 2.1 [3] If z(t) ∈ Cn[0, T ], then

0I
α C
t 0 Dα

t z(t) = z(t)−
n−1∑

l=0

z(l)(0)
l!

(t− 0)l

and

tI
α C
T t Dα

T z(t) = (−1)n
[
z(t)−

n−1∑

l=0

(−1)lz(l)(T )
l!

(T − t)l
]
.

0I
α RC
T 0 Dα

T z(t)

=
1
2
(
0
Iα C
t 0 Dα

t +t Iα C
T 0 Dα

t

)
z(t)

+(−1)n 1
2
(
0
Iα C
t t Dα

T +t Iα C
T t Dα

T

)
z(t)

=
1
2
(
0
Iα C
t 0 Dα

t + (−1)n
t Iα C

T t Dα
T

)
z(t)

can be got from the above definitions and lemmas.
In particular, if 0 < α ≤ 1 andz(t) ∈ C(0, T ), then

0I
α RC
T 0 Dα

T z(t) = z(t)− 1
2
(z(0) + z(T )). (3)

Lemma 2.2 Assume thatf ∈ C([0, 1], R). A function
y ∈ C[0, 1] given by

y(t) =
a

2
+

ab

4− 2b
+

b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u)du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u)du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u)du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u)du

(4)

is a unique solution of the following fractional boundary
value problem

RC
0 Dγ

1y(t) = f(t), t ∈ [0, 1], 0 < γ ≤ 1, (5)

y(0) = a, y(1) = by(η). (6)

Proof:

y(t) =
1
2
y(0) +

1
2
y(1) +

1
Γ(γ)

∫ 1

0

|t− u|γ−1f(u)du

=
1
2
y(0) +

1
2
y(1) +

1
Γ(γ)

∫ t

0

(t− u)γ−1f(u)du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u)du

(7)
can begot by (3) and the equality (5). Then

y(η) =
1
2
y(0) +

1
2
y(1) +

1
Γ(γ)

∫ η

0

(η − u)γ−1f(u)du

+
1

Γ(γ)

∫ 1

η

(u− η)γ−1f(u)du.

By the boundary conditionsy(0) = a, y(1) = by(η), we
get

y(1) =
1
2
ab +

1
2
by(1) +

b

Γ(γ)

∫ η

0

(η − u)γ−1f(u)du

+
b

Γ(γ)

∫ 1

η

(u− η)γ−1f(u)du,

thus,

y(1) =
ab

2(1− b
2 )

+
b

(1− b
2 )Γ(γ)

∫ η

0

(η − u)γ−1f(u)du

+
b

(1− b
2 )Γ(γ)

∫ 1

η

(u− η)γ−1f(u)du.

Substitutingy(1) into (7), we have

y(t) =
a

2
+

ab

4− 2b
+

b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u)du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u)du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u)du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u)du.

II I. M AIN RESULTS

Let the spaceX = C[0, 1] be endowed with the maximum
norm‖y‖ = max

0≤t≤1
|y(t)|. It is well known thatX is a Banach

space. Define the coneK ⊂ X by

K = {y ∈ X : y(t) ≥ 0, 0 ≤ t ≤ 1}. (8)

Let T : K → K be the operator defined by

Ty(t) =
a

2
+

ab

4− 2b

+
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u, y(u))du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u, y(u))du.

(9)
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Lemma 3.1 The operatorT : K → K is completely
continuous.

Proof: Firstly, we claim thatT : K → K is continuous.
Sincef ∈ C([0, 1]×[0,+∞), [0,+∞)), let y1, y2 ∈ [0,+∞)
and for∀ ε > 0, ∃δ > 0, when |y1(t)− y2(t)| < δ, we have

|f(t, y1(t))− f(t, y2(t))| < (2− b)Γ(γ + 1)ε
b[ηγ + (1− η)γ ] + 2(2− b)

.

Thus, we have

|Ty1(t)− Ty2(t)|
≤ b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1|f(u, y1(u))− f(u, y2(u))|du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1|f(u, y1(u))− f(u, y2(u))|du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1|f(u, y1(u))− f(u, y2(u))|du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1|f(u, y1(u))− f(u, y2(u))|du

<
(2− b)Γ(γ + 1)ε

b[ηγ + (1− η)γ ] + 2(2− b)[
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1du +
1

Γ(γ)

∫ 1

t

(u− t)γ−1du

]

<
(2− b)Γ(γ + 1)ε

b[ηγ + (1− η)γ ] + 2(2− b)[
b[ηγ + (1− η)γ ]
(2− b)Γ(γ)γ

+
tγ + (1− t)γ

Γ(γ)γ

]

<
(2− b)Γ(γ + 1)ε

b[ηγ + (1− η)γ ] + 2(2− b)
b[ηγ + (1− η)γ ] + 2(2− b)

(2− b)Γ(γ + 1)
= ε

which implies thatT is continuous. Similar to [21], we can
proveT is compact.

Theorem 3.2 Let 0 < γ ≤ 1, f ∈ C([0, 1] ×
[0,+∞), [0,+∞)), 0 < η < 1, a > 0, 0 < b < 2.
Suppose that there exist two positive constantsr1, r2 (r2 >

a +
ab

2− b
> r1) satisfying

(H1) f(t, v) ≤ (2− b)Γ(γ + 1)r2

2[b(ηγ + (1− η)γ) + 2(2− b)]
for (t, v) ∈

[0, 1]× [0, r2];

(H2) f(t, v) ≥ (2− b)Γ(γ + 1)r1

2[b(ηγ + (1− η)γ) + (2− b)]
for (t, v) ∈

[0, 1]× [0, r1].

Then there is at least one positive solution of fractional
boundary value problem (1)(2).

Proof: Let Ω1 = {y ∈ K : ‖y‖ < r1}. For y ∈
K ∩ ∂Ω1, one has0 ≤ y(t) ≤ r1, 0 ≤ t ≤ 1. From (H2),

we get

Ty(1) =
a

2
+

ab

4− 2b

+
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u, y(u))du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ 1

0

(1− u)γ−1f(u, y(u))du

>
r1

2
+

(2− b)Γ(γ + 1)r1

2[b(ηγ + (1− η)γ) + (2− b)][
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1du

+
1

Γ(γ)

∫ 1

0

(1− u)γ−1du

]

=
r1

2
+

(2− b)Γ(γ + 1)r1

2[b(ηγ + (1− η)γ) + (2− b)][
b(ηγ + (1− η)γ)

(2− b)Γ(γ)γ
+

1
Γ(γ)γ

]

= r1.

So, ‖Ty‖ ≥ r1 = ‖y‖ for y ∈ K ∩ ∂Ω1.

Let Ω2 = {y ∈ K : ‖y‖ < r2}. For y ∈ K ∩ ∂Ω2, one
has0 ≤ y(t) ≤ r2, 0 ≤ t ≤ 1. From (H1), we have

Ty(t) =
a

2
+

ab

4− 2b

+
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u, y(u))du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u, y(u))du

<
r2

2
+

(2− b)Γ(γ + 1)r2

2[b(ηγ + (1− η)γ) + 2(2− b)][
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1du +
1

Γ(γ)

∫ 1

t

(u− t)γ−1du

]

≤ r2

2
+

(2− b)Γ(γ + 1)r2

2[b(ηγ + (1− η)γ) + 2(2− b)][
b(ηγ + (1− η)γ)

(2− b)Γ(γ)γ
+

2
Γ(γ)γ

]

= r2.

So,‖Ty‖ ≤ ‖y‖ for y ∈ K ∩∂Ω2. Therefore, an application
of Krasnosel’skii fixed point theorem implies the fractional
boundary value problem (1)(2) has at least one positive
solution.

Theorem 3.3 Let 0 < γ ≤ 1, f ∈ C([0, 1] ×
[0,+∞), [0,+∞)), 0 < η < 1, a > 0, 0 < b < 2. If

there existsc >
a

2
+

ab

4− 2b
such that

(H3) f(t, x1) ≤ f(t, x2) for any 0 ≤ t ≤ 1, 0 ≤
x1 ≤ x2 ≤ c;
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(H4) max
0≤t≤1

f(t, c) ≤
[
c−

(
a
2 +

ab

4− 2b

)]
(2− b)Γ(γ + 1)

b(ηγ + (1− η)γ) + 2(2− b)
.

Then the fractional boundary value problem (1)(2) has
at least one positive solutionω∗ with 0 < ω∗ ≤ c and
lim

n→∞
ωn = lim

n→∞
Tnω0 = ω∗,whereω0(t) = c, 0 ≤ t ≤ 1.

Proof: Let

Kc = {y ∈ K| ‖y‖ < c}
and

Kc = {y ∈ K| ‖y‖ ≤ c}.
Then, in what follows, we first proveT : Kc → Kc. Let
y ∈ Kc, then‖y‖ ≤ c, which implies

0 ≤ y(t) ≤ max
0≤t≤1

|y(t)| ≤ ‖y‖ ≤ c.

By (H3), (H4), we get

0 ≤ f(t, y(t)) ≤ f(t, c) ≤ max
0≤t≤1

f(t, c)

≤

[
c−

(
a
2 +

ab

4− 2b

)]
(2− b)Γ(γ + 1)

b(ηγ + (1− η)γ) + 2(2− b)
, 0 ≤ t ≤ 1.

Then by (9), we have

Ty(t) =
a

2
+

ab

4− 2b

+
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u, y(u))du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u, y(u))du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u, y(u))du

<
a

2
+

ab

4− 2b
+

[
c−

(
a
2 +

ab

4− 2b

)]
(2− b)Γ(γ + 1)

b(ηγ + (1− η)γ) + 2(2− b)[
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1du +
1

Γ(γ)

∫ 1

t

(u− t)γ−1du

]

≤ a

2
+

ab

4− 2b

+

[
c−

(
a
2 +

ab

4− 2b

)]
(2− b)Γ(γ + 1)

b(ηγ + (1− η)γ) + 2(2− b)[
b(ηγ + (1− η)γ)
(2− b)Γ(γ + 1)

+
2

Γ(γ + 1)

]

=
a

2
+

ab

4− 2b
+

[
c−

(
a

2
+

ab

4− 2b

)]

= c.

Thus, wehave
‖Ty‖ ≤ c.

So, we obtainT : Kc → Kc. Denote

ω0(t) = c, 0 ≤ t ≤ 1.

Let ω1 = Tω0, ω2 = Tω1 = T 2ω0, then we write

ωn+1 = Tωn = Tnω0, n = 1, 2, 3, · · ·, (10)

SinceT : Kc → Kc, we have

ωn ∈ TKc ⊆ Kc, n = 1, 2, 3, · · ·.
By Lemma 3.1,T is compact. We claim that{ωn}∞n=1 has a
convergent subsequence{ωnk}∞k=1 and there existsω∗ ∈ Kc,
such thatωnk → ω∗. Now since

ω1(t) = Tω0(t) =
a

2
+

ab

4− 2b

+
b

(2− b)Γ(γ)

∫ η

0

(η − u)γ−1f(u, ω0(u))du

+
b

(2− b)Γ(γ)

∫ 1

η

(u− η)γ−1f(u, ω0(u))du

+
1

Γ(γ)

∫ t

0

(t− u)γ−1f(u, ω0(u))du

+
1

Γ(γ)

∫ 1

t

(u− t)γ−1f(u, ω0(u))du

≤ a

2
+

ab

4− 2b

+

[
c−

(
a
2 +

ab

4− 2b

)]
(2− b)Γ(γ + 1)

b(ηγ + (1− η)γ) + 2(2− b)[
b(ηγ + (1− η)γ)
(2− b)Γ(γ + 1)

+
2

Γ(γ + 1)

]

=
a

2
+

ab

4− 2b
+

[
c−

(
a

2
+

ab

4− 2b

)]

= c = ω0(t), 0 ≤ t ≤ 1.

Then wehaveω1(t) ≤ ω0(t), 0 ≤ t ≤ 1. So,

ω2(t) = Tω1(t) ≤ Tω0(t) = ω1(t), 0 ≤ t ≤ 1.

Hence, by induction, we haveωn+1(t) ≤ ωn(t), 0 ≤ t ≤
1, (n = 0, 1, 2 · ··). Thus, we assert thatωn → ω∗. Let
n →∞ in (10), we haveTω∗ = ω∗ sinceT is continuous.

Since
a

2
+

ab

4− 2b
> 0, then thezero function is not the

solution of (1)(2). Thusmax
0≤t≤1

|ω∗| > 0, we conclude that

ω∗(t) > 0, t ∈ (0, 1). Therefore,ω∗ is a positive solution
of problem (1)(2).

IV. EXAMPLE

Example 4.1Consider the fractional boundary value prob-
lem

RC
0 D

1
2
1 y(t) =

1
10

t + e−y, t ∈ [0, 1], (11)

y(0) = 1, y(1) = y(
1
2
), (12)

we noticethat γ = 1
2 , a = 1, b = 1, η = 1

2 , f(t, y) =
1
10 t+e−y, it follows from a direct calculation thatΓ(γ+1) =
Γ( 3

2 ) ≈ 0.886, ηγ = ( 1
2 )

1
2 ≈ 0.707, (1− η)γ = ( 1

2 )
1
2 ≈

0.707. Chooser1 = 1, r2 = 10, we geta +
ab

2− b
= 2, so,

r2 > a +
ab

2− b
> r1 holds.Furthermore,

f(t, y) = 1
10 t + e−y ≤ 1.1 < 1.296

≤ (2− b)Γ(γ + 1)r2

2[b(ηγ + (1− η)γ) + 2(2− b)]
for (t, y) ∈ [0, 1]× [0, 10];
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f(t, y) = 1
10 t + e−y ≥ e−y > 0.368 ≥ 0.184

≥ (2− b)Γ(γ + 1)r1

2[b(ηγ + (1− η)γ) + (2− b)]
for (t, y) ∈ [0, 1]× [0, 1].

Then, all conditions of Theorem 3.2 hold. Thus, with Theo-
rem 3.2, fractional boundary value problem (11)(12) has at
least one positive solution.
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