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Abstract—Given that the mixing matrix of underdetermined 

blind source separation (UBSS) changes with the recording 

environment, offline UBSS methods encounter difficulty in 

satisfying the time-varying estimation demand. Therefore, in 

this work, an online tensor algorithm has been proposed to 

estimate the time-varying mixing matrix for separating an 

instantaneous linear underdetermined mixture. First, we 

construct a canonical polyadic tensor model by assuming 

individually correlated sources. Second, an online tensor 

algorithm is applied to decompose the canonical polyadic tensor 

model to ensure the accuracy of the time-varying mixing 

matrix. Finally, two types of data, including speech and 

biomedical signals, have been used to substantiate the 

effectiveness of the proposed algorithm in estimating the 

time-varying mixing matrix for UBSS. The results show that the 

developed online tensor algorithm is significantly superior to 

the conventional offline UBSS methods in terms of time 

consumption and accuracy. 

 
Index Terms—underdetermined blind source separation; 

online tensor decomposition; canonical polyadic decomposition; 

time-varying mixing matrix. 

 

I. INTRODUCTION 

LIND source separation (BSS) focuses on recovering the 

sources from observed signals without any prior 

information about the mixing process [1]. It is widely applied 

for modal property estimation [2], speech signal processing 

[3], and electroencephalographic (EEG) artifact removal [4]. 

According to the dimensionality of the sources and 

observations, BSS algorithms are always classified into three 
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types: available blind source separation (ABSS) with the 

same numbers of sources and observations, overdetermined 

blind source separation (OBSS) with fewer sources than 

observations, and underdetermined blind source separation 

(UBSS) with larger numbers of sources than observations 

[5-6]. Compared with OBSS and ABSS, it is difficult to solve 

UBSS problems because of the inestimable mixing matrix 

and sources. 

Usually, UBSS contains two essential tasks, i.e., 

estimating the mixing matrix, which is a critical step in 

UBSS, and recovering the sources. It is known that a 

perfectly estimated mixing matrix could contribute to 

improving the source recovery. Initially, under the 

hypothesis of the sparsity of sources in the time-frequency 

(TF) plane, sparse component analysis (SCA) was first 

proposed to estimate the mixing matrix for UBSS [7]. This 

sparsity of sources should be under W-disjoint orthogonality 

conditions [8-9] or emerging alone in a small set of adjacent 

TF windows [10] after a short-time Fourier transform 

(STFT). Based on the above conditions, some clustering 

algorithms, such as K-means [11] and fuzzy c-means [12], 

have been widely adopted to obtain the mixing matrix in the 

TF plane. Unfortunately, the robustness of these clustering 

algorithms is not well-suited for high-dimensional data or 

nonstationary signals with noise. Therefore, Dong et al. [13] 

proposed a modified similarity-based robust clustering 

method (MSCM) to improve the robustness of clustering 

algorithms. To reduce the sensitivity of clustering algorithms, 

Sun and colleagues [14] proposed the Hough transform to 

modify the cluster center to enhance the estimation accuracy 

of a mixing matrix. In addition, most of the SCA approaches 

require the automatic determination of a single-source point 

in the TF plane [15]. However, detecting a single or dominant 

source at every TF point in practice is difficult; hence, the 

mixing matrix cannot be accurately estimated, especially for 

low-sparsity signals. 

To overcome this drawback, a tensor method without 

single-source point detection was proposed by Common 

[16]; this method estimates the mixing matrix for UBSS for a 

specific case with two existing observed signals and three 

sources. In his work, canonical polyadic (CP) decomposition, 

also called parallel factor analysis (PARAFAC), was 

exploited to obtain a mixing matrix because of its uniqueness 

under extremely mild conditions, especially its uniqueness in 

the “underdetermined” case. Ferreol et al. [17] suggested the 

fourth-order blind identification of underdetermined 

mixtures of sources (FOBIUM) method that does not require 
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limitations on the number of the sources and observations 

when the individual source signals are dependent over some 

time interval. To improve the precision in the joint 

diagonalization matrix for UBSS, Lathauwer et al. [18] 

proposed the fourth-order-only blind identification (FOOBI) 

algorithm to decompose the fourth-order CP model with 

nonzero kurtosis of the sources. Furthermore, the 

second-order blind identification of underdetermined 

mixtures (SOBIUM) method was adopted by Lathauwer and 

his colleagues to estimate a mixing matrix and to consider the 

individual correlation of sources in time [19]. Tichavsky et 

al. revealed a weight-adjusted tensor method (UDSEP) to 

obtain the mixing matrix and to decompose a third-order CP 

modal with nonstationary signals [20]. In addition, assuming 

that the tensor elements are all nonnegative, Cichocki 

proposed the hierarchical alternating least squares (HALS) 

algorithm for acquiring the nonnegative mixing matrix 

[21-22]. In addition, an alternating least squares (ALS) 

algorithm was proposed to decompose the joint CP model to 

estimate the mixing matrix of two datasets when the data are 

involved in multiple datasets [23]. However, the ALS method 

always has a relatively poor convergence when handling a 

high-order tensor. To improve the convergence, an enhanced 

line search (ELS) method was used to estimate the mixing 

matrix instead of the ALS method [24]. 

Most of the above methods are offline algorithms for 

estimating the mixing matrix for UBSS. However, 

considering that the underlying data-generation process 

varies with time, the offline algorithm consumes 

considerable time when dealing with a time-varying mixing 

matrix. In this study, we focus on solving the time-varying 

mixing matrix identification for the UBSS problem with an 

online tensor method [25] to enhance efficiency. The 

second-order cumulant tensor is set by the spatial covariance 

matrices from the observations. A modified online tensor 

algorithm is proposed to decompose the time-varying 

second-order cumulant tensor to obtain the time-varying 

mixing matrix. 

The rest of this paper is organized as follows. In Section 2, 

an online tensor method for estimating the mixing matrix for 

UBSS is introduced. Simulation results based on speech and 

biomedical signals are discussed in Section 3. Finally, 

conclusions are provided in Section 4.  

II. TIME-VARYING MIXING MATRIX IDENTIFICATION FOR 

UBSS 

A. Preliminaries 

In this section, a brief review of the tensor and CP 

decomposition is provided to understand the online tensor 

algorithm. Simply speaking, a tensor is a multiway array or 

multidimensional matrix. The order of a tensor is the number 

of dimensions that are considered ways or modes. A tensor 

1 2 NI I I
X

  


L
£  of order N indicates an N-way array with its 

1 2( , , )Ni i iL th entry denoted by 
1 2 Ni i iX L , where 

{1,2, , }n ni I L , for 1 n N  . For the N-th order tensors, 

the two popular tensor decomposition methods are the 

Tucker model and the more restricted CP decomposition 

method. Compared with the Tucker model, the CP is more 

suitable in the UBSS case and can be denoted as a linear 

combination of rank-1 tensors without core parameters. The 

CP decomposition method is formulated as 

(1) (2) ( )

1

=
R

N

r r r r

r

X a a a


 o oL o                     (1) 

where ( ) nIn

ra £ , for 1,2, ,n N L , and 
(1) (2) ( )N

r r ra a ao oL o  

denote a rank-one tensor. The minimal number of rank-1 

terms R  is referred to as the rank of the tensor, which is the 

number of sources for UBSS. o is the tensor outer, which can 

be written as the elementwise form of CP: 

1 2 1 2

(1) (2) ( )

1

=
N N

R
N

i i i r i r i r i r

r

X a a a


L L                       (2) 

Unfolding is known as matricization or flattening and 

represents tensors as matrices or multiway relationships. 

Unfolding refers to a tensor fiber and slice that are formed as 

a subset when the indices are fixed. A tensor fiber is a 

one-dimensional fragment of a tensor obtained by fixing all 

indices except for one. A tensor slice is a two-dimensional 

section or fragment of a tensor obtained by fixing all indices 

except for two indices and includes horizontal, lateral, and 

frontal slices. The mode-n unfolding of tensor X  is denoted 

as ( )nX , and the mode-n fibers are arranged as the columns of 

a matrix. The matrix is expressed as 
( ) ( ) ( 1) ( 1) (1)

( ) = ( )n n n n T

nX A A A A A  e L e e e L e  (3) 

in which, 
( ) ( ) ( ) ( )

1 2[ ] nI Rn n n n

RA a a a


 L ?  , and 

1 2diag( )R    L . e  is the Khatri-Rao product, 

which is defined in [22]. 

As special cases, the third-order rank-one CP tensor is 

written as (see Figure 1) 

1 2 3(1) (2) (3)

1

R
I I I

r r r

r

T a a a
 



  o o ?                   (4) 

where 

1 2 3 1 2 3

1

R

i i i i r i r i r

r

T a a a


                          (5) 

The tensor can be represented in compact matrix forms by 

applying the unfolding representations of tensor T  
(1) (3) (2)

(1)

(2) (3) (1)

(2)

(3) (2) (1)

(3)

( )

( )

( )

T

T

T

T A A A

T A A A

T A A A







e

e

e

                   (6) 

The third-order CP, as a sum of rank-one tensors, is 

represented in Figure 1. 
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Fig. 1 The third-order CP decomposition 

 

B. Problem Description 

Here, we will consider the time-varying instantaneous 

linear mixture model 

( ) ( ) ( ),X t A t S t                              (7) 

where ( )A t  is a time-varying mixing matrix of m R , where 
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m R . In (7),  1 2( ) ( ) ( ) ( )
T

RS t s t s t s t L  denotes the 

sources that are R-dimensional vectors, and observations 

 1 2( ) ( ) ( ) ( )
T

mX t x t x t x t L  are m-dimensional 

vectors. In (7), the number of observations is less than the 

number of sources ( m R ); hence, it is a so-called UBSS 

problem. Accurately estimating the time-varying mixing 

matrix and then utilizing it to achieve the sources is the 

primal problem of UBSS. Here, we assume that the sources 

are individually correlated in time. The spatial covariance 

matrices of the observations satisfy 

         

         

11 1=

=
K

H H

t t

H H

K t t K

C t E X X A t D t A t

C t E X X A t D t A t











M            (8) 

where    
k

H

k t tD t E S S   is the diagonal matrix. k  is the 

time delay and is equal to zero in the simple case, but here, it 

is denoted as 1,2, ,k K L . To acquire the unique 

time-varying mixing matrix, the covariance matrix 

   1

m m

KC t , ,C t R L  is stacked in tensor 

  ( )m m K tC t R    and interpreted as a tensor decomposition. 

Combined with (8), an online tensor model is constructed 

as follows: 

       
1

R

r r r

r

C t a t a t d t



 o o                  (9) 

where  ra t  is the mixing matrix vectors, and  ra t
 is the 

complex conjugate of the mixing matrix vectors.  rd t  is the 

diagonal vector of  kD t . Equation (9) can be written as 

       
1

R

ijk ir jr kr

r

C t a t a t d t



               (10) 

where 1,2,i m L  and 1,2,j m L . However, considering 

the time-varying mixing matrix in this situation, tensor 

decomposition is an online problem. Traditional offline 

tensor decomposition is not suitable for online problems. 

Thus, we propose an online UBSS method to decompose the 

time-varying tensor model. Depending on the definition of 

the tensor in matrix form, a tensor can be represented by 

( ) ( A ( ) A ( )) ( )TC t t t D t e                  (11) 

where superscripts 
Tg and 

Hg  represent transposition and the 

complex conjugated transposition, respectively. 

C. Sketch of Online Tensor Decomposition 

In this section, the renewal sketch of the tensor is described 

as follows. First, the observed signals are updated by 

( 1) [ ( ), ( 1)]X t X t x t                       (12) 

where ( )X t  denotes the observation at time t  and ( 1)x t  

is the new vector at time 1t . Here, to simplify the 

representation of ( ) ( )A t A te , we define 

( ) ( ) ( )H t A t A t e , where ( ) mm RH t £ . Then, the 

matrix ( 1)C t  unfolded by tensor 
( 1)( 1) m m K tC t    £  is 

described by 

( 1) [ ( ), ( 1)]

           =( A( +1) A ( +1)) ( 1)

( 1) ( 1)

T

T

C t C t c t

t t D t

H t D t



  

 

  

e        (13) 

where ( )= ( ) ( )TC t H t D t  is the matrix, which is unfolded by 

tensor  C t  at time t , and ( 1)c t  is a new slice that is 

represented by a vector. 

According to (11), we assume that ( ) ( )A t A te  is a 

smooth variation between t  and 1t , i.e., 

( ) ( ) ( 1) ( 1)A t A t A t A t  e ; e . Thus, the diagonal 

matrix has been changed from t  to 1t  by 

( 1) [ ( ) ( 1)]T T TD t D t ,d t ;              (14) 

where ( 1)D t  has an approximate time-shift structure and 

( ) 1( ) K tD t £  has a dimension that grows with time. 

Then, ( 1)Td t  can be initially estimated by 

†( 1)= ( ) ( 1)Td t H t c t                      (15) 

where ( ) mm RH t £  is replaced by ( ) ( )A t A te . Then, 

the online algorithm is simplified by ignoring the Khatri-Rao 

product structure. The least squares update of ( 1)H t  is 

given by 
†( 1) ( 1)( ( 1))TH t C t D t .                   (16) 

Then, when the matrix ( 1)H t  replaces ( )H t , ( 1)Td t  

can reupdate in (15). Finally, according to 

1 1

( 1) ( 1)= ( 1)

=[ ( 1) ( 1) ( 1) ( 1) ]R R

A t A t H t

a t a t a t a t



 

   

     

e

L
(17) 

we can obtain ( 1)ra t  with the conjugate principal of right 

singular vector of matrix ( 1)rH t , in which 

:,( 1)=unvec([ ( +1)] )r rH t H t , 1,2 ,r R L . 

D. The Estimation of a Time-varying Mixing Matrix 

 Here, the exponential window time of the least squares 

criterion is given to evaluate the participation degree of past 

observations by 

{ ( +1), ( +1)}
min ( ( 1))EW

H t D t
t                            (18) 

with 
21

1

1

( 1) ( ) ( 1) ( )
t

EW t Tt c H t d


 



            (19) 

where   is the forgetting factor. The exponential time 

window causes all previously observed slices to contain 

different weight values at any time. Then, the matrix with 

weight coefficients can be defined by 

( 1) ( 1) ( 1)EWC t C t t                        (20) 

where 
/ 2 1/2 1/2( t 1)= ([ , , , ,1])t tdiag    L  is the weight 

coefficient matrix. Depending on the sketch of the online 

tensor decomposition, the updating rule of ( 1)EWC t  will be 

written as 
1/2( 1) [ ( ), ( 1)].EWC t C t c t                      (21) 

Combined with (11), the matrix ( 1)EWC t  can be 

factorized as follows: 
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( ) ( ( ) ( )) ( ) ( )

( ) ( ) ( ) ( )

T T

EW

H

EW EW EW EW

C t A t A t D t t

C t U t t V t





 




e
          (22) 

To guarantee the uniqueness of the decomposition, there is a 

nonsingular matrix ( ) R R

EWW t £  such that 

1

( ) ( )= ( ) ( )

( ) ( ) ( ) ( )

T

EW EW

T H

EW EW

A t A t E t W t

D t t W t V t 






e
                   (23) 

where ( ) ( ) ( )EW EW EWE t U t t . Once ( ) R R

EWW t £  has 

been determined, the decomposition of (24) is unique. At 

time 1t  , (22) will become 

1

( 1) ( 1)= ( 1) ( 1)

( 1) ( 1) ( 1) ( 1).

T

EW EW

T H

EW EW

A t A t E t W t

D t t W t V t 

    


    

e
 (24) 

The time-shift structure of ( 1)D t  is adopted to link (23) 

to (24). Hence, the recursive update is explored by 

( 1)EWW t   and ( 1)D t . The estimations of ( 1)EWE t   and 

( 1)EWV t   are acquired from ( )EWE t  and ( )EWV t . Here, the 

Bi-SVD1 technique [25-26] is exploited to satisfy the online 

singular value decomposition (SVD). Then, the matrix 

( 1)D t  can be acquired from 

1

1

( ) ( ) ( ) ( )

( 1) ( 1) ( 1) ( 1)

T H

EW EW

T H

EW EW

D t t W t V t

D t t W t V t









 


    

      (25) 

where the dimensions of ( )EWV t  and ( 1)EWV t   are 

( )K t R  and ( 1)K t R  , respectively. To acquire a 

recursive update of ( )EWW t , we should define the following 

matrices: 

 

1: ( ),:

( 1),:

( ) ( )

( 1) [ ( 1)]

( 1) [ ( 1)] .

EW

EW K t

EW K t

V t V t

V t V t

v t V t 



  

  

               (26) 

According to the exponential window, we have 
1/2 1/2 1

1

( ) ( ) ( ) ( )

( 1) ( 1)

( 1) ( 1).

T H

EW EW

T

H

EW EW

D t t W t V t

D t t

W t V t









  

  

  

         (27) 

The definition of the matrices is combined with (26) to obtain 
1/2 1 1( ) ( ) ( 1) ( 1).H H

EW EWW t V t W t V t            (28) 

Then, 
1 ( 1)EWW t   is acquired by 

1 1/2 1( 1) ( ) ( )[ ( 1)] .H H

EW EWW t W t V t V t    †
    (29) 

At the same time, ( 1)EWW t   can be obtained by 

1/2 1( 1) ( 1)[ ( )] ( ).H H

EW EWW t V t V t W t     †
    (30) 

To avoid the pseudoinverse calculation, the update rule of 

[ ( 1)]HV t  †
 can be obtained by the pseudoinverse Lemma 

for rank-1 updates. It is written as 

†

2

( 1) ( 1)
[ ( 1)] ( 1)( )

1 ( 1)

H
H

R

v t v t
V t V t I

v t

 
   

 
       (31) 

Then, depending on (25) and (26), the update rules of 

( 1)TD t   are 

1( 1)= ( 1) ( 1)T H

EWd t W t v t                 (32) 

and 

( 1) [ ( ) ( 1)]T T TD t D t ,d t ;               (33) 

Finally, the update rule of the mixing matrix is 

( 1)= ( 1) ( )H

r r ra t H t a t                   (34) 

The online UBSS algorithm for estimating the mixing matrix 

is given as follows: 
TABLE I 

ONLINE UBSS ALGORITHM FOR ESTIMATING THE MIXING MATRIX 

Input at 

time t : 

The observation, the mixing matrix and the sources 

represented by ( )X t , ( )A t , and ( )S t , respectively. The 

online tensor ( )C t  is established with the time-varying 

mixing matrix and individually correlated sources in (9). 

update at time 1t  : 

Step1: 

Online tensor ( 1)C t   is established by (13), when the 

observation is updated by ( 1) [ ( ) ( 1)]X t X t ,x t    at time 

1t  ; 

Step2: 

Bi-SVD1 is exploited to decompose online tensor ( 1)C t   

with the exponential time window in order to obtain the 

update rules of ( +1)EWU t , ( 1)EW t   and ( 1)H

EWV t  ; 

Step3: 

Combined with the definition matrices of (26), the 

matrices [ ( 1)]HV t  †
 and 

1 ( 1)EWW t   are acquired by (29) 

and (31), respectively; 

Step4: 
According to 

1( 1) ( 1) ( 1) ( 1)T H

EW EWD t t W t V t      , the 

update rule of ( 1)TD t   is represented by (32); 

Step5: 
Finally, the update rule of the mixing matrix is obtained by 

(34). 

 

III. SIMULATION 

In this section, a series of simulations are presented to 

investigate the performance of the proposed method. Two 

types of data, which include three sets of speech signals and 

four sets of biomedical signals, are used in the following 

experiments to verify the effectiveness of the algorithm. All 

these data were obtained from public databases [27]. 

A. Performance Index 

The validity of the algorithms can be proven by the error 

indicator of the mixing matrix as follows: 

2

A1

1 ˆE A A
n

                              (35) 

2

A2 2

ˆ

E
A A

E
A

  
  

 
 

                       (36) 

B. Epoch Experiments 

In this simulation, we illustrate whether the performance 

of the method is affected by the time of observation. Here, the 

speech signal and biomedical signal are used to explain the 

performance. The two groups of data come from the public 

databases speech4_sin0_05 and Abio5. The total time period 

of the signal is 5000 s. The observation time points are 

selected as 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 

4000 and 4500.  
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Fig. 2 The performance of EA1 for Speech4_sin0_05 at different time points 
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Fig. 3 The performance of EA2 for Speech4_sin0_05 at different time points 
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Fig. 4 The performance of EA1 for Abio5 at different time points 
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Fig. 5 The performance of EA2 for Abio5 at different time points 

 

To better illustrate the statistical performance of the 

mixing matrix estimation, a box plot is used to show the 

estimation result in Figures 2-5 at different time points. 

Figures 2-5 clearly show that the estimated median values are 

basically on a horizontal line at different time points, which 

shows that the performance of mixing matrix estimation is 

independent of the choice of time points. In other words, 

regardless of how long the signal is observed, it will not 

affect the mixing matrix estimation. However, it also shows 

that the proposed method has better adaptability. 

C. Underdetermined Experiments 

In this simulation, we illustrate whether the performance 

of the method is affected by the number of observations. 

Here, the speech signal and biomedical signal are used to 

explain the performance.  
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Fig. 6 The performance of EA1 for Speech20 at different numbers of 

observations 
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Fig. 7 The performance of EA2 for Speech20 at different numbers of 

observations 
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Fig. 8 The performance of EA1 for eeg23arti at different numbers of 

observations 
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Fig. 9 The performance of EA2 for eeg23arti at different numbers of 

observations 
 

TABLE Ⅱ 

PERFORMANCE OF DIFFERENT NUMBERS OF OBSERVATION 

data number EA1 EA2 

Speech20 

18 0.8948 1.0258 

16 0.8687 1.0729 

14 0.7696 0.9970 

12 0.8442 1.1520 

10 0.7029 1.1148 

8 0.6527 1.1046 

eeg23arti 

18 0.9164 1.0977 

16 0.8971 1.0234 

14 0.8262 1.0349 

12 0.8039 1.0185 

10 0.7041 1.1080 

8 0.7291 1.1707 
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The two groups of data come from the public databases 

Speech20 and eeg23arti. Depending on the tensor 

decomposition theorem [17], the number of observations is set 

as 18, 16, 14, 12, 10, and 8. In addition, in order to better 

illustrate the statistical performance of the mixing matrix 

estimation, a box plot is used to show the estimation result in 

Figures 6-9 at different numbers of observations. The mean 

values of EA1 and EA2 are shown in Table 2. 

From Figures 6-9, it is obvious that the median values of 

the mixing performance are similar regardless of the number 

of observed signals. These findings suggest that the method 

is fairly robust for the problem of underdetermined mixing 

matrix estimation. 

D. Speech Signals 

In this simulation, three groups of speech signals are 

adopted to illustrate the effectiveness of the algorithm. For 

Speech4, Speech8, Speech10 and Acspeech16, their 

observation numbers are set to 3, 5, 7 and 10, respectively, by 

the definition of tensor rank [19]. Their delay times are set to 

10, 10, 18 and 30. The mixing matrix is a full column rank 

matrix and is randomly generated in MATLAB with 

time-varying points. The results are shown in Figures 10-17. 

To effectively illustrate the capability of the algorithm, the 

SOBIUM method [19], the underdetermined joint BSS 

(UJBSS)-1 method [23], the UJBSS-2 method [24] and 

UDSEP method [20] are used for comparison. Since all of 

these methods are offline methods, they are recalculated with 

each update of the mixing matrix with respect to time in order 

to meaningfully compare the offline and online methods in a 

fair manner. 
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Fig. 10 The performance of EA1 for Speech4 
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Fig. 11 The performance of EA2 for Speech4  

 

Figures 10-11 show that for Speech4, the EA1 and EA2 

values acquired by the UJBSS-1 method and UJBSS-2 

method far outweigh those acquired by the other methods. 

Compared with the other methods, all methods focus on joint 

CP decomposition for estimating the mixing matrix by the 

ALS and ELS algorithms; therefore, their estimation 

performance is dependent on the initial conditions. We find 

that the EA1 and EA2 values of the UJBSS-1 and UBJSS-2 

methods have large fluctuations with time. The EA1 and EA2 

values of the online UBSS method are the minimum among 

these methods most of the time. It can be seen from the box 

plot of Figures 12-13 that the median value of the proposed 

method is smaller than that of other methods, and the distance 

between upper and lower limits is shorter, which illustrates 

that the proposed method achieves better performance results 

than the other methods in statistics. 

Figure 14 denotes the time consumption of the algorithm. 

The CPU time of the UDSEP method is larger than that of the 

other methods because the parameter of the UDSEP method 

needs to be initialized by the SOBIUM method before 

estimating the mixing matrix. The CPU time of the online 

UBSS method is less than that of the other methods. This 

means that the online UBSS method has outstanding 

performance when estimating the time-varying mixing 

matrix for UBSS. 

Due to space limitations, we only show the performance of 

the CPUs on Speech8, Speech10 and Acspeech16 in Figures 

15-17, respectively. 

For Speech8, Speech10 and Acspeech16, the online UBSS 

still has outstanding performance in time consumption. The 

mean values of EA1 and EA2 are shown in Table 3 These 

values obviously indicate that the online UBSS not only has 

outstanding performance in accurately estimating the mixing 

matrix but also enhances the efficiency of the estimation. 
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Fig. 12 Box plot of EA1 for Speech4 
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Fig. 13 Box plot of EA2 for Speech4 

 

0 20 40 60 80 100
time

10
-4

10
-2

10
0

10
2

C
P

U
 ti

m
e

Evolution of CPU time

On-line UBSS

UJBSS-1

UJBSS-2

SOBIUM

UDSEP

UDSEP

UJBSS-1

UJBSS-2 SOBIUM

On-line UBSS

Fig. 14 The performance of CPU time for Speech4 
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Fig. 15 The performance of CPU time for Speech8 
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Fig. 16 The performance of CPU time for Speech10 
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Fig. 17 The performance of CPU time for Acspeech16 

 

TABLE Ⅲ 

PERFORMANCE OF DIFFERENT METHODS ON DIFFERENT SPEECH SIGNALS 

data method EA1 EA2 

Speech4 

SOBIUM [1] 1.2783 1.2365 

UJBSS-1 [2] 1.4140 1.3480 

UJBSS-2 [3] 1.3909 1.3231 

UDSEP [4] 1.3368 1.2795 

Online UBSS 0.9904 0.8851 

Speech8 

SOBIUM 0.8360 1.1984 

UJBSS-1 3.1801 6.7301 

UJBSS-2 3.2008 6.7746 

UDSEP 0.8813 1.1722 

Online UBSS 0.8089 1.1497 

Speech10 

SOBIUM 0.9000 1.0552 

UJBSS-1 4.9026 8.1575 

UJBSS-2 4.7118 7.8323 

UDSEP 0.8853 1.0432 

Online UBSS 0.8545 1.0370 

Acspeech16 

SOBIUM 0.7346 1.2096 

UJBSS-1 0.9974 2.0667 

UJBSS-2 0.9836 2.0166 

UDSEP 0.7277 1.1037 

Online UBSS 0.6943 1.0988 

 

E. Biomedical  

Furthermore, public biomedical data are introduced to 

assess the performance of the online UBSS method. EEG4, 

Abio5, Abio6, Abio7 and eeg18raw contain 4, 5, 6, 7 and 18 

typical biological sources, respectively, from [26]. The 

number of observed signals is set to 3, 4, 4, 5 and 15. The 

results are shown in Figures 18-23. Similarly, considering the 

length of the paper, we only show the CPU time results for 

Abio5, Abio6, Abio7 and eeg18raw in Figures 24-28. 

Figures 18-19 show that for EEG4, the EA1 and EA2 values 

acquired by the UJBSS-1 method and UJBSS-2 method far 

outweigh those acquired by the other methods. At the same 

time, here, the EA1 and EA2 values of the UJBSS-1 and 

UBJSS-2 methods also have large fluctuations with time. The 

EA1 and EA2 values of the online UBSS method are the 

minimum among these methods most of the time. It can be 

seen from the box plots in Figures 20-23 that the median 

value of the proposed method is smaller than that of other 

methods, and the distance between the upper and lower limits 

is shorter, which illustrates that the proposed method 

achieves better performance results than the other methods in 

statistics for biomedical signals. 
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Fig. 18 The performance of EA1 for EEG4 
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Fig. 19 The performance of EA2 for EEG4 
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Fig. 20 Box plot of EA1 for EEG4 
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Fig. 21 Box plot of EA1 for EEG4 except for the UJBSS-1 and  

UJBSS-2 methods 

 

Engineering Letters, 29:2, EL_29_2_06

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



 

1 2 3 4 5
method

0

5

10

15

E
A

2
Evolution of EA2 for A

 
Fig. 22 Box plot of EA2 for EEG4 

 

Figure 24 denotes the time consumption of the algorithm. 

The CPU time of the UDSEP method is larger than that of the 

other methods because the parameter of the UDSEP method 

needs to be initialized by the SOBIUM method before 

estimating the mixing matrix. The CPU time of the online 

UBSS method is less than that of the other methods. This 

means that the online UBSS method has outstanding 

performance when estimating the time-varying mixing 

matrix for UBSS. 
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Fig. 23 Box plot of EA2 for EEG4 except for the UJBSS-1 and  

UJBSS-2 methods 
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Fig. 24 The performance of CPU time on EEG4 
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Fig. 25 The performance of CPU time on Abio5 
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Fig. 26 The performance of CPU time on Abio6 
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Fig. 27 The performance of CPU time on Abio7 
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Fig. 28 The performance of CPU time on eeg18raw 

 

 

TABLE Ⅳ 

PERFORMANCE OF DIFFERENT METHODS FOR DIFFERENT BIOMEDICAL 

SIGNALS 

data method EA1 EA2 

EEG4 

SOBIUM 1.1565 1.1198 

UJBSS-1 7.1995 8.3800 

UJBSS-2 7.2153 8.4004 

UDSEP 1.0965 1.1331 

Online UBSS 0.8373 0.8609 

Abio5 

SOBIUM 0.8350 1.4690 

UJBSS-1 1.2658 2.4672 

UJBSS-2 1.1722 2.2728 

UDSEP 0.7751 1.2327 

Online UBSS 0.7284 1.0962 

Abio6 

SOBIUM 0.8405 1.2842 

UJBSS-1 2.2107 4.2116 

UJBSS-2 2.2015 4.1917 

UDSEP 0.7823 1.2162 

Online UJBSS 0.7645 1.0879 

Abio7 

SOBIUM 0.8070 1.1583 

UJBSS-1 14.2695 26.5076 

UJBSS-2 14.0827 26.1309 

UDSEP 0.8270 1.1437 

Online UBSS 0.7504 0.9901 

eeg18raw 

SOBIUM 0.8965 1.0671 

UJBSS-1 4.4193 8.0484 

UJBSS-2 4.3421 7.8737 

UDSEP 0.8963 1.0485 

Online UJBSS 0.8720 0.9965 
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For biomedical data, the online UJBSS method also has 

outstanding time consumption performance compared to the 

other methods. The results of the five groups of data in terms 

of EA1 and EA2 are reported in Table 4. It is shown that the 

proposed online UJBSS method outperforms the other 

methods in all the performance metrics on the biomedical 

dataset. 

IV. CONCLUSION 

This article offers an online method to solve the problem 

of UBSS when the mixing matrix is time-varying. 

Considering the individual correlations of the source and 

time-varying mixing matrix, an online three-order tensor is 

established. Depending on adaptive tensor decomposition, 

we propose an online tensor algorithm to estimate the 

time-varying mixing matrix without any limitation on the 

properties of the sources. 

We have implemented the proposed algorithm on two 

groups of data, namely, speech signals and biomedical 

signals. The performance of the proposed algorithms is 

compared with that of a few offline UBSS methods, 

especially in regard to time consumption. The simulation 

results substantiate the performance of our method. 
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