
 

 

Abstract—Constrained damping materials have been widely 

used for vibration control of thin-walled parts. However, in 

some projects, it is necessary to limit the weight of thin-walled 

parts to achieve a lightweight design. Therefore, it is necessary 

to obtain the best vibration suppression effect for the thin-

walled parts with a given constrained damping volume. This 

paper proposes a method to improve the constrained damping 

vibration suppression effect by maximising the structural modal 

loss factor under a given constrained damping treatment. The 

virtual degree of freedom is introduced to establish a finite 

element model describing the dynamic performance of a 

constrained damping structure. With the maximum modal loss 

factor as the objective function, the sensitivity of the structural 

modal loss factor to the design variables was derived using a 

differential method based on the modal strain energy of the 

structure. Considering the volume of the material as a constraint, 

the optimal layout of the damping material is searched by using 

the BESO (bi-directional evolutionary structural optimization) 

method. The accuracy of the topology optimisation results is 

verified through experiments. The experimental results show 

that the optimised damping arrangement can improve the 

vibration suppression effect on the plate. This method can 

effectively reduce the volume of the restrained damping, reduce 

the weight of the structure, and improve the vibration 

suppression performance of the structure. At the same time, this 

method can be extended to the vibration control of thin-walled 

parts of cars, aircraft cabins, and submarine shells. 

 
Index Terms—finite element, topology optimisation, 

viscoelastic material, BESO method 

 

I. INTRODUCTION 

ibration can be useful in many areas, such as piano 

vibrations producing pleasant sounds, and loudspeaker 

vibrations producing sounds. But in many other areas, 

vibration is not desired, producing harmful noise and 

damaging machines. For example, thin-walled parts of 

automobile bodies vibrate due to the excitation of the power 

system; this means that radiative noise inside the vehicle 

deteriorates the acoustic characteristics of the vehicle [1]-[3]. 

Therefore, in some engineering fields, it is necessary to 

reduce vibration. The deformation of the viscoelastic layer of 

a constrained damping material can dissipate the vibration 

energy of the thin plate and reduce its vibration level, giving 

a superior vibration suppression performance. Therefore, 

constrained damping materials are commonly used in 

lightweight designs to suppress the vibration levels of thin-

walled automobile aircraft parts [4,5]. The composition and 

deformation of a constrained damping structure are depicted 

in Fig. 1. 
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Fig. 1.  The element of the constrained damping plate, (b) the deformation 

relationship of each constrained damping plate layer 
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The characteristics of constrained damping structures have 

been researched. Huang [6] established the finite element 

model of the three-layer sandwich beam with a viscoelastic 

core. The researcher analysed the vibration and damping 

characteristics of the first three modes of the sandwich beam. 

Based on the Donnell assumptions and the linear viscoelastic 

theory, Zheng [7] established the dynamic equation of the 

multilayer passive constrained layer damping cylindrical 

shell. Further, the researcher analysed the dynamic 

characteristics of the cylindrical shell, including natural 

frequency, loss factor, and frequency response. Strain energy 

is an important indicator for evaluating the deformation of 

elements, and is often used to guide the reduction of structural 

vibration levels. Kumar [8] used the MSE (modal strain 

energy) method to design a layout strategy for the constrained 

damping patch. The coverage of the damping patch is the 

position where the modal strain energy is the largest in a 

particular mode. Lepoittevin [9] uses the modal strain energy 

method to estimate the damping efficiency, and propose a 

new method to enhance the damping performance of the 

segment of constrained damping material. This improves the 

vibration suppression effect of constrained damping in a large 

frequency range. Alaimo [10] provides an effective modal 

damping ratio calculation method based on the modal strain 

energy, that is, the modal damping ratio is calculated using 

the undamped modal result. Yuan [11] studied the vibration 

reduction problem of the shell through the structural modal 

loss factor of the multi-mode weight coefficient. 

Topology optimisation methods have been widely used in 

structure optimisation designs. Similarly, scholars have 

conducted much research on the topology optimisation of 

constrained damping structures. By maximizing the modal 

loss factor as the goal, the SIMP (solid isotropic material with 

penalization) method and MMA (method of moving 

asymptotes) method are consistently used to search the 

optimal topology of constrained damping on the plate [12]-

[14]. However, it is challenging to obtain a clear boundary 

configuration due to the limitations of the SIMP method. In 

the case of a large penalty factor, an optimal solution that is 

almost completely ineffective may be obtained according to 

a given optimisation algorithm. Ansari [15] uses the level set 

method to find the optimal shape and position of the 

constrained damping patch. The modal loss factor of the 

system can be maximised with the least constrained damping 

to achieve the best vibration suppression effect. The ESO 

(evolutionary structural optimisation) algorithm is simpler 

and easier to implement than the level set method [16,17]. 

This algorithm has been widely used in optimisation 

problems, such as stress, displacement, stiffness, and 

vibration frequency. Li [18] introduced the ESO method in 

the design of the constrained damping layout of simply 

supported beams. The target modal damping ratio is 

maximised by gradually deleting the elements with low 

utilisation. The BESO (bi-directional evolutionary structural 

optimisation) method is an improvement from the ESO 

method [19]. The improved method can delete and add 

materials, making the material layout more reasonable, and 

the final optimisation result more scientific. Wang [20] 

introduced a global stress measurement function and applied 

the BESO method to reduce the stress concentration effect at 

the corner of the L-shaped beam. Xu [21] realised the 

simultaneous design of the composite macrostructure 

flexibility and periodic microstructure with multi-phase 

materials by using the BESO method. Many studies have 

applied the BESO method to the stiffness topology and stress 

topology of the structure, but less research has been 

undertaken in constrained damping topology. Constrained 

damping is widely used in vibration damping design of thin-

walled structures, but it is necessary to limit the volume of 

constrained damping in lightweight designs. Therefore, it is 

necessary to study constrained damping topology based on 

the BESO method. 

This paper studies the problem of using the BESO method 

to determine the optimal topology of the constrained damping 

layout to reduce the vibration response of the structure. 

Firstly, the energy method can derive the motion control 

equation of the constrained damping plate. Further, a 

mathematical model of topology optimisation of the 

constrained damping plate is established by combining the 

motion control equation with the BESO algorithm. In the 

mathematical model, the damping element is used as the 

design variable, the maximum modal loss factor of the 

constrained damping structure is set as the target, and the 

material volume is the constraint. The sensitivity of the modal 

loss factor to the design variables is derived from the modal 

strain energy of the element. The optimisation process of the 

BESO algorithm is developed, and the optimal distribution 

problem of the constrained damping material with a 

maximum modal loss factor is studied. 

The remaining parts of this paper are organised as follows. 

The second section establishes the finite element model of the 

constrained damping plate and derives the motion control 

equation. The third section analyses the sensitivity of the 

damping elements and the optimisation criterion of the 

constrained damping plate based on the BESO method. In the 

fourth section, two numerical examples of constrained 

damping plates are analysed and discussed. The penultimate 

section provides experimental verification and the final 

section gives a summary of the paper. 

II.  CONSTRAINED DAMPING PLATE FINITE ELEMENT MODEL 

A. The damping element and displacement relationship 

The constrained damping element model in Fig. 1 consists 

of a constrained layer, a viscoelastic layer, and a base layer 

(in order from top to bottom). In finite element modelling, the 

following assumptions are made: the shear deformation of the 

constrained layer and the base layer is ignored; the moment 

of inertia is not counted; the lateral displacement and the 

rotation angle of any point in the same section are the same; 

the displacement between the layers is completely continuous, 

that is, there is no relative sliding between the layers; the 

shear modulus of the viscoelastic material is represented by a 

complex constant modulus 𝐺𝑣
∗ = 𝐺𝑣(1 + 𝑖𝜂𝑣), where 𝐺𝑣 , 𝜂𝑣, 

and 𝑖 are the real shear modulus, material loss factor of the 

viscoelastic material and complex unit, respectively. The 

plane displacements of the top and bottom tips of the 

viscoelastic layer in the x-direction in Fig. 1(b) are [22]: 

 

{
𝑢1 = 𝑢𝑐 +

𝛿𝑐

2

𝜕𝜔

𝜕𝑥
 ,

𝑢2 = 𝑢𝑝 −
𝛿𝑝

2

𝜕𝜔

𝜕𝑥
 .
                               (1) 
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The angle of rotation of the viscoelastic layer around the y 

axis is: 

 

ψ =
𝑢1−𝑢2

𝛿𝑣
 .                                 (2) 

 

The shear strain and the x-direction plane displacement of 

the viscoelastic layer around the y-axis are: 

 

𝛽𝑥 =
𝑢𝑐−𝑢𝑝

𝛿𝑣
−

𝑑

𝛿𝑣

𝜕𝜔

𝜕𝑥
 .                             (3) 

𝑢𝑣 =
1

2
[(𝑢𝑐 + 𝑢𝑝) + (

𝛿𝑐−𝛿𝑝

2
)
𝜕𝜔

𝜕𝑥
]  .                      (4) 

 

where 𝛿𝑐 , 𝛿𝑣 , and 𝛿𝑝 are the thicknesses of the constrained 

layer, the viscoelastic layer, and the base layer, respectively. 

𝑢𝑐 and 𝑢𝑝 are the displacements of the constrained layer and 

the base layer in the x-direction.  𝑑 = 𝛿𝑣 +
𝛿𝑐

2
+

𝛿𝑝

2
, where d 

is the distance from the neutral surface of the base layer to the 

neutral surface of the constrained layer. 

The shear strain and y-direction plane displacement of the 

viscoelastic layer around the x-axis are: 

 

𝛽𝑦 =
𝑣𝑐−𝑣𝑝

𝛿𝑣
−

𝑑

𝛿𝑣

𝜕𝜔

𝜕𝑦
 .                            (5) 

𝑣𝑣 =
1

2
[(𝑣𝑐 + 𝑣𝑝) + (

𝛿𝑐−𝛿𝑝

2
)
𝜕𝜔

𝜕𝑦
]  .                      (6) 

 

where 𝑣𝑐  and 𝑣𝑝 are the displacements of the constrained 

layer and the base layer in the y-direction, respectively.  

B. Shape functions 

A rectangular element model of a damper plate containing 

four physical nodes is established, and each physical node 

contains seven degrees of freedom. The seven degrees of 

freedom of each node are 𝑢𝑐, 𝑣𝑐, 𝑢𝑝, 𝑣𝑝, 𝑤, 𝜃𝑥, and 𝜃𝑦, which 

represent the x- and y-direction displacements in the 

rectangular element of the constrained layer, the x- and y-

direction displacement in the rectangular element of the base 

layer, the lateral displacement of the rectangular element, and 

the rotation angle of the neutral plane around the x- and y-axis, 

respectively. The interpolation functions for each degree of 

freedom are as follows [23]: 

 

𝑢𝑐 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥𝑦 , 
𝑣𝑐 = 𝑎5 + 𝑎6𝑥 + 𝑎7𝑦 + 𝑎8𝑥𝑦 , 
𝑢𝑝 = 𝑎9 + 𝑎10𝑥 + 𝑎11𝑦 + 𝑎12𝑥𝑦 , 

𝑣𝑝 = 𝑎13 + 𝑎14𝑥 + 𝑎15𝑦 + 𝑎16𝑥𝑦 , 

𝑤 = 𝑎17 + 𝑎18𝑥 + 𝑎19𝑦 + 𝑎20𝑥
2 + 𝑎21𝑥𝑦 + 𝑎22𝑦

2 
+𝑎23𝑥

3 + 𝑎24𝑥
2𝑦 + 𝑎25𝑥𝑦

2 +  𝑎26𝑦
3 

+𝑎27𝑥
3𝑦 + 𝑎28𝑥𝑦

3 , 

𝜃𝑥 =
𝜕𝜔

𝜕𝑦
 , 

 𝜃𝑦 =
𝜕𝜔

𝜕𝑥
 .                                    (7) 

 

The displacement vector of the rectangular element of the 

damping plate is 

 

𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 .                           (8) 

 

where 𝑢𝑖 = [𝑢𝑐𝑖 𝑣𝑐𝑖 𝑢𝑝𝑖 𝑣𝑝𝑖 𝑤𝑖 𝜃𝑥𝑖 𝜃𝑦𝑖] ,  𝑖 =

1, 2, 3, 4. 

Substituting the coordinates of the damping element nodes 

into (7), the following expression can be obtained: 

 

𝑢𝑐 = ∑ 𝑛𝑖𝑢𝑐𝑖
4
𝑖=1 , 𝑣𝑐 = ∑ 𝑛𝑖𝑣𝑐𝑖

4
𝑖=1  , 

𝑢𝑝 = ∑ 𝑛𝑖𝑢𝑝𝑖
4
𝑖=1 , 𝑣𝑝 = ∑ 𝑛𝑖𝑣𝑝𝑖

4
𝑖=1 , 

𝑤 = ∑ 𝑛𝜔𝑖𝑤𝑖
4
𝑖=1 , 𝜃𝑥 = ∑ 𝑛𝜔𝑖,𝑥𝜃𝑥𝑖

4
𝑖=1 , 

𝜃𝑦 = ∑ 𝑛𝜔𝑖,𝑦𝜃𝑦𝑖
4
𝑖=1  .                           (9) 

 

where 𝑛𝑖  is the plane displacement shape function of the 

nodes (xi , yi), 𝑛𝜔𝑖 is the lateral displacement w at the node (xi , 

yi), and 𝑛𝜔𝑖,𝑥 and 𝑛𝜔𝑖,𝑦 are the rotation angle function around 

the x- and y-axis, respectively. This is expressed as: 

 

𝑛𝑖 =
1

4
(1 +

𝑥

𝑥𝑖
) (1 +

𝑦

𝑦𝑖
) , 

𝑛𝜔𝑖 =
1

8
(1 +

𝑥

𝑥𝑖
) (1 +

𝑦

𝑦𝑖
) (2 +

𝑥

𝑥𝑖
+

𝑦

𝑦𝑖
− 𝑥2 − 𝑦2) , 

𝑛𝜔𝑖,𝑥 =
1

8
𝑥𝑖 (1 +

𝑥

𝑥𝑖
)
2

(
𝑥

𝑥𝑖
− 1) (

𝑦

𝑦𝑖
+ 1) 𝑎 , 

𝑛𝜔𝑖,𝑦 =
1

8
𝑦𝑖 (1 +

𝑦

𝑦𝑖
)
2

(
𝑦

𝑦𝑖
− 1) (

𝑥

𝑥𝑖
+ 1) 𝑏 .        (10) 

 

where 𝑥𝑖 and 𝑦𝑖  are the coordinates of node i, respectively. 𝑎 

and 𝑏  are half of the length of each of the elements, 

respectively. 

The displacement of any point in an element can be 

obtained by interpolation of the element node displacement 

vector, 

 

[𝑢𝑐 𝑣𝑐 𝑢𝑝 𝑣𝑝 𝑤 𝜃𝑥 𝜃𝑦] = 𝑁𝑢 .           (11) 

 

where 𝑁 = [𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6 𝑁7]𝑇  are the 

shape functions of 𝑢𝑐, 𝑣𝑐, 𝑢𝑝, 𝑣𝑝, 𝑤, 𝜃𝑥, 𝜃𝑦, respectively. 

From the shape function N and (4) and (6), the 

displacement shape functions 𝑢𝑣, 𝑣𝑣 of the viscoelastic layer 

can be obtained 

 

𝑁8 =
1

2
[(𝑁1 +𝑁3) + (

𝛿𝑐−𝛿𝑝

2
) (−𝑁7)] .              (12) 

𝑁9 =
1

2
[(𝑁2 + 𝑁4) + (

𝛿𝑐−𝛿𝑝

2
) (−𝑁6)] .              (13) 

 

From the shape function N, and (3) and (5), the shear 

deformation shape functions 𝛽𝑥 , and 𝛽𝑦  of the viscoelastic 

layer can be obtained 

 

𝑁10 =
1

𝛿𝑣
[(𝑁1 −𝑁3) + (

𝛿𝑐−𝛿𝑝

2
) (−𝑁7)] .               (14) 

𝑁11 =
1

2
[(𝑁2 − 𝑁4) + (

𝛿𝑐−𝛿𝑝

2
) (−𝑁6)] .               (15) 

C. Element motion equations 

According to the plates and shells theory of elasticity, the 

kinetic energy and strain potential energy of each layer of the 

damper plate elements are derived from the energy method. 

The element kinetic energy of each layer is calculated using 

the element function as follows: 

Base layer 

𝐸𝑘,𝑝 =
1

2
�̇�𝑇[𝜌𝑝∫ ∫ ∫ (𝑁3

𝑇𝑁3 +𝑁4
𝑇𝑁4

𝛿𝑝
2

−
𝛿𝑝
2

𝑏

0

𝑎

0

 

+𝑁5
𝑇𝑁5)𝑑𝑥𝑑𝑦𝑑𝑧]�̇� =

1

2
�̇�𝑇𝑚𝑝�̇� .   (16) 
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Constrained layer 

𝐸𝑘,𝑐 =
1

2
�̇�𝑇[𝜌𝑐∫ ∫ ∫ (𝑁1

𝑇𝑁1 + 𝑁2
𝑇𝑁2

𝛿𝑐
2

−
𝛿𝑐
2

𝑏

0

𝑎

0

 

+𝑁5
𝑇𝑁5)𝑑𝑥𝑑𝑦𝑑𝑧]�̇� =

1

2
�̇�𝑇𝑚𝑐�̇� .   (17) 

 

Viscoelastic layer 

 

𝐸𝑘,𝑐 =
1

2
�̇�𝑇[𝜌𝑣∫ ∫ ∫ (𝑁8

𝑇𝑁8 + 𝑁9
𝑇𝑁9

𝛿𝑣
2

−
𝛿𝑣
2

𝑏

0

𝑎

0

 

+𝑁5
𝑇𝑁5)𝑑𝑥𝑑𝑦𝑑𝑧]�̇� =

1

2
�̇�𝑇𝑚𝑣�̇� .   (18) 

 

In the above formula, �̇� is the first derivative of the element 

displacement vectors. 𝜌𝑝 , 𝜌𝑣 ,  and 𝜌𝑐  are the material 

densities of the base layer, the viscoelastic layer, and the 

constrained layer, respectively. The elastic potential energy 

of the viscoelastic layer is divided into two parts, the in-plane 

potential energy and the out-of-plane potential energy. The 

elastic potential energy of each layer is calculated as follows: 

Base layer 

 

𝐸𝑃,𝑃 =
1

2
𝑢𝑇(𝛿𝑝∫ ∫ 𝐵𝑝

𝑇𝐷𝑝𝐵𝑝𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0

 

+
𝛿𝑝
3

12
∫ ∫ 𝐵 

𝑇𝐷𝑝𝐵 𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0
)𝑢 =

1

2
𝑢𝑇𝑘𝑝𝑢 .    (19) 

 

Constrained layer 

 

𝐸𝑃,𝑐 =
1

2
𝑢𝑇(𝛿𝑐∫ ∫ 𝐵𝑐

𝑇𝐷𝑐𝐵𝑐𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0

 

+
𝛿𝑐
3

12
∫ ∫ 𝐵 

𝑇𝐷𝑐𝐵 𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0
)𝑢 =

1

2
𝑢𝑇𝑘𝑐𝑢 .    (20) 

 

The in-plane potential energy of the viscoelastic layer 

 

𝐸𝑃,𝑣 =
1

2
𝑢𝑇(𝛿𝑣∫ ∫ 𝐵𝑣

𝑇𝐷𝑣𝐵𝑣𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0

 

+
𝛿𝑣
3

12
∫ ∫ 𝐵 

𝑇𝐷𝑣𝐵 𝑑𝑥𝑑𝑦𝑑𝑧
𝑏

0

𝑎

0
)𝑢 =

1

2
𝑢𝑇𝑘𝑣𝑢 .     (21) 

 

The out-of-plane potential energy of the viscoelastic layer 

 

𝐸𝑝,𝑣𝛽 =
1

2
𝑢𝑇 [

𝐺

𝛿𝑣
∫ ∫ (𝑁10

𝑇 𝑁10 + 𝑁11
𝑇 𝑁11)𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0

] 𝑢 

=
1

2
𝑢𝑇𝑘𝑣𝛽𝑢 .                                                            (22) 

 

In the above formula, B is the geometric matrix of the 

damping elements, and  𝐷𝑝 , 𝐷𝑐 , and 𝐷𝑣  are the elastic 

coefficient matrix of the base layer, the constrained layer, and 

the viscoelastic layer, respectively. 

Lagrange’s equation [24] is used to derive the element 

motion control equation of the damper plate, which is 

expressed as follows: 

 

𝑚𝑖�̈� + 𝑘𝑖𝑢 = 𝑓𝑖 .                             (23) 

where fi is a unit excitation force. mi, and ki  are the mass 

matrix and stiffness matrix of the element, respectively, 

where mi = mp+mc+mv , and ki = kp+kc+kv+kvβ . 

The element stiffness matrix and the mass matrix are 

assembled into a total stiffness matrix and a total mass matrix. 

According to finite element theory, the total stiffness matrix 

and the total mass matrix are given as 

 

𝑀 = ∑ (𝑚𝑝
𝑖 +𝑚𝑐

𝑖 +𝑚𝑣
𝑖 )𝑚

𝑖=1  .                     (24) 

𝐾 = ∑ (𝑘𝑝
𝑖 + 𝑘𝑐

𝑖 + 𝑘𝑣
𝑖 + 𝑘𝑣𝛽

𝑖 )𝑚
𝑖=1   .                  (25) 

III. TOPOLOGY OPTIMISATION OF THE BESO METHOD 

A. Mathematical models 

Under the limited amount of constrained damping material, 

maximising the modal loss factor of the damping structure 

can cause the constrained damping to exhibit a better 

vibration suppression effect. The BESO method is based on 

the existence state of the elements, and continuously deletes 

the inefficient elements to maximise the objective function. 

The mathematical model of the constrained damping 

topology optimisation based on the BESO method is 

expressed as follows [25]: 

 

{
 
 

 
 

𝑓𝑖𝑛𝑑: 𝑥 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛}
𝑇 ,

𝑚𝑎𝑥:     𝜂𝑟 ,                              

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑉∗ − ∑ 𝑉𝑖
𝑛
𝑖=0 𝑥𝑖 = 0 , 

                          (𝐾𝑟 − 𝜆𝑟𝑀𝑟)𝜙𝑟 = 0 ,

                    𝑥𝑖 = {𝑥𝑚𝑖𝑛 , 1} .
 

             (26) 

where 𝑥𝑖  is the i-th element existence state, 𝑥𝑚𝑖𝑛  indicates 

that the element has been deleted, and 1 indicates the element 

exists. n is the number of damping elements, 𝜂𝑟 is the modal 

loss factor of the damping structure, 𝑉∗ indicates the material 

usage constraint, and 𝑉𝑖  indicates the volume of the i-th 

element. 𝐾𝑟 , and 𝑀𝑟 represent the r-th order stiffness matrix 

and the mass matrix, respectively. 𝜆𝑟 , and 𝜙𝑟  are the r-th 

eigenvalues and eigenvectors of the structure, respectively. 

B. Sensitivity analysis 

According to the modal strain energy method, the r-th 

modal loss factor of the constrained damping structure is [26] 

 

𝜂𝑟 = 𝜂𝑣
𝑈𝑣𝑟

𝑈𝑎𝑟
 .                               (27) 

where 𝜂𝑣, 𝑈𝑣𝑟 , and 𝑈𝑎𝑟  are the material loss factor, the r-th 

order modal strain energy of the viscoelastic layer, and the r-

th order total modal strain energy of the structure, 

respectively. 

Solving the partial derivative of 𝜂𝑟  with respect to the 

design variable 𝑥𝑖, we have 

 

𝜕𝜂𝑟

𝜕𝑥𝑖
= 𝜂𝑣

𝜕𝑈𝑣𝑟
𝜕𝑥𝑖

𝑈𝑎−
𝜕𝑈𝑎𝑟
𝜕𝑥𝑖

𝑈𝑣

𝑈𝑎𝑟
2  .                     (28) 

During the optimisation process, the base layer remains 

intact, and the viscoelastic layer and the constrained layer are 

synchronously reduced. Considering that the constrained 

damping element is the design variable xi and introducing the 

penalty factor p, the element modal strain energy and the 

global modal strain energy of the structure are calculated as 

follows: 

𝑈𝑣𝑟,𝑖 =
1

2
𝜙𝑟,𝑖
𝑇 𝐾𝑖

𝑒𝜙𝑟,𝑖 = 𝑥𝑖
𝑝
𝑈𝑣𝑟,𝑖
𝑒  .                 (29) 
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𝑈𝑎𝑟 =
1

2
𝜙𝑎,𝑟
𝑇 𝐾𝜙𝑎,𝑟 = ∑ 𝑥𝑖

𝑝
𝑈𝑐𝑣𝑟,𝑖
𝑒𝑛

𝑖=1 + 𝑈𝑝 .          (30) 

 

where 𝐾𝑖
𝑒 is the stiffness matrix of the i-th element.  𝑈𝑝 and p 

are the global modal strain energy of the base layer, and the 

penalty factor, respectively.  𝜙𝑟,𝑖 , 𝑈𝑣𝑟,𝑖
𝑒 , and 𝑈𝑐𝑣𝑟,𝑖

𝑒 , where 

𝑈𝑐𝑣𝑟,𝑖
𝑒 = 𝑈𝑣𝑟,𝑖

𝑒 + 𝑈𝑐𝑟,𝑖
𝑒 , are the eigenvector, the element modal 

strain energy of the viscoelastic layer, and the superposition 

of the element modal strain energy of the viscoelastic layer 

and the corresponding constrained layer of the i-th element of 

the r-th order, respectively. 

Solving the partial derivative of the two sides of (29) and 

(30) with respect to the design variable 𝑥𝑖, we have 

 
𝑈𝑣𝑟,𝑖

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1
𝑈𝑣𝑟,𝑖
𝑒  .                         (31) 

𝑈𝑎,𝑟

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1
𝑈𝑐𝑣𝑟,𝑖
𝑒  .                         (32) 

 

Substituting (31) and (32) into (28), we have 

 
𝜕𝜂𝑟

𝜕𝑥𝑖
= 𝑝𝑥𝑖

𝑝−1 𝜂𝑣

𝑈𝑎
2 [(𝑈𝑎𝑟 − 𝑈𝑣𝑟)𝑈𝑣𝑟,𝑖

𝑒 − 𝑈𝑣𝑈𝑐𝑟,𝑖
𝑒 ] .  (33) 

 

The element sensitivity of the BESO method can be 

expressed as: 

 

α𝑟,𝑖 = 𝑝𝑥𝑖
𝑝−1 𝜂𝑣

𝑈𝑎
2 [(𝑈𝑎𝑟 − 𝑈𝑣𝑟)𝑈𝑣𝑟,𝑖

𝑒 − 𝑈𝑣𝑈𝑐𝑟,𝑖
𝑒 ] .  (34) 

 

When optimising the multi-order modal loss factor at the 

same time, the comprehensive element sensitivity is 

calculated as follows: 

 

α𝑖 = ∑ 𝜔𝑖α𝑟,𝑖
𝑚
𝑖=1  .                           (35) 

 

where 𝜔𝑖, where ∑ 𝜔𝑖
𝑚
𝑖=1 = 1, is the weighting factor of each 

mode. 

In order to avoid mesh dependence and checkerboard 

patterns in the topology optimisation process, the element 

sensitivity needs to be filtered and smoothed. 

 

𝛼�̅� =
∑ 𝑑𝑖𝑗𝛼𝑗
𝑛
𝑗=1

∑ 𝑑𝑖𝑗
𝑛
𝑗=1

 .                            (36) 

 

where 𝛼�̅�, 𝛼𝑗 , 𝑟, and 𝑟(𝑖, 𝑗) are the sensitivity of the filtered 

element i, the sensitivity of the unfiltered element j, the filter 

radius, and the distance between the elements i and j, 

respectively. In addition, 𝑑𝑖𝑗  where 𝑑𝑖𝑗 = max{0, 𝑟 −

𝑟(𝑖, 𝑗)} is the weighting factor of the element j in the filtering 

radius. 

In addition, in order to improve the convergence of the 

optimisation process, we propose using an average sensitivity 

such that the current k-th iteration and the sensitivity of the 

previous two iterations as the current sensitivity value.  

 

𝛼�̅� =
𝛼𝑖̅̅ ̅
𝑘−2+𝛼𝑖̅̅ ̅

𝑘−1+𝛼𝑖̅̅ ̅
𝑘

3
, 𝑘 > 2 .                        (37) 

C. Optimisation criteria of the BESO method  

When topology optimisation is performed by the BESO 

algorithm, the design variable determined as the inefficient 

element is set to a minimum value, and this element can still 

participate in the subsequent sensitivity filtering calculation. 

When a deleted element is determined to be a high-efficiency 

element, it needs to be restored to a physical element. The 

single-step target volume of the next iteration should be 

calculated before a new iteration. Since the target volume 

(𝑉∗)  can be larger or smaller than the initial estimated 

volume, the target volume in each iteration may gradually 

decrease or increase the element the target volume has 

reached. The single-step target volume is calculated as 

follows 

 

𝑉𝑘+1 = 𝑉𝑘(1 ± 𝐸𝑉𝑅),   (𝐾 = 1,2,3, … ) .                   (38) 

 

where EVR is the volume evolution rate. When single-step 

target volume satisfies the overall volume constraint, the 

volume of subsequent iterations will remain invariant. That is 

 

𝑉𝑘+1 = 𝑉
∗ .                               (39) 

 

When updating element design variables, all elements are 

arranged into a sequence, based on the sensitivity values of 

the individual elements. We use two threshold parameters 

𝛼𝑑𝑒𝑙
𝑡ℎ  and 𝛼𝑎𝑑𝑑

𝑡ℎ  to increase and delete elements [27]. 

 

𝑥𝑖
𝑘+1 = {

0  𝑖𝑓   𝛼𝑖 ≤ 𝛼𝑑𝑒𝑙
𝑡ℎ  𝑎𝑛𝑑  𝑥𝑖

𝑘 = 1 ,

1 𝑖𝑓   𝛼𝑖 > 𝛼𝑎𝑑𝑑
𝑡ℎ  𝑎𝑛𝑑  𝑥𝑖

𝑘 = 0 ,

𝑥𝑖
𝑘 𝑜𝑟𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .                         

         (40) 

 

The constrained damping topology optimisation process 

based on the BESO method is shown in Fig. 2. 

 

 
Fig. 2.  The BESO method optimization process 
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IV. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, we will illustrate the effectiveness of the 

proposed method in two cases. One is a 2D cantilever beam 

and the other is a rectangular plate fixed on four sides. The 

constrained damping is fully covered on the base plate in the 

initial optimisation design. In both examples, the constraint 

topology optimisation program based on the BESO method 

was developed and executed in MATLAB. The volume 

evolution rate EVR of the material to be removed in the 

iteration is set to EVR = 1%. The element additions and 

deletions share the same set of thresholds; see the literature 

for further information [28]. 

A. Cantilever beams 

A cantilever beam is a basic component in aerospace, 

machinery, and other areas. In these areas, there are certain 

requirements for the vibration response of cantilever beams. 

This numerical example analyses the vibration response of a 

cantilever beam covered with constrained damping. Fig. 3 is 

a schematic diagram of a full-coverage constrained-damped 

cantilever beam. The size of the cantilever beam is 200 mm 

× 150 mm. Further, the thicknesses of the base layer, 

viscoelastic layer, and constrained layer are 1.5 mm, 0.5 mm, 

and 1 mm, respectively. The material of the viscoelastic layer 

is butyl damping rubber, and the constrained layer and the 

base layer is aluminium (the material parameters of each layer 

are shown in Table I). The constrained damping topology 

optimisation model of the cantilever beam is established by 

using the modelling methods shown in Sections II and III of 

this paper. The cantilever beam is discretised by a 

quadrilateral element with length ℎ𝑒 = 10 mm, and the finite 

element model contains 300 elements. In the finite element 

model, only one short side of the cantilever beam base layer 

is a fixed constraint, while the viscoelastic layer and the 

constrained layer are free. The target volume of the 

constrained damping material is set to 50% of the full 

coverage. The constrained damping layout is optimised by 

maximising the modal loss factors of the first and second 

modes.  

 

 

 
Fig. 4 and 5 are the partial constrained damping layout 

iterative change maps aimed at maximising the modal loss 

factors of first- and second-order, respectively. The 

optimisation result is drawn by MATLAB software according 

to the topology optimisation program. It can be seen from Fig. 

4 that the optimal distribution of constrained damping for the 

first-order modal loss factor is mainly distributed at one side 

of the constraint. The optimisation initially removes the 

damping material from the free short-side of the cantilever 

beam until the material volume constraint is met. As seen in 

Fig. 5, the second-order modal loss factor is optimized. 

Initially, the material is removed from the cantilever beam’s 

middle part. During the optimization process, some of the 

deleted elements are converted into solid elements due to the 

recovery characteristics of the BESO method. Finally, the 

 
Fig. 3.  A cantilever beam geometric model with full coverage constrained 

damping 

 

TABLE I 

MATERIAL PARAMETERS OF CONSTRAINED DAMPING OF THE 

CANTILEVER BEAM 

 
Modulus 

(MPa) 

Poisson 

ratio 

Density 

(kg·m-3) 
Material 

loss factor 

The base layer 68900 0.3 2800 - 

The viscoelastic 
layer 

12 0.495 1300 0.5 

The constrained 
layer 

68900 0.3 2800 - 

 

 
(a) Iteration = 15                       (b) Iteration = 30  

 
(c) Iteration = 50                         (d) Final shape 

Fig. 4.  The partially constrained damping layout iterative change maps of 

the cantilever beam at the first-order mode 

 

 
(a) Iteration = 5                      (b) Iteration = 30 

 
(c) Iteration = 50                        (d) Final shape 

Fig. 5.  The partially constrained damping layout iterative change maps of 

the cantilever beam at the second-order mode 
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remaining material is distributed on the constrained end and 

the edge of the cantilever beam's long side. 

Fig. 6. shows the change graph for the modal loss factor. 

When the optimization goal is to maximize the first-order 

modal loss factor, the structure's modal loss factor increases 

first before decreasing. According to the layout change 

diagram in Figure 4, the elements at the cantilever beam's free 

end are less sensitive to the modal loss factor. They are 

deleted first during optimization. The elements in the middle 

of the cantilever beam are more sensitive to the modal loss 

factor. After this part of the element is deleted, the modal loss 

factor of the structure is reduced. Finally, the first-order 

modal loss factor of the cantilever beam is similar before and 

after optimization. When the optimization goal is to 

maximize the second-order modal loss factor, the structure's 

modal loss factor decreases slowly as the elements are deleted. 

After 70 iterations, some low-efficiency elements were 

transformed into high-efficiency elements. Further, the modal 

loss factor of the final structure was increased. The 

optimization results show that the constrained damping 

topology optimization technology using the BESO method 

can fully optimize the constrained damping's topology layout. 

Then, the structure maintains high vibration energy 

dissipation characteristics. 
 

 

 

Table II shows a comparison of the first- and second-order 

modal loss factors before and after optimisation. It can be 

seen from Table II that when the material usage is constrained 

to 50% of the full coverage, the first-order modal loss factor 

is slightly reduced by 0.03% after optimisation, and the 

second-order modal loss factor is reduced by 41.65%. By 

optimising the constrained damping layout, the utilisation 

efficiency of constrained damping is greatly improved. 

B. Four-edge fixed plate 

Some components in the areas of machinery and 

automobiles will be simplified to the model of a four-sided 

fixed rectangular plate when analysing the vibration response. 

This numerical example analyses the vibration response of a 

four-sided clamped plate covered with constrained damping. 

Fig. 7 is the schematic diagram of a four-sided fixed 

rectangular plate with full coverage constrained damping. 

The size of the rectangular plate is 400 mm × 300 mm. The 

thicknesses of the base layer, the viscoelastic layer, and the 

constrained layer are 2 mm, 0.5 mm, and 1 mm, respectively. 

The material of the viscoelastic layer is a pitch-based 

damping material, and the material of the restraint layer and 

the base layer is aluminium; the material parameters of each 

layer are shown in Table III. The constrained damping 

topology optimisation model of the rectangular plate is 

established by using the modelling methods given in Sections 

II and III of this paper. The rectangular plate geometry model 

is discretised by a quadrilateral element with length ℎ𝑒 =
10 mm, and the finite element model contains 1200 elements. 

In the finite element model, the four sides of the rectangular 

plate base layer are a fixed constraint, and the viscoelastic 

layer and the constrained layer are free. The target volume of 

the constrained damping material is set to 50% of the full 

coverage. The optimisation of the constrained damping 

layout is optimised by maximising the modal loss factors of 

the first and second modes. 
 

 

 

Fig. 8 and 9 are partial iterative variation diagrams of the 

constrained damping layout optimisation of the rectangular 

plate, aimed at maximising the first- and second-order modal 

loss factors, respectively. The optimisation result is drawn by 

MATLAB software according to the topology optimisation 

program. It can be seen from Fig. 8 that the constrained 

damping treatment optimised for the first-order modal loss 

factor of the rectangular plate is mainly distributed in the 

 
Fig. 6.  The change of modal loss factor of the cantilever beam 

 

TABLE II  

THE COMPARISON CHART OF MODAL LOSS FACTOR OF THE 

CANTILEVER BEAM 

 First-order Second-order 

Before optimisation 0.02237 0.02803 

After optimisation 0.02236 0.01636 

Variance ratio -0.03% -41.65% 

 

 
Fig. 7.  A four-sided fixed rectangular plate with full coverage constrained 

damping 

 

TABLE III 

 MATERIAL PARAMETERS OF THE CONSTRAINED DAMPING RECTANGULAR 

PLATE 

 
Modulus 

(MPa) 

Poisson 

ratio 

Density 

(kg·m-3) 

Material 

loss 

factor 

The base layer 68900 0.3 2800 - 

The viscoelastic 

layer 
3 0.49 1000 0.5 

The constrained 

layer 
68900 0.3 2800 - 
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middle of the rectangular plate. At the beginning of the 

optimisation, the damping material is removed from the 

middle and the periphery of the damping structure until the 

material volume constraint is satisfied. Finally, the damping 

material is annularly distributed in the middle of the 

rectangular plate. It can be seen from Fig. 9 that the 

optimisation is initially to remove the material from the 

middle and the periphery of the rectangular plate and finally, 

the constrained damping treatment is distributed in a double 

ring shape in the middle of the rectangular plate. 
 

 

 
Fig. 10 shows a graph of the variation of modal loss factor 

of the rectangular plate structure. Both the first- and second-

order modal loss factors decrease slowly with each iteration. 

According to the results of the constrained damping layout in 

Fig. 8, the sensitivity of the modal loss factors of the 

constrained damping elements around and in the middle of 

the rectangular plate is small when optimizing the first-order 

modal loss factor. Those elements are deleted in the 

optimization. The sensitivity of the element in the iterative 

calculation is changing. Some elements that have been 

deleted were re-converted into high-efficiency elements 

during the optimization process and re-converted to solid 

elements, which caused the modal loss factor curve to 

increase during the optimization process suddenly. When 

optimizing the second-order modal loss factor, the structure's 

modal loss factor slowly decreases with the deletion of the 

materials, and the final modal loss factor of the structure tends 

to be stable. 

 

 
Table IV is a comparison of the first- and second-order 

modal loss factors of the rectangular plate before and after 

optimisation. It can be seen from Table IV, that when the 

material usage is constrained to 50% of the full coverage, the 

first-order modal loss factor is reduced by 30.07% after 

optimisation, and the second-order modal loss factor is 

reduced by 26.15%. The results show that the constrained 

damping layout's topology optimization using the BESO 

method can keep the damping material with high energy 

dissipation characteristics under the limited amount of 

damping material. 

V. EXPERIMENTAL VERIFICATION 

In this section, the modal experimental will be performed 

on the results of the two numerical examples in Section Ⅳ. 

The equipment used includes an 8-channel LMS Teat.lab test 

system, a computer, an acceleration sensor, and a force 

hammer. The specific test plan is as follows. (1) The 

measurement points are arranged on the constrained damping 

plate. The measurement point position is the striking position 

of the force hammer in the experiment. (2) The computer is 

connected to the LMS Teat.lab test system and we ensure that 

both can communicate normally. The force hammer and 

acceleration sensor are connected to the LMS Teat.lab test 

system in sequence. (3) The acceleration sensor is fixed on 

the back of the constrained damping, and we set the relevant 

modal experimental parameters, such as trigger level, 

bandwidth, windowing, and driving points in the user 

interface of the LMS Test.lab test system. (4) We perform a 

 
(a) Iteration = 5                         (b) Iteration = 30 

 
(c) Iteration = 50                       (d) Final shape 

Fig. 8.  The partially constrained damping layout iterative change maps of 

the cantilever beam at first-order mode 
 

 
(a) Iteration = 5                         (b) Iteration = 30 

 
(c) Iteration = 50                       (d) Final shape 

Fig. 9.  The partially constrained damping layout iterative change maps of 

the cantilever beam at second-order mode 

 

 
Fig. 10.  The change of modal loss factor of the rectangular plate 

 
TABLE IV 

 THE COMPARISON CHART OF MODAL LOSS FACTOR OF THE RECTANGULAR 

PLATE 

 First-order Second-order 

Before optimisation 0.0153 0.0130 

After optimisation 0.0107 0.0096 

Variance ratio -30.07% -26.15% 
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modal test; move the force hammer to traverse all the 

measurement points until the modal experimental is 

completed. 

Fig.s 11(a)-(d) show the modal test system of the cantilever 

beam, the full coverage of the constrained damping, the first-

order modal optimisation results, and the second-order modal 

optimisation results of the cantilever beam, respectively. 

Fig.s 12(a)-(d) show the modal test systems of the four-edge 

fixed plate, the full coverage of the constrained damping, the 

first-order modal optimisation results, and the second-order 

modal optimisation results of the four-edge fixed plate, 

respectively. This paper assumes that the loss factor and the 

elastic modulus of the damping material are constant. The 

material parameters of the cantilever beam and the four-edge 

fixed plate are the same as those in Tables II and III, 

respectively.  
 

 

 
The experimental results of modal frequency and modal 

damping of the cantilever beam are shown in Table V. The 

FRF (frequency response function) of the cantilever beam 

between the excitation point (0 mm, 140 mm) and the 

response point (100 mm, 200 mm) is shown in Fig. 13. 

Taking the first- and second-order modal loss factors of the 

cantilever beam as the optimisation targets, the natural 

frequency of the optimised cantilever beam is larger than that 

of the undamped treatment. From the results of Table V and 

Fig. 13, it can be seen that at the first-order modal frequency, 

the minimum frequency response function is at the response 

point of Fig. 11(b), followed by the response point of Fig. 11 

(c), and finally the response point of Fig. 11(d), which shows 

that the first-order modal damping of the optimisation result 

in Fig. 11(c) has reached a maximum, and the vibration 

suppression at this response point is the best. Also, at the 

second-order modal frequency, comparing the FRF of the 

response points of the cantilever beams in Fig. 11(b), (c), and 

(d), respectively, the second-order modal damping of the 

optimisation result in Fig. 11(d) reaches the maximum. 

The modal frequency and modal damping experimental 

results of the four-edge fixed plate are shown in Table VI. The 

FRF of the four-edge fixed plate between the excitation point 

(60 mm, 240 mm) and the response point (120 mm, 160 mm) 

is shown in Fig. 14. Taking the first-order modal loss factor 

of the four-edge fixed plate as the optimisation goal, the first-

order natural frequency change is small. The second-order 

modal loss factor of the four-edge fixed plate is optimised, 

and the optimised second-order natural frequency is shifted 

to a higher frequency. From the results in Table VI and Fig. 

14, comparing the FRF of the response point in Fig. 12(b), (c), 

and (d) at the first-order modal frequency, we can conclude 

that the first-order modal damping in Fig. 12(c) reaches a 

maximum, and the vibration suppression at this response 

point is best. At the second-order modal frequency, we also 

deduce that the second-order modal damping of Fig. 12(d) 

reaches a maximum. 

 

 

   
(a)                                             (b) 

   
(c)                                                (d) 

Fig. 11.  (a) the modal test system of the cantilever beam, (b) the cantilever 

beam with full coverage constrained damping, (c) the first-order modal 
optimisation results of the cantilever beam, and (d) the second-order modal 

optimisation results of the cantilever beam 

 

   
(a)                                     (b) 

   
(c)                                       (d) 

Fig. 12.  (a) the modal test system of the four-edge fixed plate, (b) the four-

edge fixed plate with full coverage constrained damping, (c) the first-order 

modal optimisation results of the four-edge fixed plate, and (d) the second-

order modal optimisation results of the four-edge fixed plate 

 

  
Fig. 13.  The FRF of the cantilever beam 

 

 
Fig. 14.  The FRF of the four-edge fixed plate 
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From the two experiments, we can conclude that under the 

constraint of 50% material consumption, the modal damping 

of the cantilever beam and the four-edge fixed plate reaches 

a maximum after the optimisation treatment. The 

experimental results verify the accuracy of the calculation 

results of the constrained damping layout optimisation with 

the modal loss factor as the target in the two numerical 

examples. 

VI. CONCLUSIONS 

In this paper, the thin plate with constrained damping is 

analysed as the research object. Meanwhile, the BESO 

method is used to study the topology optimisation problem of 

the constrained damping layout. The main content is 

summarised as follows: 

(1) The deformation and displacement of each layer of the 

constrained damping element are analysed. The virtual 

degrees of freedom are introduced to establish the dynamic 

finite element equation of the damping element through the 

energy method. We have taken the maximisation of structural 

modal loss factor as the optimisation target. From this, the 

sensitivity of the objective function to the design variables of 

the damping element is deduced by the differential method. 

Taking the amount of damping material as the constraint 

condition combined with the finite element dynamics model 

and the BESO method, the mathematical model of topology 

optimisation is established. 

(2) The layout of damping material is optimised for the 

cantilever beam and the four-edge fixed plate with full 

coverage constraint damping. The optimisation results of the 

cantilever beam show that the damping treatment is 

distributed at the constraint end when the first-order modal 

loss factor is taken as the target. Also, it is distributed at the 

constrained end and both sides of the cantilever beam when 

the second-order modal loss factor is the optimisation target. 

When the material consumption is 50% of full coverage, after 

optimisation, the first- and second-order modal loss factors 

are reduced by 0.03% and 41.65%, respectively. The 

optimisation results of the four-edge fixed plate show that the 

damping treatment is mainly distributed in the middle of the 

plate when the first- and second-order modal loss factors are 

taken as the optimisation target. After optimisation, the first- 

and second-order modal loss factor is reduced by 30.07% and 

26.15%, respectively. The optimisation results are verified by 

experiments. The results are in good agreement with the 

optimisation results. Through the layout optimisation of 

constrained damping, the additional mass and vibration 

response of the damping structure is reduced effectively.  

(3) Applying the BESO method to constrained damping 

layout topology optimization can delete inefficient damping 

elements and restore those efficient but deleted elements to 

solid elements during the optimization process. Then, the 

optimization results are more reasonable. The proposed 

constrained damping topology optimisation program based 

on the BESO method is effective, practical and easy to co-

simulate with the commercial finite element analysis software. 

It has good guiding significance in the constrained damping 

design of thin-walled structures in the engineering fields of 

automobile, aircraft cabin, submarine shell and the like. 
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