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Abstract—In this article, we propose a three-parameter
generalized inverted exponential inverted Weibull distribution
(GIEIWD) and use the proposed distribution to model complex
life data. The considered goodness-of-fit statistics and quantile-
quantile (QQ) plots show the new model fits these data well. The
fitting results show the usefulness, applicability and superiority
of the proposed distribution.

Index Terms—GIEIWD, MLEs, application.

I. INTRODUCTION

IN reliability engineering and survival analysis, data with
upside-down bathtub shaped hazard rate are common.

However, some well-known distributions such as the expo-
nential, Rayleigh [1] and Weibull [2] distributions do not
exhibit a upside-down bathtub shaped hazard rate function
(HRF) and thus they can not be used to model the lifetimes
of some complex systems in engineering. Hence, a number
of extended distributions are introduced to overcome this
shortage. For example, Sarhan and Kundu [3] proposed
a modified Weibull distribution. Singla et al.[4] proposed
a beta generalized Weibull distribution. Kundu and Raqab
[5] proposed a generalized Rayleigh distribution. Sarhan
and Kundu [6] proposed a generalized linear failure rate
distribution. Nadarajah et al. [7] proposed a beta-modified
Weibull distribution. It is well known that model with less
parameters is convenient in practical application. In this
paper, we propose a new distribution with less parameters
and illustrate its usefulness, applicability and superiority
using three real data sets from engineering.

II. THE NEW MODEL AND ESTIMATION METHOD

The cumulative distribution function (CDF), the proba-
bility density function (PDF) and HRF of the proposed
distribution are given by

G(x;α, β, γ) = 1− (1− e−βx
−α

)γ , x > 0;α, β, γ > 0, (1)

g(x;α, β, γ) = αβγe−βx
−α

(1− e−βx
−α

)γ−1x−α−1, (2)

and

h(x;α, β, γ) =
αβγe−βx

−α
x−α−1

1− e−βx−α . (3)

The new distribution includes some important special sub-
classes. For example, for α = 1, model (1) can be deemed as
a generalized inverted exponential distribution (GIED) with
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two parameters; for γ = 1, model (1) can be deemed as
a inverse Weibull distribution (IWD) with two parameters.
Therefore, model (1) can be deemed as generalization of the
GIED and IWD, so we defined our model (1) as GIEIWD.
The plot in Fig.1 indicates that the HRF of the new model
can take upside-down bathtub forms.
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Fig. 1: Plot of the HRF for α = 0.9, β = 2, γ = 10

We use maximum likelihood estimations (MLEs) to esti-
mate the parameters (α, β, γ) of the proposed distribution.
Let (x1, x2, · · · , xn) be a random sample of size n from
GIEIWD. The log-likelihood function logL is given by

logL = n logα+ n log β + n log γ − β
n∑
i=1

x−αi

+(γ − 1)
n∑
i=1

log(1− e−βx
−α
i )

−(α+ 1)

n∑
i=1

log xi. (4)

Then

∂ logL

∂α
=

n

α
+ β

n∑
i=1

x−αi log xi + β(γ − 1)

×
n∑
i=1

−e−βx
−α
i

1− e−βx
−α
i

x−αi log xi −
n∑
i=1

log xi,

∂ logL

∂β
=
n

β
−

n∑
i=1

x−αi + (γ − 1)
n∑
i=1

x−αi
−e−βx

−α
i

1− e−βx
−α
i

and

∂ logL

∂γ
=
n

γ
+

n∑
i=1

log(1− e−βx
−α
i ).

The MLEs of α, β and γ can be obtained by solving the

Engineering Letters, 29:2, EL_29_2_16

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



log-likelihood equations

∂ logL

∂α
= 0,

∂ logL

∂β
= 0 and

∂ logL

∂γ
= 0.

In order to solve the above equations, one can apply suitable
iterative procedure such as Newton-Raphson method by
using nlm(·) function in R-software.

III. APPLICATION

In this section, three real data sets are considered to
illustrate how the new model works in practice. All used
models and the MLEs of parameters are listed in Appendix
A.

A. Example 1

The first data set represents the failure times of the air
conditioning system of an air plane (in hours), and has been
analyzed by many authors such as Guptu and Kundu [8] and
Mokhtari et al. [9]. It is given in Table I.

TABLE I: FAILURE TIMES OF THE AIR CONDITIONING
SYSTEM

1 3 5 7 11 11 11 12 14 14
14 16 16 20 21 23 42 47 52 62
71 71 87 90 95 120 120 225 246 261

For comparison purposes, we will consider eight alter-
native models that may be good competitive distributions
to the GIEIWD. To check the adequacy of all statistical
distributions, five goodness-of-fit statistics are computed.
The measures of goodness-of-fit statistics includes the log-
likelihood function evaluated at the MLEs, the Kolmogrov-
Simnorov (K-S) statistics with their P -values, Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC),
where AIC= −2 logL + 2p, BIC= −2 logL + plog(n),
p is the number of parameters, and n is the sample size.
These statistics are widely used to determine how closely a
specific distribution with CDF(·) fits the associated empirical
distribution for given data set.

All goodness-of-fit statistics are given in Table II. It is
observed that if the comparison is only made with AIC and
BIC values, the ED is the best fitted model. If the comparison
is made with the K-S statistics, log-likelihood and P -values,
the GIEIWD is the best fitted model for the data of the air
conditioning system. From the QQ plots in Fig.2, we can see
that the GIEIWD outperforms the other models.

TABLE II: GOODNESS-OF-FIT STATISTICS FOR THE DATA
SET OF THE AIR CONDITIONING SYSTEM

Distribution log L AIC BIC K-S P -value

RD -182.917 367.834 370.449 0.4954 3× 10−7

LED -152.792 309.584 314.814 0.2184 0.0983
ED -152.630 307.260 309.875 0.2132 0.1125
GRD -155.042 314.084 319.314 0.1972 0.1692
WD -152.226 308.452 313.682 0.1917 0.1935
EWD -152.167 310.334 318.179 0.1730 0.2954
GLFRD -152.211 310.422 318.267 0.1722 0.3003
GED -152.201 308.402 313.632 0.1719 0.3020
GIEIWD -151.348 308.697 314.433 0.1285 0.6578
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Fig. 2: QQ plots for example 1

B. Example 2

The second data set represents the fatigue time of 101
6061-T6 aluminum coupons cut parallel to the direction of
rolling, and was used by Singh and Choudhary [10]. It is
listed in Table III.

TABLE III: FATIGUE TIME DATA OF 101 6061-T6
ALUMINUM

70 90 96 97 99 100 103 104 104 105
107 108 108 108 109 109 112 112 113 114
114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130
130 130 131 131 131 131 131 132 132 132
133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142
142 142 144 144 145 146 148 148 149 151
151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196
212

Similarly, we compare above five goodness-of-fit statistics
for all suggested distributions. The results are listed in Table
IV. It can be easily verified from the results that the GIEIWD
gives better fitting than other distributions for modeling
fatigue time data since statistics (AIC, BIC and K-S values)
show smaller values and the P -value and log L show larger
values. The empirical and fitted CDF, PDF, total time on test
transforms (TTT-Transforms) and HRF using the PD, EPD,
EED and GIEIWD are provided in Fig.3, respectively. It is
clear that the GIEIWD provides a better fit to the fatigue
time data set than other considered models. From above
analysis, it is concluded that the GIEIWD is competitive and
alternative.

TABLE IV: GOODNESS-OF-FIT STATISTICS FOR THE DATA
SET OF 101 6061-T6 ALUMINUM

Distribution log L AIC BIC K-S P -value

PD -481.38 966.76 971.99 0.1925 0.0011
EPD -457.91 921.83 929.68 0.0719 0.6731
EED -463.98 931.97 937.20 0.1051 0.2148
GIEIWD -456.41 918.82 926.67 0.0622 0.8297
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Fig. 3: Plots of the empirical and fitted distribution for
example 2 data

C. Example 3

The third data set represents the remission times (in
months) of a random sample of 128 bladder cancer patients,
and has been used by many authors such as Lemonte and
Cordeiroa [11] and Zea et al. [12]. It is listed in Table V.

TABLE V: THE REMISSION TIMES (IN MONTHS) OF
BLADDER CANCER PATIENTS

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63
0.20 2.23 3.52 4.98 6.97 9.02 13.29 0.40
2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51
2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69
4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69
4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 3.31
4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

We compare five goodness-of-fit statistics including the
Cramér-von Mises (W ∗) and Anderson-Darling (A∗). Here

W ∗ = W 2(1 + 0.5
n ), A∗ = A2(1 + 0.75

n + 2.25
n2 ),

W 2 =
∑n
i=1

[
ui − 2i−1

2n

]2
+ 1

12 , A
2 = −n − 1

nΣni=1[(2i −
1)log(ui) + (2n+ 1− 2i)log(1− ui)], ui =Φ[(yi − ȳ)/sy],

ȳ = 1
n

∑n
i=1 yi, sy =

√
(n− 1)−1

∑n
i=1(yi − ȳ)2, yi =

Φ−1(vi), Φ(·) is the standard normal CDF and Φ−1(·) is
its inverse, vi = F (xi; θ̂), F (x; θ) is the CDF, θ̂ is MLEs
of unknown parameter vector θ, the xi’s are in ascending
order, and n is the sample size. In general, the smaller the
values of the statistics W ∗ and A∗, the better the fit to the
data. The values of all statistics for all considered models
are given in Table VI. These results show that the GIEIWD
has the lowest K-S, W ∗ and A∗ values and the largest log
L and P -value among all the fitted models, and so it could
be chosen as the best model.

TABLE VI: GOODNESS-OF-FIT STATISTICS FOR THE DATA
SET OF BLADDER CANCER PATIENTS

Distribution log L K-S P -value W ∗ A∗

EMaD -412.1556 0.0598 0.7505 0.0965 0.5962
GMaD -426.6019 0.1420 0.0115 0.7577 3.9113
PLD -413.3538 0.0682 0.5904 0.1273 1.3320
GLD -416.2859 0.0928 0.2204 0.2479 1.3320
GED -413.0776 0.0725 0.5113 0.1284 0.7182
WD -414.0869 0.0700 0.5569 0.1543 0.9635
GD -413.3678 0.0733 0.4974 0.1361 0.7763
FWD -460.2659 0.2084 3.0e-05 1.5977 8.2057
WLD -416.4422 0.0926 0.2227 0.2518 1.3490
IWD -444.0008 0.1408 0.0125 0.9825 6.1549
GIED -457.2024 0.2067 4.0e-05 1.8419 9.4491
GIEIWD -411.1114 0.0506 0.8978 0.0532 0.3499

IV. CONCLUDING REMARKS

In this paper, we propose a three-parameter GIEIWD and
use the new model to fit three real data sets. The results
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of the comparisons show that the proposed GIEIWD agrees
well with the complex systems lifetime data and can provide
a better candidate.

APPENDIX A

(1) Rayleigh distribution (RD) with the PDF

f(x;β) = 2βxe−βx
2

, x > 0, β > 0.

β̂ = 7.3104× 10−5.

(2) Linear exponential distribution (LED) with the PDF

f(x;λ, β) = (λ+ 2βx)e−(λx+βx2), x > 0, λ > 0, β > 0.

λ̂ = 0.0164, β̂ = 3.4644× 10−6.

(3) Exponential distribution (ED) with the PDF

f(x;λ) = λe−λx, x > 0, λ > 0.

λ̂ = 0.0168.

(4) Generalized Rayleigh distribution (GRD) with the PDF

f(x;α, β) = 2αβxe−βx
2

(1− e−βx
2

)α−1,

x > 0, α > 0, β > 0.

α̂ = 0.2486, β̂ = 2.3674× 10−5.

(5) Weibull distribution (WD) with the PDF

f(x;β, γ) = βγxγ−1e−βx
γ

, x > 0, β > 0, γ > 0.

β̂ = 0.0215, γ̂ = 0.9468. (Example 1)

β̂ = 1.0478, γ̂ = 0.0938. (Example 3)

(6) Exponential Weibull distribution (EWD) with the PDF

f(x;α, β, γ) = αβγxγ−1e−βx
γ

(1− e−βx
γ

)α−1,

x > 0, α > 0, β > 0, γ > 0.

α̂ = 0.8384, β̂ = 0.0161, γ̂ = 0.9832.

(7) Generalized linear failure rate distribution (GLFRD)
with the PDF

f(x;α, λ, β) = α(λ+ 2βx)e−(λx+βx2)(1− e−(λx+βx2))α−1,

x > 0, α > 0, λ > 0, β > 0.

α̂ = 0.8064, λ̂ = 0.0144, β̂ = 4.9116× 10−7.

(8) Generalized exponential distribution (GED) with the
PDF

f(x;α, λ) = αλe−λx(1− e−λx)α−1, x > 0, α > 0, λ > 0.

α̂ = 0.8089, λ̂ = 0.0145. (Example 1)

α̂ = 1.2179, λ̂ = 0.1211. (Example 3)

(9) Perks distribution (PD) with the CDF

F (x;α, λ) = 1− 1 + α

1 + αeλx
, x > 0, α > 0, λ > 0,

PDF
f(x;α, λ) = αλeλx

1 + α

(1 + αeλx)2
,

HRF

h(x;α, λ) =
αλeλx

1 + αeλx
.

α̂ = 0.0056, λ̂ = 0.040.

(10) Exponentiated Perks distribution (EPD) with the CDF

F (x;α, β, λ) = [1− 1 + α

1 + αeλx
]β ,

x > 0, α > 0, β > 0, λ > 0,

PDF

f(x;α, β, λ) = αβλ(1+α)
eλx

(1 + αeλx)2
[1− 1 + α

1 + αeλx
](β−1),

HRF

h(x;α, β, λ) =
αββλ(1 + α)eλx(eλx − 1)β−1

(1 + αeλx)[(1 + αeλx)β − αβ(eλx − 1)β ]
.

α̂ = 0.0052, β̂ = 4.79, λ̂ = 0.053.

(11) Exponentiated exponential distribution (EED) with
the CDF

F (x;α, λ) = (1− e−λx)α, x > 0, α > 0, λ > 0,

PDF
f(x;α, λ) = αλ(1− e−λx)α−1e−λx,

HRF

h(x;α, λ) =
αλ(1− e−λx)α−1e−λx

1− (1− e−λx)α
.

α̂ = 151.12, λ̂ = 0.041.

(12) The extended Maxwell distribution (EMaD) with the
PDF

f(x;κ, θ) =
κ√

2πθ3
x

3
2κ−1e−

xk

2θ2 , x > 0, κ > 0, θ > 0.

κ̂ = 0.8446, θ̂ = 1.4431.

(13) Generalized Maxwell distribution (GMaD) with the
PDF

f(x;κ, θ) =
2

Γ(κ/2)

xκ−1

θk/2
e−

x2

θ , x > 0, κ > 0, θ > 0.

κ̂ = 0.7483, θ̂ = 527.2314.

(14) Power Lindley distribution (PLD) with the PDF

f(x;α, β) =
αβ2

1 + β
(1 + xα)xα−1e−βx

α

,

x > 0, α > 0, β > 0.

α̂ = 0.8302, β̂ = 0.2943.

(15) Generalized Lindley distribution (GLD) with the PDF

f(x;α, λ) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ+ λx

1 + λ
e−λx

]α−1

e−λx,

x > 0, α > 0, λ > 0.

α̂ = 0.7336, λ̂ = 0.1648.

(16) Gamma distribution (GD) with the PDF

f(x;α, θ) =
θα

Γ(α)
xα−1e−θx, x > 0, α > 0, θ > 0.

α̂ = 1.1725, θ̂ = 0.1252.
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(17) Flexible Weibull distribution (FWD) with the PDF

f(x;α, β) = (α+
β

x2
) exp(αx− β

x
) exp(− exp(αx− β

x
)),

x > 0, α > 0, β > 0.

α̂ = 0.0325, β̂ = 2.1547.

(18) Weighted Lindley distribution (WLD) with the PDF

f(x; θ, σ) =
θσ

(θ + σ)Γ(σ)
xσ−1(1 + x)e−θx,

x > 0, θ > 0, σ > 0.

θ̂ = 0.1594, σ̂ = 0.6827.

(19) Inverse Weibull distribution (IWD) with the PDF

f(x;α, λ) = αλx−α−1e−λx
−α
, x > 0, α > 0, λ > 0.

α̂ = 0.7521, λ̂ = 2.4311.

(20) Generalized inverted exponential distribution (GIED)
with the PDF

f(x; γ, λ) =
(γλ
x2

)
exp

(
− λ

x

)[
1− exp

(
− λ

x

)]γ−1

,

x > 0, γ > 0, λ > 0.

γ̂ = 0.7462, λ̂ = 1.9944.

(21) GIEIWD

α̂ = 0.1562, β̂ = 9.6737, γ̂ = 194.6121. (Example 1)

α̂ = 1.25, β̂ = 2522.93, γ̂ = 150.687. (Example 2)

α̂ = 0.1564, β̂ = 9.4225, γ̂ = 808.7305. (Example 3)
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