
Adaptive Prescribed Performance Control of
Uncertain Nonlinear Systems with Input

Saturations
Nannan Zhao, Xinyu Ouyang, Libing Wu, and Yilin Ma

Abstract—This paper is concerned with the problem of
prescribed performance control (PPC) for a class of strict-
feedback nonlinear systems, in which uncertain nonlinearity
and uncertain disturbance exist in the considered nonlinear
system at the same time, and the input control signal of
the system is constrained by saturation nonlinearity. The
adaptive neural network is used to approximate all unknown
nonlinearity of the closed-loop system. And a new class of error
transformation functions is proposed for the first time, which is
superior to other similar documents in that the output error can
always be constrained by the prescribed band only according
to the properties of the designed error transformation function
without any additional conditions. The simulation results finally
verify the effectiveness of the proposed algorithm.

Index Terms—Adaptive neural control, backstepping design,
nonsymmetric input saturation, prescribed performance control
(PPC).

I. INTRODUCTION

IN recent years, the control problem of uncertain nonlinear
system based on backstepping method has been widely

concerned, and some important research results have been
obtained [1]–[8]. However, due to the existence of parameter
uncertainty, dead-zone nonlinearity [9], saturation nonlinear-
ity and unknown external disturbance, the performance of the
controller system may be poor or even unstable. To overcome
it, for instance, the problem of adaptive tracking control for
a class of nonlinear systems with parameter uncertainty and
bounded external disturbance was studied in [10], where two
kinds of actuator nonlinearity were considered respectively,
i.e. symmetrical dead-zone and Bouc-Wen hysteresis. For
non-differentiable saturation nonlinearity, Wang et al. [11]
introduced the smooth nonlinear function to approach it,
so that the adaptive fuzzy controller was constructed based
on the mean-value theorem and backstepping technology.
An adaptive output-feedback fuzzy tracking controller was
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constructed in [12] for nonlinear systems with unknown
external disturbances and uncertain nonlinearities. Further,
Long and Zhao [13] extended the results of [12] to the
switched system with disturbance and constructed an adap-
tive neural network tracking controller with output-feedback,
which ensured that all signals in the switched signal closed-
loop system remained semi-globally uniformly ultimately
bounded (SGUUB) and the output error converged to a very
small neighborhood of the origin.

From the above literatures, it is not difficult to find that
neural networks (NNs) [14]–[16] or fuzzy logic systems
(FLSs) [17]–[21], as powerful universal approximation tools,
have become one of the essential tools to study the control
problem of nonlinear system. Correspondingly, in the past
few years, many significant results of adaptive control algo-
rithm based on approximate structure have been successfully
applied to practical nonlinear systems [22]–[27]. Based on
NNs and mean value theorem, in [23], the problem of output-
feedback adaptive control for a class of stochastic non-affine
nonlinear systems with actuator dead-zone input was studied,
and the output tracking error of the system can converge to
a small neighborhood in the sense of quartic mean. Wang
et al. applied the fuzzy logic system to model the unknown
function in [26], and proposed the finite time semi-global
practical stability criterion to study the finite time tracking
problem of the nonlinear pure-feedback system for the first
time .

In addition, in many industrial control systems, the con-
straints can not be violated in the process of operation,
otherwise the control system will be seriously damaged.
Therefore, the prescribed performance control (PPC) [28]–
[32] of nonlinear system has become an important research
topic in recent years. Its main idea is to ensure the transient
performance of the system on the premise of ensuring the sta-
bility of the system, so as to prevent performance degradation
and system damage. Recently, some control strategies based
on prescribed performance have been proposed [33]–[35].
Concretely, for the stochastic nonlinear system with non-
structured uncertainty, unknown dead-zone and unknown
control direction, in [33], the adaptive fuzzy output-feedback
prescribed performance controller in the form of non-strict
feedback was presented, and it was ensured that all signals of
the closed-loop system were SGUUB in the sense of proba-
bility. Li and Tong [34] proposed a new decentralized control
scheme with output-feedback and prescribed performance
with the help of adaptive backstepping technology, assuming
that the nonlinear correlation term and nonlinear function
of uncertain switched non-strict feedback interconnected
nonlinear system were unknown, and the switch signal was
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unknown and arbitrary. In [35], an adaptive controller with
prescribed constraint was constructed by using the fuzzy
approximation method to ensure the transient and steady-
state performance of the nonlinear system, in which a new
constraint variable was introduced for error transformation.

Meanwhile, some studies have been concerned with the
combination of adaptive PPC and input saturation com-
pensation [36]–[40]. For instance, in [36], the PPC of the
teleoperation system with input saturation was addressed.
With the same PPC scheme, the observer-based PPC problem
for a class of input saturated stochastic nonlinear systems
was studied in [38], and an adaptive output-feedback PPC
scheme for a class of switched nonlinear systems with input
saturation was proposed in [39]. Furthermore, Wang et al.
[40] summarized the shortcomings of traditional prescribed
performance function, and constructed a new prescribed per-
formance function to circumvent high frequency chattering
in control input.

Motivated by the above literatures, for a class of uncertain
strict-feedback nonlinear systems, an adaptive prescribed
performance tracking controller based on RBF neural net-
work (RBFNN) is proposed. Different from the traditional
PPC idea introduced in [36]–[40], a new class of error
transformation functions is constructed in this paper, which
is a more direct form than that in [36]–[40]. Although the
authors in [35] also directly constructed an error transfor-
mation function, the constraint of output error can only be
realized only if the designed parameters were reasonably
selected to satisfy the conditions of Theorem 1 of [35].
The error transformation function proposed in this paper
relaxes the condition similar to that in [35]. In addition,
the considered strict-feedback nonlinear system not only has
parameter uncertainty, but also has unknown disturbance
and input signal saturation nonlinearity. On this premise, an
adaptive prescribed performance controller based on RBFNN
is realized. As far as we know, there are only a limited
number of literatures on such issues.

The rest of this paper is as follows: In Section II, the
considered nonlinear system model of strict-feedback is
given. And a class of new error transformation functions
proposed in this note and some necessary assumptions and
lemmas are also introduced in Section II. The adaptive
tracking controller based on neural network and its stability
analysis are presented in Section III. The simulation is carried
out in Section IV, and Section V is the conclusion.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES

A. System descriptions

Choose a class of single-input and single-output (SISO)
uncertain nonlinear systems with unknown input saturation
and unknown external disturbances as

ẋi = fi(x̄i) + gi(x̄i)xi+1 + λi(t), i = 1, · · · , n− 1,

ẋn = fn(x̄n) + gn(x̄n)u+ λn(t), u = S(v),

y = x1,

(1)

where x̄i = [x1, x2, · · · , xi]T ∈ Ri (i = 1, 2, · · · , n) are
the system state vectors. y ∈ R is the system output. fi(·) :
Ri → R and gi(·) : Ri → R, i = 1, 2, · · · n, are unknown
smooth functions. λi(t), i = 1, 2, · · · n are unknown external
disturbances satisfying |λi(t)| ≤ λ̄i with λ̄i being positive

constants. u(t) ∈ R represents the actuator input of system
with input saturation, which is described as:

u = S(v) =


umax, v ≥ umax,

umin, v ≤ umin,

v, otherwise,

(2)

where umin < 0 and umax > 0 are unknown constants.
Similar to the description in [41], the saturation nonlinearity
model S(·) can be represented by the sum of a piecewise
smooth continuous function

W (v) =


umax∗(ev/umax−e−v/umax )

(ev/umax+e−v/umax )
, v ≥ 0,

umin∗(ev/umin−e−v/umin )

(ev/umin+e−v/umin )
, v < 0.

(3)

and a function w0(v) with an unknown positive constant
bound w̄0, such that

S(v) =W (v) + w0(v), |w0(v)| ≤ w̄0. (4)

Applying the mean-value theorem to W (v) yields

W (v)−W (v0) =Wδ(v − v0), (5)

where Wδ(v) =
∂W
∂v |v=δv+(1−δ)v0 with 0 < δ < 1. Choosing

v0 = 0 and substituting (2), (4) and (5) into (1) results in

ẋi = fi + gixi+1 + λi, i = 1, 2, · · · , n− 1,

ẋn = fn + gnWδv + gnw0 + λn,

y = x1.

(6)

In what follows, to simplify writing, denote fi(·) and gi(·)
as fi and gi, respectively. Also, the time t in some functions
is omitted, for example, λi for λi(t), v for v(t), u for u(t)
and so on.

B. Prescribed performance control

The state errors are defined as follows:
z1 = x1 − yr,

zi = xi − αi−1, i = 2, 3, · · · , n
(7)

where αi−1 stands for the virtual control law in step i −
1, yr is the desired trajectory, and z1 denotes the tracking
error. In order to achieve PPC, the boundary function ρ1(t)
corresponding to error z1 is defined as

ρ1(t) = (ρ0 − ρ∞)e−ςt + ρ∞ (8)

with ρ0 > ρ∞, where ρ0, ρ∞ and ς are predefined positive
constants, representing the initial value, the upper bound of
steady-state error and the convergence speed of exponential
function, respectively.

Traditionally, in order to stabilize (6) and guarantee that
z1 is constrained in the prescribed performance function,
the constrained behavior |z1(t)| < ρ1(t) is usually trans-
formed into the following equivalent unconstrained behavior
[36]–[40]:

z1(t) = ρ1(t)K1(ζ1(t)) (9)

where K1(ζ1(t)) = eζ1−e−ζ1

eζ1+e−ζ1
. It is easy to know that the

error transformation ζ1 and its derivation with respect to t
are

ζ1(t) = K−1
1

(
z1(t)

ρ1(t)

)
=

1

2
ln(

K1 + 1

1−K1
) (10)
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Fig. 1. Illustration of attribute of ζ1(k1).

and

ζ̇1(t) = Λ1

(
ż1 −

z1ρ̇1
ρ1

dt

)
(11)

with Λ1 = 1
2ρ1

( 1
K1+1 − 1

K1−1 ).
Different from the traditional method, this paper aims to

introduce a class of auxiliary functions which can help to
realize PPC. First, we introduce a class of smooth functions
ζ1(k1), which satisfies

lim
k1→−1+

ζ1(k1) = −∞, lim
k1→1−

ζ1(k1) = ∞.

The properties of ζ1(k1) are illustrated in Fig. 1. For exam-
ple, the candidate functions like Fig. 1 can be

ζ1(k1) = tanh−1(k1) =
1

2
ln(

1 + k1
1− k1

)

and

ζ1(k1) = tan(
π

2
k1).

It is not difficult to deduce that |k1| < 1 holds as long
as ζ1(k1) is bounded. As mentioned earlier, to fulfill the
control objective, the overshoot of z1(t) should be specified
to less than ρ1(t) for the initial condition |z1(0)| < |ρ1(0)|,
which implies that the inequality | z1(t)ρ1(t)

| < 1 should be

hold for t > 0. Naturally, let k1 = z1(t)
ρ1(t)

. The subsequent
work of this study is to construct the appropriate objective
function Vn(ζ21 , ·). If Vn is proved to be bounded, ζ21 will be
bounded accordingly, and | z1(t)ρ1(t)

| < 1 holds. In this paper,
the logarithmic error transformation function is selected as
an example, so the following error transformation function
is designed:

ζ1(t) = ln(
ρ1 + z1
ρ1 − z1

). (12)

Taking the time derivation of ζ1(t) yields

ζ̇1(t) = 2Γ1(ż1 −
ρ̇1z1
ρ1

), (13)

where Γ1 = ρ1/(ρ
2
1 − z21), and ζ̇1(t) will be used later.

Remark 1: For the subsequent design of Lyapunov func-
tion, it is reasonable that ζ1(t) appears on V1(t) in the form
of square. On the one hand, tracking error z1(t) is expected to

be as small as possible, on the other hand, z1(t) is expected
to be as far away from the preset band ρ1(t) as possible.

Remark 2: For uncertain nonlinear system, an adaptive
fuzzy tracking PPC scheme was proposed in [35], but the
considered nonlinear system did not involve the input satu-
ration and external disturbance. Different from [35], the PPC
method proposed in this paper is for the system (1) with input
saturated and external disturbance. In addition, although the
error transformation function ξ1 proposed in [35] can achieve
PPC, (51) in [35] has to be satisfied. In this note, a new error
transformation function ζ1 is designed to replace ξ1 of [35].
It will be proved in the following Theorem 1 that PPC can be
realized without the condition like (51) in [35]. Accordingly,
the proposed control strategy is more relaxed than that of in
[35].

C. Control objectives and preliminaries
The control objectives of this technical note include that:
1) For a class of strict-feedback uncertain nonlinear sys-

tems with external disturbance and input saturation, the
adaptive RBFNN PPC strategy is constructed, which can
track the desired trajectory yr(t).

2) The tracking error z1(t) = y − yr is constrained by
ρ1(t) with the initial condition |z1(0)| < ρ1(0).

3) In the sense that all signals in the closed-loop system
are bounded, the system is semi-globally stable.

In order to meet the above control objectives, the following
lemmas and assumptions are introduced and will be very
important in subsequent analysis.

Assumption 1: For the functions gi(x̄i) and Wδ(v), there
exist unknown positive constants g, gM and W , such that

0 < g ≤ |gi| ≤ gM , i = 1, 2, · · · , n
0 < W ≤Wδ ≤ 1.

(14)

Further, denote gm = min{g, gW}, it can assume that

gm ≤ |gi| ≤ gM , gm ≤ |gnWδ| ≤ gM . (15)

Assumption 2: The reference signal yr(t) and its ith order
time derivatives y(i)r (t), n ∈ {1, 2, · · · , n}, are continuous
and bounded.

Lemma 1: [23] If there exists an input vector Υ ⊂ Rn

defined in a compact set ΩΥ, a the constant weight vec-
tor Θ = [Θ1,Θ2, . . . ,Θl]

T and a basis function vector
Ψ(Υ) = [Ψ1(Υ),Ψ2(Υ), · · · ,Ψl(Υ)]T , then radial basic
function neural networks (RBFNNs) with l neurons is defined
as follows:

fRBFNN (Υ) = ΘTΨ(Υ) (16)

Generally, the Gauss function is chosen as the basis function
defined as:

Ψi(Υ) = exp

[
−(Υ− ξi)

T (Υ− ξi)

ω

]
, i = 1, 2, · · · , l,

where ω is the width of Gaussian function and ξi =
[ξi1, ξi2, · · · , ξin]T denotes the center vector of the basic
function.

From the description in [14]–[16], for a smooth function
F (Υ) defined in a compact set ΩΥ, RBFNN can be used to
approximate it with a desired level of accuracy such that

F (Υ) = ΘTΨ(Υ) + ε(Υ), (17)
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where ε(Υ) is the corresponding approximation error satis-
fied |ε(Υ)| ≤ ε̄ with ε̄ > 0 being an unknown constant.
Correspondingly, the optimal weight vector Θ∗ can be given
as

Θ∗ := arg min
Θ∈Rl

{
sup

Υ∈ΩΥ

|F (Υ)−ΘTΨ(Υ)|
}
. (18)

Remark 3: In fact, Assumptions 1 and 2 and Lemma 1
will play important roles in the subsequent stability analysis.
Concretely, since the actual control signal and the virtual
control signal can not be infinite from the perspective of
practical engineering, Assumption 1 is reasonable. It follows
from Assumption 2 that yr(t) and y(i)r (t) are all bounded for
i = 1, 2, · · · , n. Also, the RBFNN is used to approximate the
multidimensional functions due to the existence of uncertain
nonlinearities and unknown external disturbances.

III. MAIN RESULT

A. Controller Design

In this subsection, the adaptive prescribed performance
controller for a class of uncertain nonlinear systems is
presented. The virtual controls αi of the first n − 1 steps
and actual input v are constructed by

α1 = − ζ1
Γ1

(
τ1 +

1

2
+

1

2c21
θ̂ΨT

1 (Υ1)Ψ1(Υ1)

)
,

αi = −zi
(
τi +

1

2
+

1

2c2i
θ̂ΨT

i (Υi)Ψi(Υi)

)
,

v = −zn
(
τn +

1

2β2
+

1

2c2n
θ̂ΨT

n (Υn)Ψn(Υn)

)
,

i = 2, 3, · · · , n− 1,

(19)

where τi, ci and β, i = 1, 2, · · · , n, are positive de-
sign parameters, and Υ1 = [x1, yr, ẏr, ρ1, ρ̇1]

T ∈ R5,
Υi = [x̄Ti , θ̂, ȳ

(i)T
r , ρ̄

(i)T
1 ]T ∈ R(3i+3) with ȳ

(i)
r =

[yr, ẏr, · · · , y(i)r ]T , ρ̄
(i)
1 = [ρ1, ρ̇1, · · · , ρ(i)1 ]T for i =

2, · · · , n. The unknown constant is defined as

θ = max
1≤i≤n

{ 1

gm
||Θi||2} (20)

where Θi will be specified later, and gm is defined in (15).
Denote θ̂ as the estimation of θ, which is updated by

˙̂
θ(t) =

γ

2c21
ζ21Ψ

T
1 Ψ1 +

n∑
i=2

γ

2c2i
z2iΨ

T
i Ψi − σθ̂ (21)

with γ > 0 and σ > 0 being design parameters. θ̃ = θ − θ̂
denotes the estimated error.

In next, the design process of the standard backstepping
scheme is divided into n steps.

Step 1: A positive definite Lyapunov function is

V1 =
1

4
ζ21 +

gm
2γ
θ̃2 (22)

By ż1 = f1 + g1x2 + λ1 − ẏr, the time derivative of V1(t)
can be given by

V̇1 = ζ1Γ1(f1 + g1x2 + λ1 − ẏr −
ρ̇1z1
ρ1

)− gm
γ
θ̃
˙̂
θ (23)

Invoking completion of square gets

ζ1Γ1λ1 ≤ ζ21Γ
2
1

2
+
λ̄21
2

(24)

Now, let F1(Υ1) = Γ1(f1− ẏr− ρ̇1z1
ρ1

+ ζ1Γ1

2 )+ ζ1
2 , and then

substituting (24) into (23) yields

V̇1 ≤ ζ1Γ1g1x2 + ζ1F1 −
ζ21
2

+
λ̄21
2

− gm
γ
θ̃
˙̂
θ (25)

The RBFNN is used to approximate F1(Υ1) such that

F1(Υ1) = ΘT
1 Ψ1(Υ1) + ε1(Υ1), |ε1(Υ1)| ≤ ε̄1, (26)

where ε1(Υ1) denotes the approximation error with ε̄1 > 0
being a bounded constant. Using the completion of square
again, based on (20) and (26), one has

ζ1F1(Υ1) ≤
1

2c21
ζ21 ||Θ||2ΨT

1 Ψ1 +
c21
2

+
ζ21
2

+
ε̄21
2

≤ gm
2c21

ζ21θΨ
T
1 Ψ1 +

c21
2

+
ζ21
2

+
ε̄21
2
.

(27)

Next, through choosing the virtual control law α1 in (19) and
using the completion of square, the following inequalities can
be obtained:

ζ1Γ1g1z2 ≤ g1ζ
2
1

2
+
g1Γ

2
1z

2
2

2

ζ1Γ1g1α1 ≤ −τ1gmζ21 − g1ζ
2
1

2
− gmζ

2
1 θ̂Ψ

T
1 Ψ1

2c21

(28)

Combining (27) and (28) with (25) produces

V̇1 ≤− η1ζ
2
1 +

gMΓ2
1z

2
2

2
+ ∆1

+
gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
− ˙̂
θ),

(29)

where η1 = τ1gm and ∆1 =
c21
2 +

λ̄2
1

2 +
ε̄21
2 . The term gMΓ2

1z
2
2

2
will be dealt with in Step 2.

Step 2: Consider the following Lyapunov function candi-
date:

V2 = V1 +
1

2
z22 (30)

From ż2 = f2 + g2x3 +λ2 − α̇1 and α̇1 = ∂α1

∂x1
(f1 + g1x2 +

λ1) +
∂α1

∂θ̂

˙̂
θ +

∑1
k=0

∂α1

∂ρ
(k)
1

ρ
(k+1)
1 +

∑1
k=0

∂α1

∂y
(k)
r

y
(k+1)
r , the

time derivative of V2 is

V̇2 =V̇1 + z2 (f2 + g2x3 + λ2

−∂α1

∂x1
(f1 + g1x2 + λ1)−

∂α1

∂θ̂

˙̂
θ

−
1∑

k=0

∂α1

∂ρ
(k)
1

ρ
(k+1)
1 −

1∑
k=0

∂α1

∂y
(k)
r

y(k+1)
r

) (31)

For the terms z2λ2 and z2 ∂α1

∂x1
λ1, the following inequalities

hold z2λ2 ≤ z2
2

2 +
λ̄2
2

2

−z2 ∂α1

∂x1
λ1 ≤

(
∂α1

∂x1

)2
z22 +

λ̄2
1

4

(32)

Denoting F2(Υ2) =
gMΓ2

1z2
2 + f2 + z2 − ∂α1

∂x1
(f1 + g1x2) +

z2(
∂α1

∂x1
)2 − ∂α1

∂θ̂

γ
2c21
ζ21Ψ

T
1 Ψ1 − ∂α1

∂θ̂

γ
2c22
z22Ψ

T
2 Ψ2 +

∂α1

∂θ̂
σθ̂ −
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∑1
k=0

∂α1

∂ρ
(k)
1

ρ
(k+1)
1 −

∑1
k=0

∂α1

∂y
(k)
r

y
(k+1)
r , and substituting (32)

into (31) result in

V̇2 ≤− η1ζ
2
1 +

gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
− ˙̂
θ) + ∆1

− ∂α1

∂θ̂
z2

n∑
ℓ=3

γ

2c2ℓ
z2ℓΨ

T
ℓ Ψℓ

+ z2(g2z3 + g2α2 + F2)−
z22
2

+
λ̄22
2

+
λ̄21
4

(33)

Here, F2(Υ2) can be approximated by RBFNN ΘT
2 Ψ2(Υ2)

for a desired level of accuracy ε2 such that

F2(Υ2) = ΘT
2 Ψ2(Υ2) + ε2(Υ2), |ε2(Υ2)| ≤ ε̄2, (34)

with ε̄2 being a positive constant. Similar to Step 1, by using
the completion of square, (19), (20) and Assumption 1, it is
easy to obtain the following three inequalities

z2F2 ≤ gmz2
2θΨ

T
2 Ψ2

2c22
+

c22
2 +

z2
2

2 +
ε̄22
2

g2z2z3 ≤ g2z
2
2

2 +
g2z

2
3

2

g2z2α2 ≤ −τ2gmz22 − g2z
2
2

2 − gmz2
2 θ̂Ψ

T
2 Ψ2

2c22

(35)

Then, it follows from (33) and (35) that

V̇2 ≤− η1ζ
2
1 − η2z

2
2 +

gMz
2
3

2

+
gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
+
γz22Ψ

T
2 Ψ2

2c22
− ˙̂
θ)

− ∂α1

∂θ̂
z2

n∑
ℓ=3

γ

2c2ℓ
z2ℓΨ

T
ℓ Ψℓ +∆1 +∆2

(36)

where η2 = τ2gm and ∆2 =
c22
2 +

λ̄2
2

2 +
ε̄22
2 +

λ̄2
1

4 .
Step i (i = 3, · · · , n − 1): Consider the following Lya-

punov function:

Vi = Vi−1 +
1

2
z2i (37)

By combining żi = fi + gixi+1 + λi − α̇i−1, and
α̇i−1 =

∑i−1
k=1

∂αi−1

∂xk
(fk + gkxk+1 + λk) + ∂αi−1

∂θ̂

˙̂
θ +∑i−1

k=0
∂αi−1

∂ρ
(k)
1

ρ
(k+1)
1 +

∑i−1
k=0

∂αi−1

∂y
(k)
r

y
(k+1)
r , the time derivative

of Vi(t) is

V̇i =V̇i−1 + zi (fi + gixi+1 + λi

−
i−1∑
k=1

∂αi−1

∂xk
(fk + gkxk+1 + λk)−

∂αi−1

∂θ̂

˙̂
θ

−
i−1∑
k=0

∂αi−1

∂ρ
(k)
1

ρ
(k+1)
1 −

i−1∑
k=0

∂αi−1

∂y
(k)
r

y(k+1)
r

) (38)

Recursively, it can be deduced that

V̇i−1 ≤− η1ζ
2
1 −

i−1∑
k=2

ηkz
2
k +

i−1∑
k=1

∆k +
gMz

2
i

2

+
gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
+

i−1∑
k=2

γz2kΨ
T
kΨk

2c2k
− ˙̂
θ)

−
i−2∑
k=1

∂αk

∂θ̂
zk+1

n∑
ℓ=i

γ

2c2ℓ
z2ℓΨ

T
ℓ Ψℓ

(39)

where ∆i =
c2i
2 +

λ̄2
i

2 +
ε̄2i
2 +

∑i−1
k=1

∑k
ℓ=1

λ̄2
ℓ

4 . Combining
(39), the following two inequalities

ziλi ≤ z2
i

2 +
λ̄2
i

2 ,

−zi
∑i−1

k=1
∂αi−1

∂xk
λk ≤ z2i

∑i−1
k=1

(
∂αi−1

∂xk

)2
+
∑i−1

k=1
λ̄2
k

4 ,

(40)

and Fi(Υi) = − γ
2c2i
ziΨ

T
i Ψi

∑i−2
k=1

∂αk

∂θ̂
zk+1 + gMzi

2 +

fi + zi −
∑i−1

k=1
∂αi−1

∂xk
(fk + gkxk+1) + zi

∑i−1
k=1(

∂αi−1

∂xk
)2 −

∂αi−1

∂θ̂

γ
2c21
ζ21Ψ

T
1 Ψ1 − ∂αi−1

∂θ̂

∑i
k=2

γ
2c2k

z2kΨ
T
kΨk +

∂αi−1

∂θ̂
σθ̂−∑i−1

k=0
∂αi−1

∂ρ
(k)
1

ρ
(k+1)
1 −

∑i−1
k=0

∂αi−1

∂y
(k)
r

y
(k+1)
r with (38) results in

V̇i ≤− η1ζ
2
1 −

i−1∑
k=2

ηkz
2
k +

i−1∑
k=1

∆k

+
gm
γ
θ̃

(
γζ21Ψ

T
1 Ψ1

2c21
+

i−1∑
k=2

γz2kΨ
T
kΨk

2c2k
− ˙̂
θ

)

−
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
ℓ=i+1

γ

2c2ℓ
z2ℓΨ

T
ℓ Ψℓ

+ gizi(zi+1 + αi) + ziFi −
z2i
2

+
λ̄2i
2

+

i−1∑
k=1

λ̄2k
4
.

(41)

Using RBFNN, for given positive constants ε̄i, we have

Fi(Υi) = ΘT
i Ψi(Υi) + εi(Υi), |εi(Υi)| ≤ ε̄i (42)

Next, substituting the following three inequalities
ziFi ≤ gmz2

i θΨ
T
i Ψi

2c2i
+

c2i
2 +

z2
i

2 +
ε̄2i
2

gizizi+1 ≤ giz
2
i

2 +
giz

2
i+1

2

giziαi ≤ −τigmz2i − giz
2
i

2 − gmz2
i θ̂Ψ

T
i Ψi

2c2i

(43)

into (41), it yields

V̇i ≤− η1ζ
2
1 −

i∑
k=2

ηkz
2
k +

i∑
k=1

∆k +
gMz

2
i+1

2

+
gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
+

i∑
k=2

γz2kΨ
T
kΨk

2c2k
− ˙̂
θ)

−
i−1∑
k=1

∂αk

∂θ̂
zk+1

n∑
ℓ=i+1

γ

2c2ℓ
z2ℓΨ

T
ℓ Ψℓ.

(44)

where ηi = τigm.
Remark 4: Inspired by [11], a general adaptive control law

θ̂ is designed to be updated online. So, the weight vector
Θi of each step does not need to be estimated, and the
calculation amount is greatly reduced. However, the fuzzy
logic system ΘT

i Ψi(Υi) can not be directly used to approx-
imate the term ∂αi−1

∂θ̂

˙̂
θ in (38), because it contains the terms

zi+1, · · · , zn. To overcome it, ∂αi−1

∂θ̂

˙̂
θ has to be divided into

two parts: ∂αi−1

∂θ̂
( γ
2c21
ζ21Ψ

T
1 Ψ1 +

∑i
k=2

γ
2c2k

z2kΨ
T
kΨk − σθ̂)

and ∂αi−1

∂θ̂
(
∑n

k=i+1
γ

2c2k
z2kΨ

T
kΨk). Among them, the first part

can be summed up in the packaged function Fi(Υi), and the
second part will be dealt with in steps i+ 1 to n.
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Step n: The actual controller v(t) will be given in the last
step. Now, choose the following the Lyapunov function:

Vn = Vn−1 +
1

2
z2n (45)

and then taking the time derivative of Vn(t) yields

V̇n ≤V̇n−1 + zn (fn + gnWδv + gnw0 + λn

−
n−1∑
k=1

∂αn−1

∂xk
(fk + gkxk+1 + λk)−

∂αn−1

∂θ̂

˙̂
θ

−
n−1∑
k=0

∂αn−1

∂ρ
(k)
1

ρ
(k+1)
1 −

n−1∑
k=0

∂αn−1

∂y
(k)
r

y(k+1)
r

) (46)

Denote Fn(Υn) = − γ
2c2n

znΨ
T
nΨn

∑n−2
k=1

∂αk

∂θ̂
zk+1 +

fn + gMzn
2 + zn −

∑n−1
k=1

∂αn−1

∂xk
(fk + gkxk+1) +

zn
∑n−1

k=1

(
∂αn−1

∂xk

)2
− ∂αn−1

∂θ̂

˙̂
θ −

∑n−1
k=0

∂αn−1

∂ρ
(k)
1

ρ
(k+1)
1 −∑n−1

k=0
∂αn−1

∂y
(k)
r

y
(k+1)
r , we have

V̇n ≤− η1ζ
2
1 −

n−1∑
k=2

ηkz
2
k +

n−1∑
k=1

∆k

+
gm
γ
θ̃(
γζ21Ψ

T
1 Ψ1

2c21
+

n−1∑
k=2

γz2kΨ
T
kΨk

2c2k
− ˙̂
θ)

+ zn(gnWδv + gnw0 + Fn)−
z2n
2

+
λ̄2n
2

+
n−1∑
k=1

λ̄2k
4

(47)

By using RBFNN, for a given positive constant ε̄n, we have

Fn(Υn) = ΘT
nΨn(Υn) + εn(Υn), |εn(Υn)| ≤ ε̄n (48)

Based on the same process as Step i, one has

znFn ≤ gm
2c2n

z2nθΨ
T
nΨn +

c2n
2

+
z2n
2

+
ε̄2n
2

(49)

According to Assumption 1 and the completion of square, it
produces

zngnw0 ≤ gn(
Wz2n
2β

+
βw̄2

0

2W
) ≤ gnWz2n

2β
+
gMβw̄

2
0

2W
(50)

Invoking the actual control signal v in (19) and Assumption
1, one has

zngnWδv ≤ −gnW (τnz
2
n +

z2n
2β

+
z2nθ̂Ψ

T
nΨn

2c2n
)

≤ −τngmz2n − gnWz2n
2β

− gmz
2
nθ̂Ψ

T
nΨn

2c2n

(51)

Considering (49)-(51), it follows from (47) that

V̇n ≤ −η1ζ21 −
n∑

k=2

ηkz
2
k +

n∑
k=1

∆k +
σgm
γ

θ̃θ̂ +
gMβw̄

2
0

2W

(52)

where ηn = τngm.

B. Stability analysis

In this subsection, the stability analysis will be completed
by Theorem 1.

Theorem 1: Supposed that the unknown compound func-
tions Fi(Υi) can be approximated by RBFNNs ΘT

i ψi(Υi)
with a bounded error εi(Υi) for i = 1, 2, · · · , n. Under
Assumptions 1 and 2, and by using the designed prescribed
performance tracking controller (19) and adaptive parameter
update law (21), all signals in the closed-loop system can be
guaranteed to be semi-globally bounded. And then, for the
reference signal yr(t), the output tracking error z1(t) is con-
strained by ρ1(t) with the initial condition |z1(0)| < ρ1(0)
for all t > 0.

Proof: The proof is divided into two parts. In the first
part, the semi-global stability of the closed-loop system is
proved, and the second part is to prove that the inequality
|z1(t)| < ρ1(t) holds.

1) In order to stabilize system (1), the Lyapunov function
is constructed as:

Vn(χ(t)) =
ζ21
4

+
n∑

i=2

z2i
2

+
gm
2γ
θ̃2, (53)

where χ(t) = [ζ1, z2, · · · , zn, θ̃]T . For the term θ̃θ̂ in (52),
the inequality θ̃θ̂ ≤ − θ̃2

2 + θ2

2 holds, and it follows from (52)
and (53) that

V̇n(χ(t)) ≤− η1ζ
2
1 −

n∑
k=2

ηkz
2
k − σgmθ̃

2

2γ

+
σgmθ

2

2γ
+

n∑
k=1

∆k +
gMβw̄

2

2W

≤− µ0Vn(χ(t)) + ϑ0,

(54)

where µ0 = min{4η1, 2ηi, σ, i = 2, 3, · · · , n} and ϑ0 =
σgmθ2

2γ +
∑n

k=1 ∆k + gMβw̄2

2W , which implies that

Vn(χ(t)) ≤ e−µ0tVn(0) +
ϑ0
µ0

(1− e−µ0t)

≤ e−µ0tVn(0) +
ϑ0
µ0
.

(55)

By (55), we can conclude that ζ1, zi, i = 2, 3, · · · , n and θ̃
are bounded. θ̂ is bounded since θ is a constant. Further, by
the definition of (7), it easy to deduce that xi, i = 1, 2, · · · , n
are bounded. Hence, all the signals in the closed-loop system
(1), (19) and (21) are bounded.

2) From (53) and (55), it means that

ζ21
4

=
1

4
ln2

(
1 + z1

ρ1

1− z1
ρ1

)
≤ e−µ0tVn(0) +

ϑ0
µ0
. (56)

Based on the property of the function (tanh−1(x))2 =
1
4 ln

2( 1+x
1−x ), |x| < 1 holds as long as 1

4 ln
2( 1+x

1−x ) ≤ ϕ0 for
any given constant ϕ0 > 0. So, it is not difficult to deduce
that the item z1/ρ1 in (56) satisfies |z1/ρ1| < 1, which means
that |z1(t)| < ρ1(t) for all t > 0. �

IV. SIMULATION

In this section, the effectiveness of the proposed control
method is verified by the following numerical simulation
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example. A third-order nonlinear system with unknown ex-
ternal disturbance, input saturation and unknown nonlinearity
is considered as follows:
ẋ1 = (1 + cos(x1))x2 + 0.3x21 sin(2x1) + 0.2 sin(t)

ẋ2 = (1− sin(x1x2))x3 + 0.5
(
0.8x2 + e−x2

1

)
ẋ3 = 12u(t) + e−2x2

1x
2
2 cos(x3) + sin(2t)

y = x1.

(57)

The tracking target of (57) is yr = 0.6 sin(t). Noting that
λ1(t) = 0.2 sin(t), λ2(t) = 0 and λ3(t) = sin(2t) are the
external disturbances of each subsystem respectively. u(t)
denotes the input control signal, which is constrained by
the saturation nonlinear function S(·) with umin = −3 and
umax = 3.

In order to stabilize (57), adaptive controller (19) and pa-
rameter update law (21) are used, and the design parameters
are chosen as: τ1 = 10, τ2 = 10, τ3 = 10, c1 = 30, c2 = 30,
c3 = 30, γ = 10, σ = 0.3, and β = 1. Performance pre-
scribed function is designed as ρ1 = (1−0.08)e−1.5t+0.08.
Meanwhile, the initial conditions of simulation are θ(0) = 1
and [x1(0), x2(0), x3(0)]

T = [0, 0, 0]T .
The simulation time is set to 30 seconds, and the simu-

lation results of the proposed control scheme are shown in
Figs. 2-7. It can be seen from Fig. 2 that the system output y
can track the reference signal yr well despite the existence of
external disturbances. Other states x2 and x3 of the system
are shown in Fig. 3. The output error z1 and the performance
prescribed function ρ1 are shown in Fig. 4. And then, Figs. 5
and 6 show the actual control signal v(t) of the system and
the function u(t) constrained by the saturation function S(·),
respectively. Finally, the adaptive rate θ̂ is shown in Fig. 7.
It is no hard to find from these simulation figures that PPC
is implemented in the case of input saturation nonlinearity,
unknown nonlinearity and unknown external disturbance.

V. CONCLUSION

An adaptive prescribed performance controller is designed
for a class of uncertain strict-feedback nonlinear systems
with input saturation constraints and external disturbances
in this note. Different from other related researches, a new
class of error transformation functions is proposed for the
first time, which can be used to realize the performance
constraint of output error and guarantee the transient and
steady characteristics of nonlinear system. In addition, neural
network is introduced to eliminate the influence of uncertain
disturbance and uncertain nonlinearity on the system. For the
future, this research achievement is ready to be used in the
output-feedback control of switching system.
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