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Abstract—In this paper, a kind of predator-prey system with
fraction-order derivative scheme has been proposed and the
issue on permanence, global Mittag-Leffler stability and global
asymptotic periodic solution for the above system has been
investigated. By utilizing comparison principles and fractional
calculus theory, some new conditions are established to ensure
the permanence, global Mittag-Leffler stability and global
asymptotic periodic solution of the above systems. An example
is given to demonstrate the effectiveness and feasibility of the
proposed theoretical results.
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I. INTRODUCTION

S Ince 1930s, Lotka and Volterra presented the standard
Lotka-Volterra model that the predator and prey per-

manently oscillate for any positive initial conditions, the
dynamic relationship between predator and prey is one of the
main subjects in populations dynamics due to its universal
existence and importance. The predator-prey systems have
been extensively studied, see papers [1]–[7] and the cited
is therein. Such as, Lin, Du and Lv [6] studied a delayed
multispecies competition predator-prey dynamic system with
Beddington-DeAngelis functional response. Some sufficient
conditions which guarantee the existence of a positive pe-
riodic solution for the system are obtained by applying
the Mawhin coincidence theory. Li and Zhao [5] proposed
the stability of equilibria and periodic solutions of a non-
autonomous Lotka-Volterra competition model with seasonal
succession by using the stability analysis of equilibria and
the theory of monotone dynamical system. Cai, Huang,
Chen [7] were concerned with the existence, uniqueness and
global asymptotic stability of positive periodic solutions to a
delayed multispecies ecological competition-predator system
with Holling-III functional response by using the continu-
ation theorem of coincidence degree theory. By means of
comparison theorem and Lyapunov functional, Lin, Du and
Lv [6] studied the global asymptotic stability of almost
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periodic solution for the following system:



ẋi(t) = xi(t)

[
bi(t)−

∑n
k=1 aik(t)xk(t)

−
∑m
k=1

cik(t)xi(t)yk(t)
x2
i (t)+fik(t)

]
,

ẏj(t) = yj(t)

[
− rj(t) +

∑n
k=1

dkj(t)x
2
k(t)

x2
k(t)+fkj(t)

−
∑m
k=1 ejk(t)yk(t)

]
, t ≥ 0,

(1.1)

where xi(t), yj(t) denote the size of prey and predator
population at time t; bi(t), ail(t), cik(t), rj(t), dlj(t),
ejk(t)(i, l = 1, 2, . . . , n; j, k = 1, 2, . . . ,m) are all continu-
ous positive almost periodic functions on R with the ecology
meaning as follows: bi is the prey population grows in the
absence of predators, rj is the predator population decays in
the absence of preys, ail is the prey population decays in the
competition among the preys, ejk is the predator population
decays in the competition among the predator, cik is the
prey is feed upon by the predators, dlj is the coefficient
of transformation from preys to predators, i, l = 1, 2, . . . , n,
j, k = 1, 2, . . . ,m.

It is known that, mathematical models, using integer order
differential equations, as mentioned above, have been proven
valuable in understanding the dynamical behaviors of biolog-
ical systems. However, lots of systems, such as biological,
physical, engineering, have long-range temporal memory
and/or long-range space interactions [8], [9]. Modelling of
such systems with fractional-order differential equations [10]
have more advantages than classical integer-order ones, since
fractional-order derivative can provide an excellent instru-
ment for description of memory and hereditary properties
of various materials and processes. It seems that, fractional-
order differential equations are more consistent with real
phenomena than integer-order models, which due to that
fractional derivatives and integrals enable the description of
the memory and hereditary properties inherent in various ma-
terials and process of which exists in most of the biological
systems. Thus, in this paper, we combine the fractional-order
in the system to describe the complex systems of predator-
prey interactions with dynamical characteristics.
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Set xi(t) = 1
ui(t)

, yj(t) = 1
vj(t)

, from (1.1) it yields
u̇i(t) = −bi(t)ui(t) +

∑n
k=1 aik(t) ui(t)

uk(t)

+
∑m
k=1

cik(t)ui(t)
vk(t)[1+u2

i (t)fik(t)]
,

v̇j(t) = rj(t)vj(t)−
∑n
k=1

dkj(t)vj(t)

1+u2
k(t)fkj(t)

+
∑m
k=1 ejk(t)

vj(t)
vk(t)

, t ≥ 0.

(1.2)

Based on (1.2), in this paper we consider the fractional order
system as follows:

cDα
0 ui(t) = −bi(t)ui(t) +

∑n
k=1 aik(t) ui(t)

uk(t)

+
∑m
k=1

cik(t)ui(t)
vk(t)[1+u2

i (t)fik(t)]
,

cDα
0 vj(t) = rj(t)vj(t)−

∑n
k=1

dkj(t)vj(t)

1+u2
k(t)fkj(t)

+
∑m
k=1 ejk(t)

vj(t)
vk(t)

, t ≥ 0,

(1.3)

where cDα
0 is the Caputo derivative of order α ∈ (0, 1],

which is defined as

cDα
0 f(t) =

1

Γ(α− 1)

∫ t

t0

ḟ(s)

(t− s)α
ds (0 < α < 1),

where f ∈ C1([0,∞),R) and Γ(·) is Euler’s Gamma
function. All coefficients in system (1.3) are nonnegative.
Obviously, fractional order system (1.3) is transformed to
integer order systems (1.1)-(1.2) in case α = 1.

The remaining parts of this paper are organized as follows:
In Section 2, we will present some definitions and lemmas
which will be useful in the proven of the main results of this
paper. In Section 3, by using comparison principle, sufficient
conditions are built to ensure the permanence of system
(1.3). In Section 4, we present that system (1.3) is globally
Mittag-Leffler stable. In Section 5, an example is provided
to expound the chief results of this paper.

Let R denote the set of real numbers. Rn denotes the n-
dimensional real vector space and Cn([t0,∞),Rn) denotes
the space consisting of n-order continuously differentiable
functions. Let f is a continuous bounded function on R and
set fM = supt∈R f(t), fm = inft∈R f(t).

II. PRELIMINARIES

A. Caputo fractional derivative and Mittag-Leffler function

Definition II.1. ( [11]) The Caputo derivative of fractional
order α for f ∈ Cn([t0,∞),Rn) is defined by

cDα
t0f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(s)

(t− s)α−n+1
ds

for 0 < n− 1 < α < n.

In this paper, the Mittag-Leffler function is crucial to
our main results, so we shall present the definitions and
some important properties of two classical Mittag-Leffler
functions. More information can be found in the book by
Dzhrbashyan [27].

Definition II.2. ( [11]) The definitions of two classical
Mittag-Leffler functions:

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
,

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α > 0.

In particular,

(1) E1(z) = ez; (2) Eα,1(z) = Eα(z) :

(3) E1,2(z) =
ez − 1

z
.

Lemma II.1. ( [11])
d

dz

[
zαEα,α+1(λzα)

]
=

zα−1Eα,α(λzα), where α, λ, z ∈ R.

Lemma II.2. ( [11]) If 0 < α < 2 and πα
2 < µ <

min{π, πα}, then

Eα,β(z) = −
N∑
k=1

1

Γ(β − αk)

1

zk
+O(

1

zN+1
)

with |z| → ∞, µ ≤ | arg(z)| ≤ π, z, β ∈ C.

B. Some important features of Mittag-Leffler function

Lemma II.3. ( [12]) Assume λ > 0 and α ∈ (0, 1), then
Eα(−λtα) ≥ 0 and Eα,α(−λtα) ≥ 0, ∀t ≥ 0.

Lemma II.4. ( [10], [13]) If λ > 0 and α ∈ (0, 1), then

(1) lim
t→∞

Eα(−λtα) = 0 and lim
t→∞

tαEα,α+1(−λtα) =
1

λ
.

(2) lim
t→∞

∫ a

0

(t− s)α−1Eα,α[−λ(t− s)α]ds = 0.

Lemma II.5. ( [10]) If λ > 0 and α ∈ (0, 1), then
tαEα,α+1(−λtα) ≤ 1

λ for t ≥ 0.

C. Some properties for fractional-order differential system

Lemma II.6. ( [14], [15]) If x(t) ∈ C1([0,∞),R), then
cDα+

0 |x(t)| ≤ sign(x(t)) cDα
0 x(t), 0 < α < 1, ∀t ∈ [0,∞),

where cDα+

0 is defined as that in Ref. [14]. If cDα
0 x(t) ≤

−ax(t) + b, where x(t) is nonnegative and a > 0, then x(t)
is bounded.

Lemma II.7. ( [16]) The initial value problem cDα
0 y(x) =

Ay(x) + f(x) with y(x)|x=0 = y0 has a unique solution
given by the formula

y(x) = y0Eα(Axα)

+

∫ x

0

(x− t)α−1Eα,α(A(x− t)α)f(t)dt

provided that the integral on the right-hand side converges.

Lemma II.8. ( [16]) Considering fractional-order differential
inequality: CDα

0 u(t) ≥ −au(t) + b, ∀t > 0, u(0) ≥ u0,
and the fractional-order differential systems: CDα

0 v(t) =
−av(t) + b, ∀t > 0, v(0) = u0. If a > 0, then u(t) ≥ v(t),
t ∈ [0,+∞).

Lemma II.9. ( [16]) Considering fractional-order differential
inequality: CDα

0 u(t) ≤ −au(t) + b, ∀t > 0, u(0) ≤ u0,
and the fractional-order differential systems: CDα

0 v(t) =
−av(t) + b, ∀t > 0, v(0) = u0. If a > 0, then u(t) ≤ v(t),
t ∈ [0,+∞).
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III. PERMANENCE

Let
umi =

amii
bMi

,

vmj =
emjj
d∗j
,

b∗i = bmi −
n∑

k=1,k 6=i

aMik
umi

,

d∗j =
n∑
k=1

dMkj
1 + (umi )2fmkj

,

uMi =
m∑
k=1

cMik
vmk b

∗
i u
m
i f

m
ik

+
aMii
b∗i
,

r∗j =
n∑
k=1

dmkj
1 + (uMk )2fMkj

−
m∑

k=1,k 6=j

eMjk
vmk
− rMj ,

vMj =
eMjj
r∗j
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Assume that the conditions below hold.

(H1) b∗i > 0, i = 1, 2, . . . , n.
(H2) r∗j > 0, j = 1, 2, . . . ,m.

A. Upper Bounds of Prey and Predator Population

Proposition III.1. Suppose that system (1.3) satisfies (H1),
then the prey and predator populations of system (1.3)
possess upper bounds as follows:

lim sup
t→∞

1

ui(t)
≤ (umi )−1,

lim sup
t→∞

1

vj(t)
≤ (vmj )−1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Proof: It is obvious that ui(t) > 0, vj(t) > 0,
i = 1, 2, . . . , n, j = 1, 2, . . . ,m. From the first equation of
system (1.3), it has

cDα
0 ui(t) ≥ −bi(t)ui(t) +

n∑
k=1

aik(t)
ui(t)

uk(t)

≥ −bMi ui(t) + amii , i = 1, 2, . . . , n.

By Lemmas II.1, II.7 and II.8, it products

ui(t) ≥ ui0Eα(−bMi tα)

+

∫ t

0

(t− s)α−1Eα,α(−bMi (t− s)α)amii dt

= ui0Eα(−bMi tα)

+amii t
αEα,α+1(−bMi tα), i = 1, 2, . . . , n.

From Lemma II.4, it yields

lim
t→+∞

ui(t) ≥
amii
bMi

:= umi , i = 1, 2, . . . , n. (3.1)

Substituting (3.1) into the second equation of system (1.3),
it gets

cDα
0 vj(t) ≥ −

n∑
k=1

dkj(t)vj(t)

1 + u2k(t)fkj(t)
+

m∑
k=1

ejk(t)
vj(t)

vk(t)

≥ −
n∑
k=1

dMkjvj(t)

1 + (umi − ε)2fmkj
+emjj , j = 1, 2, . . . ,m.

In the same way with (3.1), it obtains

vj(t) ≥ vj0Eα(−d∗j (ε)tα)

+emjjt
αEα,α+1(−d∗j (ε)tα), j = 1, 2, . . . ,m.

where d∗j (ε) =
n∑
k=1

dMkj
1 + (umi − ε)2fmkj

> 0. So

lim
t→+∞

vj(t) ≥
emjj
d∗j (ε)

≥ lim
ε→0

emjj
d∗j (ε)

=
emjj
d∗j

:= vmj , j = 1, 2, . . . ,m. (3.2)

The proof is finished.

B. Lower Bounds of Prey and Predator Population

Proposition III.2. Suppose that system (1.3) satisfies (H2),
then the prey and predator populations of system (1.3)
possess lower bounds as follows:

lim inf
t→∞

1

ui(t)
≥ (uMi )−1,

lim inf
t→∞

1

vj(t)
≥ (vMj )−1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Proof: By (3.1)-(3.2), there exists small enough ε > 0
and t0 > 0 such that

ui(t) ≥ umi − ε > 0, vj(t) ≥ vmi − ε > 0, (3.3)

where t ≥ t0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Substituting (3.3) into the first equation of system (1.3), it

leads to

cDα
0 ui(t) ≤ −bmi ui(t) +

n∑
k=1,k 6=i

aMik
ui(t)

umi − ε

+aMii +
m∑
k=1

cMik
vmk (umi − ε)fmik

= −b∗i (ε)ui(t) + aMii

+
m∑
k=1

cMik
vmk (umi − ε)fmik

, t ≥ t0, (3.4)

where b∗i (ε) = bmi −
n∑

k=1,k 6=i

aMik
umi − ε

, i = 1, 2, . . . , n. By

Lemmas II.1, II.7 and II.9, it gets

ui(t) ≤ ui0Eα(−b∗i (ε)tα)
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+

[ m∑
k=1

cMik
vmk (umi − ε)fmik

+aMii

]
tαEα,α+1(−b∗i (ε)tα), t ≥ t0,

which implies

lim
t→+∞

ui(t) ≤
m∑
k=1

cMik
vmk b

∗
i (ε)(u

m
i − ε)fmik

+
aMii
b∗i (ε)

, i = 1, 2, . . . , n.

Letting ε→ 0 in the above inequality, it has

lim
t→+∞

ui(t) ≤
m∑
k=1

cMik
vmk b

∗
i u
m
i f

m
ik

+
aMii
b∗i

:= uMi , i = 1, 2, . . . , n. (3.5)

Substituting (3.5) into the second equation of system (1.3),
it has

cDα
0 vj(t) ≤ rMj vj(t)−

n∑
k=1

dmkjvj(t)

1 + (uMk + ε)2fMkj

+
m∑

k=1,k 6=j

eMjk
vj(t)

(vmk − ε)
+ eMjj

≤ −r∗j (ε)vj(t) + eMjj , t ≥ t0,

where r∗j (ε) =
n∑
k=1

dmkj
1 + (uMk + ε)2fMkj

−
m∑

k=1,k 6=j

eMjk
(vmk − ε)

−

rMj , j = 1, 2, . . . ,m. Thus

lim
t→+∞

vj(t) ≤
eMjj
r∗j

:= vMj , (3.6)

where j = 1, 2, . . . ,m. The proof is finished.

C. Permanence result

Theorem III.1. Suppose that system (1.3) satisfies (H1)-
(H2), then system (1.3) is permanent. That is, the prey and
predator populations of system (1.3) meet

(uMi )−1 ≤ lim inf
t→∞

1

ui(t)
≤ lim sup

t→∞

1

ui(t)
≤ (umi )−1,

(vMj )−1 ≤ lim inf
t→∞

1

vj(t)
≤ lim sup

t→∞

1

vj(t)
≤ (vmj )−1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

IV. GLOBAL MITTAG-LEFFLER STABILITY

Let

λ1 = min
1≤i≤n

[
bmi +

m∑
k=1

cmik
vMk

(umi )2fmik
[1 + (uMi )2fMik ]2

−
m∑
k=1

cMik
vmk

1

[1 + (umi )2fmik ]2
−

n∑
k=1,k 6=i

aMik
umi

]
,

λ2 = max
1≤i≤n

n∑
k=1,k 6=i

aMik u
M
i

(umk )2
,

λ3 = max
1≤i≤n

m∑
k=1

cMik
(vmk )2

uMi
[1 + (umi )2fmik ]2

.

A. Two crucial inequalities

Let (ui(t), vj(t)) and (ūi(t), v̄j(t)) be any two positive
solutions of system (1.3), zi(t) = ui(t)− ūi(t), and wj(t) =
vj(t)− v̄j(t), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Proposition IV.1. There exists t1 > 0 ensuring that

cDα
0 |zi(t)| ≤ −λ1|zi(t)|+ λ2 max

1≤i≤n
|zi(t)|

+λ3 max
1≤j≤m

|wj(t)|, (4.1)

where t ≥ t1, i = 1, 2, . . . , n.

Proof: By Theorem III.1, there exists small enough
ε > 0 and t1 > 0 such that

0 < umi − ε ≤ ui(t) ≤ uMi + ε,

0 < vmi − ε ≤ vj(t) ≤ vMi + ε, t ≥ t1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Then it has

cDα
0 zi(t) = −bi(t)zi(t) +

n∑
k=1,k 6=i

aik(t)

[
ui(t)

uk(t)
− ūi(t)

ūk(t)

]

+

m∑
k=1

cik(t)

[
ui(t)

vk(t)[1 + u2i (t)fik(t)]

− ūi(t)

v̄k(t)[1 + ū2i (t)fik(t)]

]
= −bi(t)zi(t) +

n∑
k=1,k 6=i

aik(t)

[
zi(t)

uk(t)
− ūi(t)zk(t)

uk(t)ūk(t)

]

+

m∑
k=1

cik(t)

θk

[1− ξ2i fik(t)]zi(t)

[1 + ξ2i fik(t)]2

−
m∑
k=1

cik(t)

θ2k

ξiwk(t)

[1 + ξ2i fik(t)]2

≤ −
[
bi(t)−

m∑
k=1

cik(t)

θk

[1− ξ2i fik(t)]

[1 + ξ2i fik(t)]2

]
zi(t)

+
n∑

k=1,k 6=i

aMik
umi − ε

|zi(t)|

+
n∑

k=1,k 6=i

aMik (uMi + ε)

(umk − ε)2
|zk(t)|

+

m∑
k=1

cik(t)

θ2k

ξi
[1 + ξ2i fik(t)]2

|wk(t)|,

where ξi is between ui and ūi, θk is between vk and v̄k.
From Lemma II.6, it yields that

cDα
0 |zi(t)|

≤ −
[
bmi +

m∑
k=1

cmik
vMk + ε

(umi − ε)2fmik
[1 + (uMi + ε)2fMik ]2

−
m∑
k=1

cMik
vmk − ε

1

[1 + (umi − ε)2fmik ]2

−
n∑

k=1,k 6=i

aMik
umi − ε

]
|zi(t)|

+
n∑

k=1,k 6=i

aMik (uMi + ε)

(umk − ε)2
|zk(t)|
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+
m∑
k=1

cMik
(vmk − ε)2

uMi + ε

[1 + (umi − ε)2fmik ]2
|wk(t)|, (4.2)

where t ≥ t1, i = 1, 2, . . . , n. Enabling ε → 0 in (4.2), it
derives (4.1). The proof is finished.

Let

β1 = min
1≤j≤m

[ n∑
k=1

dmkj
1 + (uMk )2fMkj

−
m∑

k=1,k 6=j

eMjk
vmk
− rMj

]
,

β2 = max
1≤j≤m

m∑
k=1,k 6=j

eMjk v̄
M
j

(vmk )2
,

β3 = max
1≤j≤m

n∑
k=1

2dMkjf
M
kj u

M
k v

M
j

[1 + (umk )2fmkj ]
2
.

Proposition IV.2. There exists t1 > 0 ensuring that

cDα
0 |wj(t)| ≤ −β1|wj(t)|+ β2 max

1≤j≤m
|wj(t)|

+β3 max
1≤i≤n

|zi(t)|, (4.3)

where t ≥ t1, j = 1, 2, . . . ,m.

Proof: By the second equation of system (1.3), it has

cDα
0wj(t) = rj(t)wj(t)−

n∑
k=1

dkj(t)wj(t)

1 + µ2
kfkj(t)

+
n∑
k=1

2µkνjdkj(t)fkj(t)zk(t)

[1 + µ2
kfkj(t)]

2

+

m∑
k=1,k 6=j

ejk(t)

[
wj(t)

vk(t)
− v̄j(t)wk(t)

vk(t)v̄k(t)

]

≤ −
[ n∑
k=1

dkj(t)

1 + µ2
kfkj(t)

−
m∑

k=1,k 6=j

ejk(t)

vk(t)
− rj(t)

]
wj(t)

−
m∑

k=1,k 6=j

ejk(t)v̄j(t)

vk(t)v̄k(t)
wk(t)

+
n∑
k=1

2µkκjdkj(t)fkj(t)

[1 + µ2
kfkj(t)]

2
zk(t),

where µk is between uk and ūk, κj is between vj and v̄j . It
products from Lemma II.6 that

cDα
0 |wj(t)|

≤ −
[ n∑
k=1

dmkj
1 + (uMk + ε)2fMkj

−
m∑

k=1,k 6=j

eMjk
vmk − ε

− rMj
]
|wj(t)|

+
m∑

k=1,k 6=j

eMjk(v̄Mj + ε)

(vmk − ε)2
|wk(t)|

+
n∑
k=1

2(uMk + ε)(vMj + ε)dMkjf
M
kj

[1 + (umk − ε)2fmkj ]2
|zk(t)|, (4.4)

where t ≥ t1, j = 1, 2, . . . ,m. Enabling ε → 0 in (4.4), it
derives (4.3). The proof is finished.

B. Result of Global Mittag-Leffler Stability

Definition IV.1. Supposing that (ui(t), vj(t)) and
(ūi(t), v̄j(t)) are any two positive solutions of system
(1.3), i = 1, 2, . . . , n, j = 1, 2, . . . ,m. System (1.3) is said
to be globally Mittag-Leffler stable, if there exist M > 0
and γ > 0 ensuring that

max
1≤i≤n,1≤j≤m

{
|ui(t)− ūi(t)|, |vi(t)− v̄i(t)|

}
≤MEα(−γtα), t ≥ 0.

The number γ is called the convergent rate, which presents
the convergent speed of positive solutions for system (1.3).

Theorem IV.1. System (1.3) is globally Mittag-Leffler stable
in case

(H3) λ1 > λ2 + λ3.
(H4) β1 > β2 + β3.

Further, the convergent rate γ = min{λ1 − λ2 − λ3, β1 −
β2 − β3}.

Proof: Let |p(t)|max =
max1≤i≤n,1≤j≤m{|zi(t)|, |wj(t)|}. For any t′ ≥ t1,
there exists i0 ∈ {1, 2, . . . , n} or j0 ∈ {1, 2, . . . ,m}
such that |p(t′)|max = |zi0(t′)| or |p(t′)|max = |wj0(t′)|,
respectively.

In case |p(t′)|max = |zi0(t′)|, it follows from (4.1) that

cDα
0 |p(t′)|max = cDα

0 |zi0(t′)|
≤ −λ1|zi0(t′)|+ λ2 max

1≤i≤n
|zi(t′)|

+λ3 max
1≤j≤m

|wj(t′)|

≤ −(λ1 − λ2 − λ3)|p(t′)|max. (4.5)

In case |p(t′)|max = |wj0(t′)|, it follows from (4.3) that

cDα
0 |p(t′)|max = cDα

0 |wj0(t′)|
≤ −β1|wj0(t′)|

+β2 max
1≤j≤m

|wj(t′)|+ β3 max
1≤i≤n

|zi(t′)|

≤ −(β1 − β2 − β3)|p(t′)|max. (4.6)

By the arbitrariness of t′, it gets from (4.5) and (4.6) that

cDα
0 |p(t)|max ≤ −γ|p(t)|max, t ≥ t1. (4.7)

Considering the following equations generated by (4.7):

cDαϕ(t) = −γϕ(t), ϕ(t1) = |p(t1)|max, t > t1. (4.8)

By Lemma II.7, it has

ϕ(t) = ϕ(t1)Eα(−γtα), t > t1,

which deduces from Lemma II.9 that

|p(t)|max ≤ ϕ(t) = ϕ(t1)Eα(−γtα), t ≥ t1.

From (H3)-(H4), the solution of system (1.3) is globally
Mittag-Leffler stable. The proof is finished.
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V. GLOBAL ASYMPTOTIC PERIODIC SOLUTION

Theorem V.1. Assume that (H5) and (H6) hold, then system
(1.3) is ω-asymptotic global periodic, that is,

lim
t→∞

|ui(t+ ω)− ui(t)| = 0, i = 1, 2, · · · , n,

lim
t→∞

|vj(t+ ω)− vj(t)| = 0, j = 1, 2, · · · ,m.

Proof: Let Ni(t) = ui(t+ ω)− ui(t), Mi(t) = vi(t+
ω)− vi(t), and N(t) =

∑n
i=1Ni(t), M(t) =

∑m
j=1Mj(t),

from the first equation of system (1.3), it gets

cDαN(t) = cDα
n∑
i=1

Ni(t)

= −
n∑
i=1

[bi(t+ ω)− bi(t)]ui(t+ ω)−
n∑
i=1

bi(t)Ni(t)

+
n∑
i=1

n∑
k=1

[aik(t+ ω)− aik(t)]
ui(t)

uk(t)

+
n∑
i=1

n∑
k=1

aik(t)
Ni(t)

uk(t+ ω)

−
n∑
i=1

n∑
k=1

aik(t)
ui(t)Nk(t)

uk(t)uk(t+ ω)
+

n∑
i=1

m∑
k=1

[
cik(t)Ni(t)

vk(t+ ω)[1 + u2i (t+ ω)fik(t+ ω)]

− cik(t)ui(t)[ui(t) + ui(t+ ω)]fik(t)Ni(t)

[1 + u2i (t+ ω)fik(t+ ω)]vk(t)[1 + u2i (t)fik(t)]

+
[cik(t+ ω)− cik(t)]ui(t+ ω)

vk(t+ ω)[1 + u2i (t+ ω)fik(t+ ω)]

+
cik(t)ui(t)[vk(t)− vk(t+ ω)]

vk(t+ ω)[1 + u2i (t+ ω)fik(t+ ω)]vk(t)

+
cik(t)ui(t)u

2
i (t+ ω)[fik(t)− fik(t+ ω)]

[1 + u2i (t+ ω)fik(t+ ω)]vk(t)[1 + u2i (t)fik(t)]

]
≤ −

n∑
i=1

bmi Ni(t) +
n∑
k=1

aMik
umk − ε

Ni(t)

+
n∑
i=1

m∑
k=1

cMikNi(t)

vmk − ε

−2
n∑
i=1

m∑
k=1

cmik(umi − ε)2fmikNi(t)
[1 + (uMi + ε)2fMik ]2(vMk + ε)

+

n∑
i=1

n∑
k=1

aMik (uMi + ε)Nk(t)

(umk − ε)2

+
n∑
i=1

m∑
k=1

cik(t)ui(t)[vk(t)− vk(t+ ω)]

vk(t+ ω)[1 + u2i (t+ ω)fik(t+ ω)]vk(t)

−[bi(t+ ω)− bi(t)]ui(t+ ω)

+
n∑
i=1

n∑
k=1

[aik(t+ ω)− aik(t)]
ui(t)

uk(t)
+

n∑
i=1

m∑
k=1

[
[cik(t+ ω)− cik(t)]ui(t+ ω)

vk(t+ ω)[1 + u2i (t+ ω)fik(t+ ω)]

+
cik(t)ui(t)u

2
i (t+ ω)[fik(t)− fik(t+ ω)]

[1 + u2i (t+ ω)fik(t+ ω)]vk(t)[1 + u2i (t)fik(t)]

]
,

thus by condition (H5)-(H6), there exist positive constants
A1, B1, K1 and C1, such that

cDαN(t) ≤ −A1N(t) +B1M(t) + C1
ε

K1
, (5.1)

where i = 1, 2, · · · , n. In the same way,

cDαM(t) = cDα
m∑
j=1

Mj(t)

≤
m∑
j=1

rMj Mj(t) +
m∑
j=1

m∑
k=1

eMjk
vmk − ε

Mj(t)

−
m∑
j=1

m∑
k=1

(vmj + ε)emjk
(vMk + ε)2

Mk(t)

−
m∑
j=1

n∑
k=1

dmkjMj(t)

[1 + (uMk + ε)2fMkj ]

+2
m∑
j=1

n∑
k=1

dmkj(vj − ε)2fmkjNk(t)

[1 + (uMk + ε)2fMkj ]2

+
m∑
j=1

m∑
k=1

[ejk(t+ ω)− ejk(t)]
vj(t+ ω)

vk(t+ ω)

+
m∑
j=1

n∑
k=1

[
[dkj(t+ ω)− dkj(t)]vj(t+ ω)

[1 + u2k(t+ ω)fkj(t+ ω)]

+
dkj(t)vj(t)u

2
k(t+ ω)[fkj(t)− fkj(t+ ω)]

[1 + u2k(t+ ω)fkj(t+ ω)][1 + u2k(t)fkj(t)]

]
,

and there exist positive constants A2, B2, K2 and C2 such
that

cDαM(t) ≤ −A2M(t) +B2N(t) + C2
ε

K2
, (5.2)

where j = 1, 2, · · · ,m. From (5.1)-(5.2), it yields
cDα(N(t) +M(t)) ≤ (B2 −A1)N(t) + (B1 −A2)M(t) + Cε

≤ −A(N(t) +M(t)) + Cε,

by Lemma II.6, it leads
cDα|N(t) +M(t)| ≤ −A|N(t) +M(t)|+ Cε. (5.3)

Set V (t) = |N(t) + M(t)| − Cε
A , substitute it into (5.3), it

leads
cDαV (t) ≤ −AV (t), t > tε,

it is obvious that V is globally asymptotically stable, i.e.,
there exists t∗ε > tε, such that

|V (t)| < ε

2
,

that is,

|N(t) +M(t)| − Cε

A
| < ε

2
, t > t∗ε .

So

|N(t) +M(t)| < Cε

A
+
ε

2
< ε, t > t∗ε .

This completes the proof.

VI. AN EXAMPLE

Consider the fractional order system of two-species as
follows:

cD0.5
0 u(t) = −10u(t) + 1 +

0.5u(t)

v(t)[1 + u2(t)]
,

cD0.5
0 v(t) = 0.001v(t)− 0.5v(t)

1 + u2(t)
+ 0.1, t ≥ 0.

(6.1)
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By simple computing,

um = 0.1, vm = 0.2, b∗ = 10, d∗ = 0.5,

uM = 0.35, r∗ = 0.45, vM = 0.2,

which implies that (H1)-(H2) hold. By Theorem III.1,
system (6.1) is permanent.

Furthermore,

λ1 ≥ 9.75, λ2 = 0, λ3 = 0.44,

β1 = 0.45, β2 = 0, β3 = 0.07.

Then (H3)-(H4) are valid. By Theorem IV.1, system (6.1)
is globally Mittag-Leffler stable.

VII. CONCLUSIONS

By utilizing comparison principles and fractional calcu-
lus theory, some new conditions are established to ensure
the permanence, global Mittag-Leffler stability and global
asymptotic periodic solution of a kind of predator-prey sys-
tem with fraction-order derivative scheme. The main methods
and results can be able to study other models of fractional
order in science and engineering.
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