Permanence, Global Mittag-Leffler Stability and Global Asymptotic Periodic Solution for Multi-Species Predator-Prey Model Characterized by Caputo Fractional Differential Equations

Yuntao Liu, Shaobin Rao and Huizhen Qu

Abstract

In this paper, a kind of predator-prey system with fraction-order derivative scheme has been proposed and the issue on permanence, global Mittag-Leffler stability and global asymptotic periodic solution for the above system has been investigated. By utilizing comparison principles and fractional calculus theory, some new conditions are established to ensure the permanence, global Mittag-Leffler stability and global asymptotic periodic solution of the above systems. An example is given to demonstrate the effectiveness and feasibility of the proposed theoretical results.

Index Terms-Fractional-order differential equation, MittagLeffler function, permanence, global Mittag-Leffler stability.

I. Introduction

SInce 1930s, Lotka and Volterra presented the standard Lotka-Volterra model that the predator and prey permanently oscillate for any positive initial conditions, the dynamic relationship between predator and prey is one of the main subjects in populations dynamics due to its universal existence and importance. The predator-prey systems have been extensively studied, see papers [1]-[7] and the cited is therein. Such as, Lin, Du and Lv [6] studied a delayed multispecies competition predator-prey dynamic system with Beddington-DeAngelis functional response. Some sufficient conditions which guarantee the existence of a positive periodic solution for the system are obtained by applying the Mawhin coincidence theory. Li and Zhao [5] proposed the stability of equilibria and periodic solutions of a nonautonomous Lotka-Volterra competition model with seasonal succession by using the stability analysis of equilibria and the theory of monotone dynamical system. Cai, Huang, Chen [7] were concerned with the existence, uniqueness and global asymptotic stability of positive periodic solutions to a delayed multispecies ecological competition-predator system with Holling-III functional response by using the continuation theorem of coincidence degree theory. By means of comparison theorem and Lyapunov functional, Lin, Du and Lv [6] studied the global asymptotic stability of almost

[^0]periodic solution for the following system:
\[

\left\{$$
\begin{align*}
\dot{x}_{i}(t)= & x_{i}(t)\left[b_{i}(t)-\sum_{k=1}^{n} a_{i k}(t) x_{k}(t)\right. \tag{1.1}\\
& \left.-\sum_{k=1}^{m} \frac{c_{i k}(t) x_{i}(t) y_{k}(t)}{x_{i}^{2}(t)+f_{i k}(t)}\right] \\
\dot{y}_{j}(t)= & y_{j}(t)\left[-r_{j}(t)+\sum_{k=1}^{n} \frac{d_{k j}(t) x_{k}^{2}(t)}{x_{k}^{2}(t)+f_{k j}(t)}\right. \\
& \left.-\sum_{k=1}^{m} e_{j k}(t) y_{k}(t)\right], \quad t \geq 0
\end{align*}
$$\right.
\]

where $x_{i}(t), y_{j}(t)$ denote the size of prey and predator population at time $t ; b_{i}(t), a_{i l}(t), c_{i k}(t), r_{j}(t), d_{l j}(t)$, $e_{j k}(t)(i, l=1,2, \ldots, n ; j, k=1,2, \ldots, m)$ are all continuous positive almost periodic functions on \mathbb{R} with the ecology meaning as follows: b_{i} is the prey population grows in the absence of predators, r_{j} is the predator population decays in the absence of preys, $a_{i l}$ is the prey population decays in the competition among the preys, $e_{j k}$ is the predator population decays in the competition among the predator, $c_{i k}$ is the prey is feed upon by the predators, $d_{l j}$ is the coefficient of transformation from preys to predators, $i, l=1,2, \ldots, n$, $j, k=1,2, \ldots, m$.

It is known that, mathematical models, using integer order differential equations, as mentioned above, have been proven valuable in understanding the dynamical behaviors of biological systems. However, lots of systems, such as biological, physical, engineering, have long-range temporal memory and/or long-range space interactions [8], [9]. Modelling of such systems with fractional-order differential equations [10] have more advantages than classical integer-order ones, since fractional-order derivative can provide an excellent instrument for description of memory and hereditary properties of various materials and processes. It seems that, fractionalorder differential equations are more consistent with real phenomena than integer-order models, which due to that fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and process of which exists in most of the biological systems. Thus, in this paper, we combine the fractional-order in the system to describe the complex systems of predatorprey interactions with dynamical characteristics.

Set $x_{i}(t)=\frac{1}{u_{i}(t)}, y_{j}(t)=\frac{1}{v_{j}(t)}$, from (1.1) it yields

$$
\left\{\begin{align*}
\dot{u}_{i}(t)= & -b_{i}(t) u_{i}(t)+\sum_{k=1}^{n} a_{i k}(t) \frac{u_{i}(t)}{u_{k}(t)} \tag{1.2}\\
& +\sum_{k=1}^{m} \frac{c_{i k}(t) u_{i}(t)}{v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]} \\
\dot{v}_{j}(t)= & r_{j}(t) v_{j}(t)-\sum_{k=1}^{n} \frac{d_{k j}(t) v_{j}(t)}{1+u_{k}^{2}(t) f_{k j}(t)} \\
& +\sum_{k=1}^{m} e_{j k}(t) \frac{v_{j}(t)}{v_{k}(t)}, \quad t \geq 0
\end{align*}\right.
$$

Based on (1.2), in this paper we consider the fractional order system as follows:

$$
\left\{\begin{align*}
{ }^{c} D_{0}^{\alpha} u_{i}(t)= & -b_{i}(t) u_{i}(t)+\sum_{k=1}^{n} a_{i k}(t) \frac{u_{i}(t)}{u_{k}(t)} \tag{1.3}\\
& +\sum_{k=1}^{m} \frac{c_{i k}(t) u_{i}(t)}{v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]}, \\
{ }^{c} D_{0}^{\alpha} v_{j}(t)= & r_{j}(t) v_{j}(t)-\sum_{k=1}^{n} \frac{d_{k j}(t) v_{j}(t)}{1+u_{k}^{2}(t) f_{k j}(t)} \\
& +\sum_{k=1}^{m} e_{j k}(t) \frac{v_{j}(t)}{v_{k}(t)}, \quad t \geq 0
\end{align*}\right.
$$

where ${ }^{c} D_{0}^{\alpha}$ is the Caputo derivative of order $\alpha \in(0,1]$, which is defined as

$$
{ }^{c} D_{0}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha-1)} \int_{t_{0}}^{t} \frac{\dot{f}(s)}{(t-s)^{\alpha}} \mathrm{d} s \quad(0<\alpha<1),
$$

where $f \in C^{1}([0, \infty), \mathbb{R})$ and $\Gamma(\cdot)$ is Euler's Gamma function. All coefficients in system (1.3) are nonnegative. Obviously, fractional order system (1.3) is transformed to integer order systems (1.1)-(1.2) in case $\alpha=1$.

The remaining parts of this paper are organized as follows: In Section 2, we will present some definitions and lemmas which will be useful in the proven of the main results of this paper. In Section 3, by using comparison principle, sufficient conditions are built to ensure the permanence of system (1.3). In Section 4, we present that system (1.3) is globally Mittag-Leffler stable. In Section 5, an example is provided to expound the chief results of this paper.

Let \mathbb{R} denote the set of real numbers. \mathbb{R}^{n} denotes the n dimensional real vector space and $C^{n}\left(\left[t_{0}, \infty\right), \mathbb{R}^{n}\right)$ denotes the space consisting of n-order continuously differentiable functions. Let f is a continuous bounded function on \mathbb{R} and set $f^{M}=\sup _{t \in \mathbb{R}} f(t), f^{m}=\inf _{t \in \mathbb{R}} f(t)$.

II. Preliminaries

A. Caputo fractional derivative and Mittag-Leffler function

Definition II.1. ([11]) The Caputo derivative of fractional order α for $f \in C^{n}\left(\left[t_{0}, \infty\right), \mathbb{R}^{n}\right)$ is defined by

$$
{ }^{c} D_{t_{0}}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{t_{0}}^{t} \frac{f^{(n)}(s)}{(t-s)^{\alpha-n+1}} \mathrm{~d} s
$$

for $0<n-1<\alpha<n$.
In this paper, the Mittag-Leffler function is crucial to our main results, so we shall present the definitions and some important properties of two classical Mittag-Leffler functions. More information can be found in the book by Dzhrbashyan [27].
Definition II.2. ([11]) The definitions of two classical Mittag-Leffler functions:

$$
\begin{gathered}
E_{\alpha}(z):=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+1)}, \\
E_{\alpha, \beta}(z):=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad z \in \mathbb{C}, \quad \alpha>0 .
\end{gathered}
$$

In particular,

$$
\text { (1) } E_{1}(z)=e^{z} ; \quad \text { (2) } E_{\alpha, 1}(z)=E_{\alpha}(z) \text { : }
$$

(3) $E_{1,2}(z)=\frac{e^{z}-1}{z}$.

Lemma II.1. ([11]) $\frac{\mathrm{d}}{\mathrm{d} z}\left[z^{\alpha} \mathbb{E}_{\alpha, \alpha+1}\left(\lambda z^{\alpha}\right)\right]=$ $z^{\alpha-1} \mathbb{E}_{\alpha, \alpha}\left(\lambda z^{\alpha}\right)$, where $\alpha, \lambda, z \in \mathbb{R}$.

Lemma II.2. ([11]) If $0<\alpha<2$ and $\frac{\pi \alpha}{2}<\mu<$ $\min \{\pi, \pi \alpha\}$, then

$$
\begin{aligned}
& \mathbb{E}_{\alpha, \beta}(z)=-\sum_{k=1}^{N} \frac{1}{\Gamma(\beta-\alpha k)} \frac{1}{z^{k}}+O\left(\frac{1}{z^{N+1}}\right) \\
& \text { with }|z| \rightarrow \infty, \quad \mu \leq|\arg (z)| \leq \pi, z, \beta \in \mathbb{C} .
\end{aligned}
$$

B. Some important features of Mittag-Leffler function

Lemma II.3. ([12]) Assume $\lambda>0$ and $\alpha \in(0,1)$, then $\mathbb{E}_{\alpha}\left(-\lambda t^{\alpha}\right) \geq 0$ and $\mathbb{E}_{\alpha, \alpha}\left(-\lambda t^{\alpha}\right) \geq 0, \forall t \geq 0$.

Lemma II.4. ([10], [13]) If $\lambda>0$ and $\alpha \in(0,1)$, then
(1) $\lim _{t \rightarrow \infty} \mathbb{E}_{\alpha}\left(-\lambda t^{\alpha}\right)=0$ and $\lim _{t \rightarrow \infty} t^{\alpha} \mathbb{E}_{\alpha, \alpha+1}\left(-\lambda t^{\alpha}\right)=\frac{1}{\lambda}$.
(2) $\lim _{t \rightarrow \infty} \int_{0}^{a}(t-s)^{\alpha-1} \mathbb{E}_{\alpha, \alpha}\left[-\lambda(t-s)^{\alpha}\right] \mathrm{d} s=0$.

Lemma II.5. ([10]) If $\lambda>0$ and $\alpha \in(0,1)$, then $t^{\alpha} E_{\alpha, \alpha+1}\left(-\lambda t^{\alpha}\right) \leq \frac{1}{\lambda}$ for $t \geq 0$.

C. Some properties for fractional-order differential system

Lemma II.6. ([14], [15]) If $x(t) \in C^{1}([0, \infty), \mathbb{R})$, then ${ }^{c} D_{0}^{\alpha^{+}}|x(t)| \leq \operatorname{sign}(x(t))^{c} D_{0}^{\alpha} x(t), 0<\alpha<1, \forall t \in[0, \infty)$, where ${ }^{c} D_{0}^{\alpha^{+}}$is defined as that in Ref. [14]. If ${ }^{c} D_{0}^{\alpha} x(t) \leq$ $-a x(t)+b$, where $x(t)$ is nonnegative and $a>0$, then $x(t)$ is bounded.

Lemma II.7. ([16]) The initial value problem ${ }^{c} D_{0}^{\alpha} y(x)=$ $A y(x)+f(x)$ with $\left.y(x)\right|_{x=0}=y_{0}$ has a unique solution given by the formula

$$
\begin{gathered}
y(x)=y_{0} E_{\alpha}\left(A x^{\alpha}\right) \\
+\int_{0}^{x}(x-t)^{\alpha-1} E_{\alpha, \alpha}\left(A(x-t)^{\alpha}\right) f(t) \mathrm{d} t
\end{gathered}
$$

provided that the integral on the right-hand side converges.
Lemma II.8. ([16]) Considering fractional-order differential inequality: ${ }^{C} D_{0}^{\alpha} u(t) \geq-a u(t)+b, \forall t>0, u(0) \geq u_{0}$, and the fractional-order differential systems: ${ }^{C} D_{0}^{\alpha} v(t)=$ $-a v(t)+b, \forall t>0, v(0)=u_{0}$. If $a>0$, then $u(t) \geq v(t)$, $t \in[0,+\infty)$.

Lemma II.9. ([16]) Considering fractional-order differential inequality: ${ }^{C} D_{0}^{\alpha} u(t) \leq-a u(t)+b, \forall t>0, u(0) \leq u_{0}$, and the fractional-order differential systems: ${ }^{C} D_{0}^{\alpha} v(t)=$ $-a v(t)+b, \forall t>0, v(0)=u_{0}$. If $a>0$, then $u(t) \leq v(t)$, $t \in[0,+\infty)$.

III. Permanence

Let

$$
\begin{gathered}
u_{i}^{m}=\frac{a_{i i}^{m}}{b_{i}^{M}}, \\
v_{j}^{m}=\frac{e_{j j}^{m}}{d_{j}^{*}}, \\
b_{i}^{*}=b_{i}^{m}-\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}}{u_{i}^{m}}, \\
d_{j}^{*}=\sum_{k=1}^{n} \frac{d_{k j}^{M}}{1+\left(u_{i}^{m}\right)^{2} f_{k j}^{m}}, \\
r_{j}^{*}=\sum_{k=1}^{n} \frac{d_{k j}^{M}=\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m} b_{i}^{*} u_{i}^{m} f_{i k}^{m}}+\frac{a_{i i}^{M}}{b_{i}^{*}},}{1+\left(u_{k}^{M}\right)^{2} f_{k j}^{M}-\sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M}}{v_{k}^{m}}-r_{j}^{M},} \\
v_{j}^{M}=\frac{e_{j j}^{M}}{r_{j}^{*}},
\end{gathered}
$$

where $i=1,2, \ldots, n, j=1,2, \ldots, m$.
Assume that the conditions below hold.
$\left(H_{1}\right) \quad b_{i}^{*}>0, i=1,2, \ldots, n$.
$\left(H_{2}\right) r_{j}^{*}>0, j=1,2, \ldots, m$.

A. Upper Bounds of Prey and Predator Population

Proposition III.1. Suppose that system (1.3) satisfies $\left(H_{1}\right)$, then the prey and predator populations of system (1.3) possess upper bounds as follows:

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \frac{1}{u_{i}(t)} \leq\left(u_{i}^{m}\right)^{-1} \\
& \limsup _{t \rightarrow \infty} \frac{1}{v_{j}(t)} \leq\left(v_{j}^{m}\right)^{-1}
\end{aligned}
$$

where $i=1,2, \ldots, n, j=1,2, \ldots, m$.
Proof: It is obvious that $u_{i}(t)>0, v_{j}(t)>0$, $i=1,2, \ldots, n, j=1,2, \ldots, m$. From the first equation of system (1.3), it has

$$
\begin{aligned}
{ }^{c} D_{0}^{\alpha} u_{i}(t) & \geq-b_{i}(t) u_{i}(t)+\sum_{k=1}^{n} a_{i k}(t) \frac{u_{i}(t)}{u_{k}(t)} \\
& \geq-b_{i}^{M} u_{i}(t)+a_{i i}^{m}, \quad i=1,2, \ldots, n
\end{aligned}
$$

By Lemmas II.1, II. 7 and II.8, it products

$$
\begin{aligned}
u_{i}(t) \geq & u_{i 0} E_{\alpha}\left(-b_{i}^{M} t^{\alpha}\right) \\
& +\int_{0}^{t}(t-s)^{\alpha-1} E_{\alpha, \alpha}\left(-b_{i}^{M}(t-s)^{\alpha}\right) a_{i i}^{m} \mathrm{~d} t \\
= & u_{i 0} E_{\alpha}\left(-b_{i}^{M} t^{\alpha}\right) \\
& +a_{i i}^{m} t^{\alpha} E_{\alpha, \alpha+1}\left(-b_{i}^{M} t^{\alpha}\right), \quad i=1,2, \ldots, n
\end{aligned}
$$

From Lemma II.4, it yields

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} u_{i}(t) \geq \frac{a_{i i}^{m}}{b_{i}^{M}}:=u_{i}^{m}, \quad i=1,2, \ldots, n \tag{3.1}
\end{equation*}
$$

Substituting (3.1) into the second equation of system (1.3), it gets

$$
\begin{aligned}
{ }^{c} D_{0}^{\alpha} v_{j}(t) \geq & -\sum_{k=1}^{n} \frac{d_{k j}(t) v_{j}(t)}{1+u_{k}^{2}(t) f_{k j}(t)}+\sum_{k=1}^{m} e_{j k}(t) \frac{v_{j}(t)}{v_{k}(t)} \\
\geq & -\sum_{k=1}^{n} \frac{d_{k j}^{M} v_{j}(t)}{1+\left(u_{i}^{m}-\epsilon\right)^{2} f_{k j}^{m}} \\
& +e_{j j}^{m}, \quad j=1,2, \ldots, m .
\end{aligned}
$$

In the same way with (3.1), it obtains

$$
\begin{aligned}
v_{j}(t) \geq & v_{j 0} E_{\alpha}\left(-d_{j}^{*}(\epsilon) t^{\alpha}\right) \\
& +e_{j j}^{m} t^{\alpha} E_{\alpha, \alpha+1}\left(-d_{j}^{*}(\epsilon) t^{\alpha}\right), \quad j=1,2, \ldots, m
\end{aligned}
$$

where $d_{j}^{*}(\epsilon)=\sum_{k=1}^{n} \frac{d_{k j}^{M}}{1+\left(u_{i}^{m}-\epsilon\right)^{2} f_{k j}^{m}}>0$. So

$$
\begin{align*}
\lim _{t \rightarrow+\infty} v_{j}(t) & \geq \frac{e_{j j}^{m}}{d_{j}^{*}(\epsilon)} \\
& \geq \lim _{\epsilon \rightarrow 0} \frac{e_{j j}^{m}}{d_{j}^{*}(\epsilon)} \\
& =\frac{e_{j j}^{m}}{d_{j}^{*}}:=v_{j}^{m}, \quad j=1,2, \ldots, m \tag{3.2}
\end{align*}
$$

The proof is finished.

B. Lower Bounds of Prey and Predator Population

Proposition III.2. Suppose that system (1.3) satisfies $\left(H_{2}\right)$, then the prey and predator populations of system (1.3) possess lower bounds as follows:

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} \frac{1}{u_{i}(t)} \geq\left(u_{i}^{M}\right)^{-1} \\
& \liminf _{t \rightarrow \infty} \frac{1}{v_{j}(t)} \geq\left(v_{j}^{M}\right)^{-1}
\end{aligned}
$$

where $i=1,2, \ldots, n, j=1,2, \ldots, m$.
Proof: By (3.1)-(3.2), there exists small enough $\epsilon>0$ and $t_{0}>0$ such that

$$
\begin{equation*}
u_{i}(t) \geq u_{i}^{m}-\epsilon>0, v_{j}(t) \geq v_{i}^{m}-\epsilon>0 \tag{3.3}
\end{equation*}
$$

where $t \geq t_{0}, i=1,2, \ldots, n, j=1,2, \ldots, m$.
Substituting (3.3) into the first equation of system (1.3), it leads to

$$
\begin{align*}
{ }^{c} D_{0}^{\alpha} u_{i}(t) \leq & -b_{i}^{m} u_{i}(t)+\sum_{k=1, k \neq i}^{n} a_{i k}^{M} \frac{u_{i}(t)}{u_{i}^{m}-\epsilon} \\
& +a_{i i}^{M}+\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m}\left(u_{i}^{m}-\epsilon\right) f_{i k}^{m}} \\
= & -b_{i}^{*}(\epsilon) u_{i}(t)+a_{i i}^{M} \\
& +\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m}\left(u_{i}^{m}-\epsilon\right) f_{i k}^{m}}, \quad t \geq t_{0}, \tag{3.4}
\end{align*}
$$

where $b_{i}^{*}(\epsilon)=b_{i}^{m}-\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}}{u_{i}^{m}-\epsilon}, i=1,2, \ldots, n$. By
Lemmas II.1, II. 7 and II.9, it gets

$$
u_{i}(t) \leq u_{i 0} E_{\alpha}\left(-b_{i}^{*}(\epsilon) t^{\alpha}\right)
$$

$+\left[\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m}\left(u_{i}^{m}-\epsilon\right) f_{i k}^{m}}+a_{i i}^{M}\right] t^{\alpha} E_{\alpha, \alpha+1}\left(-b_{i}^{*}(\epsilon) t^{\alpha}\right), \quad t \geq t_{0}$,
which implies

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} u_{i}(t) \leq & \sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m} b_{i}^{*}(\epsilon)\left(u_{i}^{m}-\epsilon\right) f_{i k}^{m}} \\
& +\frac{a_{i i}^{M}}{b_{i}^{*}(\epsilon)}, \quad i=1,2, \ldots, n
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ in the above inequality, it has

$$
\begin{align*}
\lim _{t \rightarrow+\infty} u_{i}(t) \leq & \sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m} b_{i}^{*} u_{i}^{m} f_{i k}^{m}} \\
& +\frac{a_{i i}^{M}}{b_{i}^{*}}:=u_{i}^{M}, \quad i=1,2, \ldots, n \tag{3.5}
\end{align*}
$$

Substituting (3.5) into the second equation of system (1.3), it has

$$
\begin{aligned}
{ }^{c} D_{0}^{\alpha} v_{j}(t) \leq & r_{j}^{M} v_{j}(t)-\sum_{k=1}^{n} \frac{d_{k j}^{m} v_{j}(t)}{1+\left(u_{k}^{M}+\epsilon\right)^{2} f_{k j}^{M}} \\
& +\sum_{k=1, k \neq j}^{m} e_{j k}^{M} \frac{v_{j}(t)}{\left(v_{k}^{m}-\epsilon\right)}+e_{j j}^{M} \\
\leq & -r_{j}^{*}(\epsilon) v_{j}(t)+e_{j j}^{M}, \quad t \geq t_{0}
\end{aligned}
$$

where $r_{j}^{*}(\epsilon)=\sum_{k=1}^{n} \frac{d_{k j}^{m}}{1+\left(u_{k}^{M}+\epsilon\right)^{2} f_{k j}^{M}}-\sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M}}{\left(v_{k}^{m}-\epsilon\right)}-$ $r_{j}^{M}, j=1,2, \ldots, m$. Thus

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} v_{j}(t) \leq \frac{e_{j j}^{M}}{r_{j}^{*}}:=v_{j}^{M} \tag{3.6}
\end{equation*}
$$

where $j=1,2, \ldots, m$. The proof is finished.

C. Permanence result

Theorem III.1. Suppose that system (1.3) satisfies $\left(H_{1}\right)$ $\left(H_{2}\right)$, then system (1.3) is permanent. That is, the prey and predator populations of system (1.3) meet

$$
\begin{aligned}
& \left(u_{i}^{M}\right)^{-1} \leq \liminf _{t \rightarrow \infty} \frac{1}{u_{i}(t)} \leq \limsup _{t \rightarrow \infty} \frac{1}{u_{i}(t)} \leq\left(u_{i}^{m}\right)^{-1} \\
& \left(v_{j}^{M}\right)^{-1} \leq \liminf _{t \rightarrow \infty} \frac{1}{v_{j}(t)} \leq \limsup _{t \rightarrow \infty} \frac{1}{v_{j}(t)} \leq\left(v_{j}^{m}\right)^{-1}
\end{aligned}
$$

where $i=1,2, \ldots, n, j=1,2, \ldots, m$.

IV. Global Mittag-Leffler Stability

Let

$$
\begin{gathered}
\lambda_{1}=\min _{1 \leq i \leq n}\left[b_{i}^{m}+\sum_{k=1}^{m} \frac{c_{i k}^{m}}{v_{k}^{M}} \frac{\left(u_{i}^{m}\right)^{2} f_{i k}^{m}}{\left[1+\left(u_{i}^{M}\right)^{2} f_{i k}^{M}\right]^{2}}\right. \\
\left.-\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m}} \frac{1}{\left[1+\left(u_{i}^{m}\right)^{2} f_{i k}^{m}\right]^{2}}-\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}}{u_{i}^{m}}\right] \\
\lambda_{2}=\max _{1 \leq i \leq n} \sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M} u_{i}^{M}}{\left(u_{k}^{m}\right)^{2}} \\
\lambda_{3}=\max _{1 \leq i \leq n} \sum_{k=1}^{m} \frac{c_{i k}^{M}}{\left(v_{k}^{m}\right)^{2}} \frac{u_{i}^{M}}{\left[1+\left(u_{i}^{m}\right)^{2} f_{i k}^{m}\right]^{2}}
\end{gathered}
$$

A. Two crucial inequalities

Let $\left(u_{i}(t), v_{j}(t)\right)$ and $\left(\bar{u}_{i}(t), \bar{v}_{j}(t)\right)$ be any two positive solutions of system (1.3), $z_{i}(t)=u_{i}(t)-\bar{u}_{i}(t)$, and $w_{j}(t)=$ $v_{j}(t)-\bar{v}_{j}(t), i=1,2, \ldots, n, j=1,2, \ldots, m$.
Proposition IV.1. There exists $t_{1}>0$ ensuring that

$$
\begin{align*}
{ }^{c} D_{0}^{\alpha}\left|z_{i}(t)\right| \leq & -\lambda_{1}\left|z_{i}(t)\right|+\lambda_{2} \max _{1 \leq i \leq n}\left|z_{i}(t)\right| \\
& +\lambda_{3} \max _{1 \leq j \leq m}\left|w_{j}(t)\right| \tag{4.1}
\end{align*}
$$

where $t \geq t_{1}, i=1,2, \ldots, n$.
Proof: By Theorem III.1, there exists small enough $\epsilon>0$ and $t_{1}>0$ such that

$$
\begin{gathered}
0<u_{i}^{m}-\epsilon \leq u_{i}(t) \leq u_{i}^{M}+\epsilon \\
0<v_{i}^{m}-\epsilon \leq v_{j}(t) \leq v_{i}^{M}+\epsilon, \quad t \geq t_{1}
\end{gathered}
$$

where $i=1,2, \ldots, n, j=1,2, \ldots, m$. Then it has

$$
\begin{aligned}
{ }^{c} D_{0}^{\alpha} z_{i}(t)= & -b_{i}(t) z_{i}(t)+\sum_{k=1, k \neq i}^{n} a_{i k}(t)\left[\frac{u_{i}(t)}{u_{k}(t)}-\frac{\bar{u}_{i}(t)}{\bar{u}_{k}(t)}\right] \\
& +\sum_{k=1}^{m} c_{i k}(t)\left[\frac{u_{i}(t)}{v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]}\right. \\
& \left.-\frac{\bar{u}_{i}(t)}{\bar{v}_{k}(t)\left[1+\bar{u}_{i}^{2}(t) f_{i k}(t)\right]}\right] \\
= & -b_{i}(t) z_{i}(t)+\sum_{k=1, k \neq i}^{n} a_{i k}(t)\left[\frac{z_{i}(t)}{u_{k}(t)}-\frac{\bar{u}_{i}(t) z_{k}(t)}{u_{k}(t) \bar{u}_{k}(t)}\right] \\
& +\sum_{k=1}^{m} \frac{c_{i k}(t)}{\theta_{k}} \frac{\left[1-\xi_{i}^{2} f_{i k}(t)\right] z_{i}(t)}{\left[1+\xi_{i}^{2} f_{i k}(t)\right]^{2}} \\
& -\sum_{k=1}^{m} \frac{c_{i k}(t)}{\theta_{k}^{2}} \frac{\xi_{i} w_{k}(t)}{\left[1+\xi_{i}^{2} f_{i k}(t)\right]^{2}} \\
\leq & -\left[b_{i}(t)-\sum_{k=1}^{m} \frac{c_{i k}(t)}{\theta_{k}} \frac{\left[1-\xi_{i}^{2} f_{i k}(t)\right]}{\left.\left[1+\xi_{i}^{2} f_{i k}(t)\right]^{2}\right]} z_{i}(t)\right. \\
& +\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}}{u_{i}^{m}-\epsilon}\left|z_{i}(t)\right| \\
& +\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}\left(u_{i}^{M}+\epsilon\right)}{\left(u_{k}^{m}-\epsilon\right)^{2}}\left|z_{k}(t)\right| \\
& \frac{c_{i k}(t)}{\theta_{k}^{2}} \frac{\xi_{i}}{\left[1+\xi_{i}^{2} f_{i k}(t)\right]^{2}}\left|w_{k}(t)\right| \\
&
\end{aligned}
$$

where ξ_{i} is between u_{i} and \bar{u}_{i}, θ_{k} is between v_{k} and \bar{v}_{k}.
From Lemma II.6, it yields that

$$
\begin{aligned}
& { }^{c} D_{0}^{\alpha}\left|z_{i}(t)\right| \\
\leq & -\left[b_{i}^{m}+\sum_{k=1}^{m} \frac{c_{i k}^{m}}{v_{k}^{M}+\epsilon} \frac{\left(u_{i}^{m}-\epsilon\right)^{2} f_{i k}^{m}}{\left[1+\left(u_{i}^{M}+\epsilon\right)^{2} f_{i k}^{M}\right]^{2}}\right. \\
& -\sum_{k=1}^{m} \frac{c_{i k}^{M}}{v_{k}^{m}-\epsilon} \frac{1}{\left[1+\left(u_{i}^{m}-\epsilon\right)^{2} f_{i k}^{m}\right]^{2}} \\
& \left.-\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}}{u_{i}^{m}-\epsilon}\right]\left|z_{i}(t)\right| \\
& +\sum_{k=1, k \neq i}^{n} \frac{a_{i k}^{M}\left(u_{i}^{M}+\epsilon\right)}{\left(u_{k}^{m}-\epsilon\right)^{2}}\left|z_{k}(t)\right|
\end{aligned}
$$

$$
\begin{equation*}
+\sum_{k=1}^{m} \frac{c_{i k}^{M}}{\left(v_{k}^{m}-\epsilon\right)^{2}} \frac{u_{i}^{M}+\epsilon}{\left[1+\left(u_{i}^{m}-\epsilon\right)^{2} f_{i k}^{m}\right]^{2}}\left|w_{k}(t)\right| \tag{4.2}
\end{equation*}
$$

where $t \geq t_{1}, i=1,2, \ldots, n$. Enabling $\epsilon \rightarrow 0$ in (4.2), it derives (4.1). The proof is finished.

Let

$$
\begin{gathered}
\beta_{1}=\min _{1 \leq j \leq m}\left[\sum_{k=1}^{n} \frac{d_{k j}^{m}}{1+\left(u_{k}^{M}\right)^{2} f_{k j}^{M}}-\sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M}}{v_{k}^{m}}-r_{j}^{M}\right], \\
\beta_{2}=\max _{1 \leq j \leq m} \sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M} \bar{v}_{j}^{M}}{\left(v_{k}^{m}\right)^{2}}, \\
\beta_{3}=\max _{1 \leq j \leq m} \sum_{k=1}^{n} \frac{2 d_{k j}^{M} f_{k j}^{M} u_{k}^{M} v_{j}^{M}}{\left[1+\left(u_{k}^{m}\right)^{2} f_{k j}^{m}\right]^{2}} .
\end{gathered}
$$

Proposition IV.2. There exists $t_{1}>0$ ensuring that

$$
\begin{align*}
{ }^{c} D_{0}^{\alpha}\left|w_{j}(t)\right| \leq & -\beta_{1}\left|w_{j}(t)\right|+\beta_{2} \max _{1 \leq j \leq m}\left|w_{j}(t)\right| \\
& +\beta_{3} \max _{1 \leq i \leq n}\left|z_{i}(t)\right|, \tag{4.3}
\end{align*}
$$

where $t \geq t_{1}, j=1,2, \ldots, m$.
Proof: By the second equation of system (1.3), it has

$$
\begin{aligned}
{ }^{c} D_{0}^{\alpha} w_{j}(t)= & r_{j}(t) w_{j}(t)-\sum_{k=1}^{n} \frac{d_{k j}(t) w_{j}(t)}{1+\mu_{k}^{2} f_{k j}(t)} \\
& +\sum_{k=1}^{n} \frac{2 \mu_{k} \nu_{j} d_{k j}(t) f_{k j}(t) z_{k}(t)}{\left[1+\mu_{k}^{2} f_{k j}(t)\right]^{2}} \\
& +\sum_{k=1, k \neq j}^{m} e_{j k}(t)\left[\frac{w_{j}(t)}{v_{k}(t)}-\frac{\bar{v}_{j}(t) w_{k}(t)}{v_{k}(t) \bar{v}_{k}(t)}\right] \\
\leq & -\left[\sum_{k=1}^{n} \frac{d_{k j}(t)}{1+\mu_{k}^{2} f_{k j}(t)}\right. \\
& \left.-\sum_{k=1, k \neq j}^{m} \frac{e_{j k}(t)}{v_{k}(t)}-r_{j}(t)\right] w_{j}(t) \\
& -\sum_{k=1, k \neq j}^{m} \frac{e_{j k}(t) \bar{v}_{j}(t)}{v_{k}(t) \bar{v}_{k}(t)} w_{k}(t) \\
& +\sum_{k=1}^{n} \frac{2 \mu_{k} \kappa_{j} d_{k j}(t) f_{k j}(t)}{\left[1+\mu_{k}^{2} f_{k j}(t)\right]^{2}} z_{k}(t)
\end{aligned}
$$

where μ_{k} is between u_{k} and \bar{u}_{k}, κ_{j} is between v_{j} and \bar{v}_{j}. It products from Lemma II. 6 that

$$
\begin{align*}
&{ }^{c} D_{0}^{\alpha}\left|w_{j}(t)\right| \\
& \leq-\left[\sum_{k=1}^{n} \frac{d_{k j}^{m}}{1+\left(u_{k}^{M}+\epsilon\right)^{2} f_{k j}^{M}}\right. \\
&\left.-\sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M}}{v_{k}^{m}-\epsilon}-r_{j}^{M}\right]\left|w_{j}(t)\right| \\
&+\sum_{k=1, k \neq j}^{m} \frac{e_{j k}^{M}\left(\bar{v}_{j}^{M}+\epsilon\right)}{\left(v_{k}^{m}-\epsilon\right)^{2}}\left|w_{k}(t)\right| \\
&+\sum_{k=1}^{n} \frac{2\left(u_{k}^{M}+\epsilon\right)\left(v_{j}^{M}+\epsilon\right) d_{k j}^{M} f_{k j}^{M}}{\left[1+\left(u_{k}^{m}-\epsilon\right)^{2} f_{k j}^{m}\right]^{2}}\left|z_{k}(t)\right|, \tag{4.4}
\end{align*}
$$

where $t \geq t_{1}, j=1,2, \ldots, m$. Enabling $\epsilon \rightarrow 0$ in (4.4), it derives (4.3). The proof is finished.

B. Result of Global Mittag-Leffler Stability

Definition IV.1. Supposing that $\left(u_{i}(t), v_{j}(t)\right)$ and $\left(\bar{u}_{i}(t), \bar{v}_{j}(t)\right)$ are any two positive solutions of system (1.3), $i=1,2, \ldots, n, j=1,2, \ldots, m$. System (1.3) is said to be globally Mittag-Leffler stable, if there exist $M>0$ and $\gamma>0$ ensuring that

$$
\begin{gathered}
\max _{1 \leq i \leq n, 1 \leq j \leq m}\left\{\left|u_{i}(t)-\bar{u}_{i}(t)\right|,\left|v_{i}(t)-\bar{v}_{i}(t)\right|\right\} \\
\leq M E_{\alpha}\left(-\gamma t^{\alpha}\right), \quad t \geq 0
\end{gathered}
$$

The number γ is called the convergent rate, which presents the convergent speed of positive solutions for system (1.3).

Theorem IV.1. System (1.3) is globally Mittag-Leffler stable in case

$$
\begin{aligned}
& \left(H_{3}\right) \lambda_{1}>\lambda_{2}+\lambda_{3} . \\
& \left(H_{4}\right) \beta_{1}>\beta_{2}+\beta_{3} .
\end{aligned}
$$

Further, the convergent rate $\gamma=\min \left\{\lambda_{1}-\lambda_{2}-\lambda_{3}, \beta_{1}-\right.$ $\left.\beta_{2}-\beta_{3}\right\}$.

Proof: Let $|p(t)|_{\max }=$ $\max _{1 \leq i \leq n, 1 \leq j \leq m}\left\{\left|z_{i}(t)\right|,\left|w_{j}(t)\right|\right\}$. For any $t^{\prime} \geq t_{1}$, there exists $i_{0} \in\{1,2, \ldots, n\}$ or $j_{0} \in\{1,2, \ldots, m\}$ such that $\left|p\left(t^{\prime}\right)\right|_{\text {max }}=\left|z_{i_{0}}\left(t^{\prime}\right)\right|$ or $\left|p\left(t^{\prime}\right)\right|_{\max }=\left|w_{j_{0}}\left(t^{\prime}\right)\right|$, respectively.

In case $\left|p\left(t^{\prime}\right)\right|_{\max }=\left|z_{i_{0}}\left(t^{\prime}\right)\right|$, it follows from (4.1) that

$$
\begin{align*}
{ }^{c} D_{0}^{\alpha}\left|p\left(t^{\prime}\right)\right| \max & { }^{c} D_{0}^{\alpha}\left|z_{i_{0}}\left(t^{\prime}\right)\right| \\
\leq & -\lambda_{1}\left|z_{i_{0}}\left(t^{\prime}\right)\right|+\lambda_{2} \max _{1 \leq i \leq n}\left|z_{i}\left(t^{\prime}\right)\right| \\
& +\lambda_{3} \max _{1 \leq j \leq m}\left|w_{j}\left(t^{\prime}\right)\right| \\
\leq & -\left(\lambda_{1}-\lambda_{2}-\lambda_{3}\right)\left|p\left(t^{\prime}\right)\right|_{\max } . \tag{4.5}
\end{align*}
$$

In case $\left|p\left(t^{\prime}\right)\right|_{\max }=\left|w_{j_{0}}\left(t^{\prime}\right)\right|$, it follows from (4.3) that

$$
\begin{align*}
{ }^{c} D_{0}^{\alpha}\left|p\left(t^{\prime}\right)\right|_{\max }= & { }^{c} D_{0}^{\alpha}\left|w_{j_{0}}\left(t^{\prime}\right)\right| \\
\leq & -\beta_{1}\left|w_{j_{0}}\left(t^{\prime}\right)\right| \\
& +\beta_{2} \max _{1 \leq j \leq m}\left|w_{j}\left(t^{\prime}\right)\right|+\beta_{3} \max _{1 \leq i \leq n}\left|z_{i}\left(t^{\prime}\right)\right| \\
\leq & -\left(\beta_{1}-\beta_{2}-\beta_{3}\right)\left|p\left(t^{\prime}\right)\right|_{\text {max. }} . \tag{4.6}
\end{align*}
$$

By the arbitrariness of t^{\prime}, it gets from (4.5) and (4.6) that

$$
\begin{equation*}
{ }^{c} D_{0}^{\alpha}|p(t)|_{\max } \leq-\gamma|p(t)|_{\max }, \quad t \geq t_{1} \tag{4.7}
\end{equation*}
$$

Considering the following equations generated by (4.7):

$$
\begin{equation*}
{ }^{c} D^{\alpha} \varphi(t)=-\gamma \varphi(t), \varphi\left(t_{1}\right)=\left|p\left(t_{1}\right)\right|_{\max }, \quad t>t_{1} . \tag{4.8}
\end{equation*}
$$

By Lemma II.7, it has

$$
\varphi(t)=\varphi\left(t_{1}\right) E_{\alpha}\left(-\gamma t^{\alpha}\right), \quad t>t_{1}
$$

which deduces from Lemma II. 9 that

$$
|p(t)|_{\max } \leq \varphi(t)=\varphi\left(t_{1}\right) E_{\alpha}\left(-\gamma t^{\alpha}\right), \quad t \geq t_{1}
$$

From $\left(H_{3}\right)-\left(H_{4}\right)$, the solution of system (1.3) is globally Mittag-Leffler stable. The proof is finished.

V. Global Asymptotic Periodic Solution

Theorem V.1. Assume that $\left(H_{5}\right)$ and $\left(H_{6}\right)$ hold, then system (1.3) is ω-asymptotic global periodic, that is,

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty}\left|u_{i}(t+\omega)-u_{i}(t)\right|=0, & i=1,2, \cdots, n, \\
\lim _{t \rightarrow \infty}\left|v_{j}(t+\omega)-v_{j}(t)\right|=0, & j=1,2, \cdots, m .
\end{array}
$$

Proof: Let $N_{i}(t)=u_{i}(t+\omega)-u_{i}(t), M_{i}(t)=v_{i}(t+$ $\omega)-v_{i}(t)$, and $N(t)=\sum_{i=1}^{n} N_{i}(t), M(t)=\sum_{j=1}^{m} M_{j}(t)$, from the first equation of system (1.3), it gets

$$
\begin{aligned}
& { }^{c} D^{\alpha} N(t)={ }^{c} D^{\alpha} \sum_{i=1}^{n} N_{i}(t) \\
& =-\sum_{i=1}^{n}\left[b_{i}(t+\omega)-b_{i}(t)\right] u_{i}(t+\omega)-\sum_{i=1}^{n} b_{i}(t) N_{i}(t) \\
& +\sum_{i=1}^{n} \sum_{k=1}^{n}\left[a_{i k}(t+\omega)-a_{i k}(t)\right] \frac{u_{i}(t)}{u_{k}(t)} \\
& +\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k}(t) \frac{N_{i}(t)}{u_{k}(t+\omega)} \\
& -\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k}(t) \frac{u_{i}(t) N_{k}(t)}{u_{k}(t) u_{k}(t+\omega)}+\sum_{i=1}^{n} \sum_{k=1}^{m}[\\
& \frac{c_{i k}(t) N_{i}(t)}{v_{k}(t+\omega)\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right]} \\
& -\frac{c_{i k}(t) u_{i}(t)\left[u_{i}(t)+u_{i}(t+\omega)\right] f_{i k}(t) N_{i}(t)}{\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right] v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]} \\
& +\frac{\left[c_{i k}(t+\omega)-c_{i k}(t)\right] u_{i}(t+\omega)}{v_{k}(t+\omega)\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right]} \\
& +\frac{c_{i k}(t) u_{i}(t)\left[v_{k}(t)-v_{k}(t+\omega)\right]}{v_{k}(t+\omega)\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right] v_{k}(t)} \\
& \left.+\frac{c_{i k}(t) u_{i}(t) u_{i}^{2}(t+\omega)\left[f_{i k}(t)-f_{i k}(t+\omega)\right]}{\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right] v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]}\right] \\
& \leq-\sum_{i=1}^{n} b_{i}^{m} N_{i}(t)+\sum_{k=1}^{n} \frac{a_{i k}^{M}}{u_{k}^{m}-\epsilon} N_{i}(t) \\
& +\sum_{i=1}^{n} \sum_{k=1}^{m} \frac{c_{i k}^{M} N_{i}(t)}{v_{k}^{m}-\epsilon} \\
& -2 \sum_{i=1}^{n} \sum_{k=1}^{m} \frac{c_{i k}^{m}\left(u_{i}^{m}-\epsilon\right)^{2} f_{i k}^{m} N_{i}(t)}{\left[1+\left(u_{i}^{M}+\epsilon\right)^{2} f_{i k}^{M}\right]^{2}\left(v_{k}^{M}+\epsilon\right)} \\
& +\sum_{i=1}^{n} \sum_{k=1}^{n} \frac{a_{i k}^{M}\left(u_{i}^{M}+\epsilon\right) N_{k}(t)}{\left(u_{k}^{m}-\epsilon\right)^{2}} \\
& +\sum_{i=1}^{n} \sum_{k=1}^{m} \frac{c_{i k}(t) u_{i}(t)\left[v_{k}(t)-v_{k}(t+\omega)\right]}{v_{k}(t+\omega)\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right] v_{k}(t)} \\
& -\left[b_{i}(t+\omega)-b_{i}(t)\right] u_{i}(t+\omega) \\
& +\sum_{i=1}^{n} \sum_{k=1}^{n}\left[a_{i k}(t+\omega)-a_{i k}(t)\right] \frac{u_{i}(t)}{u_{k}(t)}+\sum_{i=1}^{n} \sum_{k=1}^{m}[\\
& \frac{\left[c_{i k}(t+\omega)-c_{i k}(t)\right] u_{i}(t+\omega)}{v_{k}(t+\omega)\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right]} \\
& \left.+\frac{c_{i k}(t) u_{i}(t) u_{i}^{2}(t+\omega)\left[f_{i k}(t)-f_{i k}(t+\omega)\right]}{\left[1+u_{i}^{2}(t+\omega) f_{i k}(t+\omega)\right] v_{k}(t)\left[1+u_{i}^{2}(t) f_{i k}(t)\right]}\right],
\end{aligned}
$$

thus by condition $\left(H_{5}\right)-\left(H_{6}\right)$, there exist positive constants A_{1}, B_{1}, K_{1} and C_{1}, such that

$$
\begin{equation*}
{ }^{c} D^{\alpha} N(t) \leq-A_{1} N(t)+B_{1} M(t)+C_{1} \frac{\epsilon}{K_{1}}, \tag{5.1}
\end{equation*}
$$

where $i=1,2, \cdots, n$. In the same way,

$$
\begin{aligned}
&{ }^{c} D^{\alpha} M(t)={ }^{c} D^{\alpha} \sum_{j=1}^{m} M_{j}(t) \\
& \leq \sum_{j=1}^{m} r_{j}^{M} M_{j}(t)+\sum_{j=1}^{m} \sum_{k=1}^{m} \frac{e_{j k}^{M}}{v_{k}^{m}-\epsilon} M_{j}(t) \\
&-\sum_{j=1}^{m} \sum_{k=1}^{m} \frac{\left(v_{j}^{m}+\epsilon\right) e_{j k}^{m}}{\left(v_{k}^{M}+\epsilon\right)^{2}} M_{k}(t) \\
&-\sum_{j=1}^{m} \sum_{k=1}^{n} \frac{d_{k j}^{m} M_{j}(t)}{\left[1+\left(u_{k}^{M}+\epsilon\right)^{2} f_{k j}^{M}\right]} \\
&+2 \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{d_{k j}^{m}\left(v_{j}-\epsilon\right)^{2} f_{k j}^{m} N_{k}(t)}{\left[1+\left(u_{k}^{M}+\epsilon\right)^{2} f_{k j}^{M}\right]^{2}} \\
&+\sum_{j=1}^{m} \sum_{k=1}^{m}\left[e_{j k}(t+\omega)-e_{j k}(t)\right] \frac{v_{j}(t+\omega)}{v_{k}(t+\omega)} \\
&+\sum_{j=1}^{m} \sum_{k=1}^{n}\left[\frac{\left[d_{k j}(t+\omega)-d_{k j}(t)\right] v_{j}(t+\omega)}{\left[1+u_{k}^{2}(t+\omega) f_{k j}(t+\omega)\right]}\right. \\
&\left.+\frac{d_{k j}(t) v_{j}(t) u_{k}^{2}(t+\omega)\left[f_{k j}(t)-f_{k j}(t+\omega)\right]}{\left[1+u_{k}^{2}(t+\omega) f_{k j}(t+\omega)\right]\left[1+u_{k}^{2}(t) f_{k j}(t)\right]}\right]
\end{aligned}
$$

and there exist positive constants A_{2}, B_{2}, K_{2} and C_{2} such that

$$
\begin{equation*}
{ }^{c} D^{\alpha} M(t) \leq-A_{2} M(t)+B_{2} N(t)+C_{2} \frac{\epsilon}{K_{2}} \tag{5.2}
\end{equation*}
$$

where $j=1,2, \cdots, m$. From (5.1)-(5.2), it yields

$$
\begin{aligned}
{ }^{c} D^{\alpha}(N(t)+M(t)) & \leq\left(B_{2}-A_{1}\right) N(t)+\left(B_{1}-A_{2}\right) M(t)+C \epsilon \\
& \leq-A(N(t)+M(t))+C \epsilon,
\end{aligned}
$$

by Lemma II.6, it leads

$$
\begin{equation*}
{ }^{c} D^{\alpha}|N(t)+M(t)| \leq-A|N(t)+M(t)|+C \epsilon . \tag{5.3}
\end{equation*}
$$

Set $V(t)=|N(t)+M(t)|-\frac{C \epsilon}{A}$, substitute it into (5.3), it leads

$$
{ }^{c} D^{\alpha} V(t) \leq-A V(t), \quad t>t_{\epsilon},
$$

it is obvious that V is globally asymptotically stable, i.e., there exists $t_{\epsilon}^{*}>t_{\epsilon}$, such that

$$
|V(t)|<\frac{\epsilon}{2}
$$

that is,

$$
\left.|N(t)+M(t)|-\frac{C \epsilon}{A} \right\rvert\,<\frac{\epsilon}{2}, \quad t>t_{\epsilon}^{*} .
$$

So

$$
|N(t)+M(t)|<\frac{C \epsilon}{A}+\frac{\epsilon}{2}<\epsilon, \quad t>t_{\epsilon}^{*} .
$$

This completes the proof.

VI. An example

Consider the fractional order system of two-species as follows:

$$
\left\{\begin{align*}
{ }^{c} D_{0}^{0.5} u(t) & =-10 u(t)+1+\frac{0.5 u(t)}{v(t)\left[1+u^{2}(t)\right]} \tag{6.1}\\
{ }^{c} D_{0}^{0.5} v(t) & =0.001 v(t)-\frac{0.5 v(t)}{1+u^{2}(t)}+0.1, \quad t \geq 0
\end{align*}\right.
$$

By simple computing,

$$
\begin{gathered}
u^{m}=0.1, \quad v^{m}=0.2, \quad b^{*}=10, \quad d^{*}=0.5 \\
u^{M}=0.35, \quad r^{*}=0.45, \quad v^{M}=0.2
\end{gathered}
$$

which implies that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. By Theorem III.1, system (6.1) is permanent.

Furthermore,

$$
\begin{array}{ll}
\lambda_{1} \geq 9.75, & \lambda_{2}=0,
\end{array} \quad \lambda_{3}=0.44, ~ 子 \beta_{3}=0.07 . ~ \$ 0.45, \quad \beta_{2}=0, \quad \beta_{3}=
$$

Then $\left(H_{3}\right)-\left(H_{4}\right)$ are valid. By Theorem IV.1, system (6.1) is globally Mittag-Leffler stable.

VII. Conclusions

By utilizing comparison principles and fractional calculus theory, some new conditions are established to ensure the permanence, global Mittag-Leffler stability and global asymptotic periodic solution of a kind of predator-prey system with fraction-order derivative scheme. The main methods and results can be able to study other models of fractional order in science and engineering.

References

[1] T. Yuan, L.Y. Pang, T.W. Zhang, "Permanence, Almost Periodic Oscillations and Stability of Delayed Predator-Prey System with General Functional Response," IAENG International Journal of Applied Mathematics, vol. 49, no.2, pp155-164, 2019.
[2] Y.Y. Yang, T.W. Zhang, "Permanence and Uniform Asymptotical Stability in Consumer-Resource System with Mutual Interference on Time Scales," IAENG International Journal of Applied Mathematics, vol. 49, no.3, pp334-338, 2019.
[3] L.Y. Pang, T.W. Zhang, "Almost Periodic Oscillation in a Watt-type Predator-prey Model with Diffusion and Time Delays," IAENG International Journal of Applied Mathematics, vol. 45, no.2, pp92-101, 2015.
[4] T.W. Zhang, L. Yang, L.J. Xu, Stage-structured control on a class of predator-prey system in almost periodic environment, International Journal of Control, 2020, 93: 1442-1460.
[5] J.X. Li, A.M. Zhao, Stability analysis of a non-autonomous LotkaVolterra competition model with seasonal succession, Applied Mathematical Modelling, 2016, 40: 763-781.
[6] X.J. Lin, Z.J. Du, Y.S. Lv, Periodic solution to a multispecies predatorprey competition dynamics system with Beddington-Deangelis functional response and time delay, Applications of Mathematics, 2013, 58: 673-687.
[7] Z.W. Cai, L.H. Huang, H.B. Chen, Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays, Applied Mathematics and Computation, 2011, 217: 4866-4878.
[8] A.A. Elsadany, A.E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, Journal of Applied Mathematics and Computing, 2015, 49: 269-283.
[9] T.W. Zhang, J.W. Zhou, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise caputo derivatives, IEEE Transactions on Cybernetics, 2021, in press, doi: 10.1109/TCYB.2021.3054946.
[10] T.W. Zhang, L.L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Applied Mathematics Letters, 2020, 101: 106072.
[11] B.L. Guo, X.K. Pu, F.H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Beijing: Science Press, 2011.
[12] J.R. Wang, M. Feckan, Y. Zhou, Presentation of solutions of impulsive fractional Langevin equations and existence results, European Physical Journal Special Topics, 2013, 222: 1857-1874.
[13] H.Z. Qu, T.W. Zhang, J.W. Zhou, Global stability analysis of Sasymptotically ω-periodic oscillation in fractional-order cellular neural networks with time variable delays, Neurocomputing, 2000, 399: 390398.
[14] S. Yang, C. Hu, J. Yu, H.J. Jiang, Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Transactions on Cybernetics, 2019, in press, doi: 10.1109/TCYB.2019.2906497.
[15] B.S. Chen, J.J. Chen, Global asymptotic ω-periodicity of a fractionalorder non-automous neural networks, Neural Networks, 2015, 68: 7888.
[16] I. Matychyn, V. Onyshchenko, Impulsive differential equations with fractional derivatives, International Journal of Difference Equations, 2014, 1: 101-109.

[^0]: Manuscript received Dec 23, 2020; revised Feb 15, 2021. This work is supported by the Scientific Research Fund of Yunnan Provincial Education Department (2020J1223).

 Yuntao Liu is a teacher of Oxbridge College, Kunming University of Science and Technology, Kunming 650106, China (e-mail: lythb@126.com).
 Shaobin Rao is a teacher of Oxbridge College, Kunming University of Science and Technology, Kunming 650106, China (e-mail: 627894566@qq.com).
 Huizhen Qu is a teacher of School of Basic Science, Guilin University of Technology at Nanning, Nanning 530001, China (corresponding author to provide e-mail: quhz0707@163.com).

