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Abstract—Invariants play an important role in continuum
mechanics. Knowing the number of independent invariants
is crucial in modelling and in a rigorous construction of a
constitutive equation for a particular material, where it is
determined by doing tests that hold all, except one, of the
independent invariants constant so that the dependence in the
one invariant can be identified. Hence, the aim of this paper is
to prove that the number of independent invariants for a set of
n symmetric tensors and m unit vectors is at most 2m+6n−3.
The prove requires the construction of spectral invariants. All
classical invariants can be explicitly expressed in terms spectral
invariants. We show that the number of spectral invariants in
an irreducible functional basis is reduced to 2m + 6n − 3; a
significant reduction to that obtained in the literature if the
value of m or n is large. Relations between classical invariants
in a classical-minimal integrity basis are given.

Index Terms—Continuum mechanics, Independent invari-
ants, Integrity basis, Tensors and vectors, Relations

I. INTRODUCTION

Tensors and vectors play an important role in continuum
mechanics [1]. The construction of rotational invariants of
sets containing vectors and tensors in continuum mechanics,
especially for anisotropic materials [2], [3], [4], [5], has been
active for around 70 years. The classical invariants developed
by Spencer [1], published in 1971, have been extensively
used in the literature. Spencer [1] stated that ” It frequently
happens that polynomial relations exist between invariants
which do not permit any one invariant to be expressed as
a polynomial in the remainder. Such relations are called
syzygies”. This suggests that some of the invariants in a given
classical-minimal integrity basis may not be independent (see
also [6] ). However, due to the difficulty in constructing
relations (syzygies) among classical invariants, Spencer [1]
did not specifically mention the number of existing syzygies
for a given classical-minimal integrity basis, and in view
of this, the number of independent invariants was, often,
not correctly stated in the literature and it is occasionally
assumed in the literature (see, for example [7], [8] ) that
all the invariants in a classical-minimal integrity (or in an
irreducible functional [9]) basis are independent. To prove
the number of independent classical invariants in a classical-
minimal integrity basis is not straightforward. However,
recently, in the case of an m-preferred direction anisotropic
solid, Shariff [10] proved that the number of independent
invariants is at most 2m+ 3 (see also [11], [12], [13], [14])
and in the case of n− symmetric tensors, Shariff [15] (see
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also [16]) proved that at most 6n− 3 classical invariants are
independent. In this communication, using spectral invariants
[2], [3], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], we extend these results to prove that the number
of independent invariants for m vectors and n symmetric
tensors is 2m+6n−3. We also give relations (not necessarily
syzygies) between classical invariants in the corresponding
classical-minimal integrity basis. Knowing the number of
independent invariants is crucial in modelling [4], [5] and
in a rigorous construction of a constitutive equation of a
particular material, where it is determined by doing tests that
hold all, except one, of the independent invariants constant
so that the dependence in the one invariant can be identified
[17], [29], [30].

It is important to note that the invariants used to charac-
terize a scalar function, required for a constitutive equation,
cannot have an arbitrary form. They must satisfy the P -
property as described in [21]; we elaborate this property in
Appendix A.

II. PRELIMINARIES

In this paper, the summation convention is not used and
all subscripts i,j and k take the values 1, 2, 3, unless stated
otherwise. Preliminary concepts of functional and integrity
bases, and syzygies are given in Appendix B.

Consider the set

S(m,n) = {v(r),A(s) | r = 0, 1 . . . ,m , s = 1, 2 . . . , n} ,

(1)

where m and n are non-negative integers, A(s) are symmetric
tensors defined on a three-dimensional Euclidean space and
v(r) are linearly independent unit vectors. Using a fixed
Cartesian basis {g1, g2, g3}, we have,

v(r) =
3∑

i=1

v̄
(r)
i gi , A(s) =

3∑
i,j=1

Ā
(s)
ij gi ⊗ gj , (2)

where ⊗ denotes the dyadic product and since A(s) is
symmetric, Ā

(s)
ij = Ā

(s)
ji . Since v(r) are unit vectors, we

have,
3∑

i=1

v̄
(r)2
i = 1 , r = 1, 2 . . . ,m . (3)

In view of (2) and (3) we can say that at most there are
2m+ 6n independent component variables in (1).

Since the classical invariants in a classical-minimal in-
tegrity basis are traces of tensors and dot products of
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vectors [1] and they are explicit functions of the 2m + 6n
components, hence the number of independent invariants in
a classical-minimal integrity basis for the set S(m,n) cannot
be greater than 2m+6n. It is important to emphasize that the
components v̄(r) and Ā

(s)
ij are not invariants and hence they

cannot be explicitly expressed as a function of the classical
invariants. However if we use the spectral basis {u1,u2,u3}
where its elements are eigenvectors of A(1), we have

A(1) =
3∑

i=1

λiui ⊗ ui , v(r) =
3∑

i=1

v
(r)
i ui ,

A(s) =
3∑

i,j=1

A
(s)
ij ui ⊗ uj ,

r = 1, 2, . . . ,m , s = 2, 3, . . . , n . (4)

In this case, the spectral components v(r)i , A
(s)
ij are rotational

invariants with respect to the rotation tensor Q, since

v
(r)
i = v(r) · ui = Qv(r) ·Qui ,

A
(s)
ij = ui ·A(s)uj = Qui ·QA(s)QTQuj . (5)

Hence, it is possible that the spectral components can be
expressed explicitly in terms of the classical invariants. Since
v(r) are unit vectors,

3∑
i=1

v
(r)2
i = 1 , r = 1, 2 . . . ,m . (6)

It is clear that the number of independent spectral invari-
ants cannot be greater 2m+6n−3 and hence the number of
independent classical invariants for the S(m,n) set is at most
2m+ 6n− 3 < 2m+ 6n. Note that v(r)i can take a positive
or negative value. If we consider the positive and negative
values of v

(r)
i as distinct single-valued functions, in view

of (6), then we can conclude that the number of invariants
in the irreducible functional basis is also 2m + 6n − 3,
since all invariants can be explicitly expressed in terms of
2m+6n−3 spectral invariants. We strongly emphasize that,
if the value of m or n is large, the number of invariants in an
irreducible functional or a minimal integrity basis obtained
in the literature (see, for example, references [1], [31]), is
significantly higher than 2m+ 6n− 3 .

In the Section III, based on the work of Shariff [2], [10],
[15] and Aguiar and Rocha [16] , we show relations between
classical invariants using our spectral invariants. We assume,
for simplicity, A(1) is invertible and its eigenvalues λi are
distinct. In the case when the eigenvalues λi and some
of the eigenvalues of A(s) are not distinct, the number of
independent invariants is far less than 2m + 6n − 3, as
exemplified in the Appendix C.

In the case of S(0, n) it is shown in references [15], [16]
that the number of independent invariants is 6n− 3 and, in
these references, classical invariant relations are given.

III. CLASSICAL INVARIANT RELATIONS

In this section, we first obtain relations for certain values
of m and n and then derive relations for general m and n.

The construction of these relations require the invariants

I1 = trA(1) =
3∑

i=1

λi ,

I2 =
1

2

(
(trA(1))2 − trA(1)2

)
= λ1λ2 + λ1λ3 + λ2λ3 ,

I3 = det(A(1)) = λ1λ2λ3 . (7)

It is commonly known that the above relations are indepen-
dent and since the eigenvalues λi are independent, there are
no relations between the classical invariants and hence the
three classical invariants are independent. The eigenvalues λi

can be explicitly expressed in terms of the classical invariants
[32] , i.e.,

λi =
1

3

{
I1 + 2

√
I21 − 3I2 cos

1

3
[θ + 2π(i− 1)]

}
,

i = 1, 2, 3 , (8)

where

θ = arccos

[
2(I31 − 9I1I2 + 27I3

2[I21 − 3I2]
3
2

]
, (9)

taking note that since the eigenvalues λi are distinct, we
have, I21 − 3I2 ̸= 0.

A. m = 1, n = 1. Only 5 classical invariants are indepen-
dent

The set S(1, 1) is generally associated with transversely
isotropic elastic materials, where their strain energy functions
can be written in the form

W (v(1) ⊗ v(1),A(1)) = Ŵ (v(1),A(1)) . (10)

The 5 invariants in the classical-minimal integrity basis are

I
(1,1)
1 = I1 , I

(1,1)
2 = I2 , I

(1,1)
3 = I3 ,

I
(1,1)
4 = v(1) ·A(1)v(1) =

3∑
i=1

v
(1)2
i λi ,

I
(1,1)
5 = v(1) ·A(1)2v(1) =

3∑
i=1

v
(1)2
i λ2

i . (11)

In view of (6), only 5 of the spectral invariants are indepen-
dent and since there are no relations between the 5 spectral
invariants, it is clear that there are no relations between the
classical invariants. Hence, we have 5 independent classical
invariants.

B. m = 2, n = 1. At most 7 classical invariants are
independent

The set S(2, 1) is commonly associated with the strain
energy function of an elastic solid with two preferred direc-
tions, i.e.

W (v(1) ⊗ v(1),v(2) ⊗ v(2),A(1)) = Ŵ (v(1),v(2),A(1))

. (12)
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There are ten classical invariants in the classical-minimal
integrity basis, i.e.,

I
(2,1)
1 = I1 , I

(2,1)
2 = I2 , I

(2,1)
3 = I3 , (13)

I
(2,1)
4 = I

(1,1)
4 =

3∑
i=1

v
(1)2
i λi ,

I
(2,1)
5 = I

(1,1)
5 =

3∑
i=1

v
(1)2
i λ2

i , (14)

I
(2,1)
6 = v(2) ·A(1)v(2) =

3∑
i=1

v
(2)2
i λi ,

I
(2,1)
7 = v(2) · (A(1))2v(2) =

3∑
i=1

v
(2)2
i λ2

i , (15)

I
(2,1)
8 = (v(1) · v(2))2 = (

3∑
i=1

v
(1)
i v

(2)
i )2 ,

I
(2,1)
9 = (v(1) · v(2))v(1) ·A(1)v(2)

= (
3∑

i=1

v
(1)
i v

(2)
i )

3∑
i=1

v
(1)
i v

(2)
i λi

I
(2,1)
10 = (v(1) · v(2))v(1) · (A(1))2v(2)

= (
3∑

i=1

v
(1)
i v

(2)
i )

3∑
i=1

v
(1)
i v

(2)
i λ2

i . (16)

Shariff and Bustamante [11] have given 3 classical invari-
ant relations and hence only 7 of the above invariants are
independent. However, below we give alternative invariant
relations to strengthen our claim that only 7 of the classical
invariants are independent.

From (8) and (13), λi is expressed in terms of I(2,1)i . From
(6), with r = 1, 2, (14) and (15) we have 6 linear equations
in v

(1)2
i and v

(2)2
i . On solving the two 3 linear equations (see

Appendix D) in turn we can express v(1)2i and v
(2)2
i explicitly

in terms of I(2,1)α , α = 1, 2 . . . , 7. Taking into consideration
the sign of v(1) and v(2) and the fact that I(2,1)8 , I

(2,1)
9 , I

(2,1)
10

can be explicitly expressed in terms of λi, v
(1), v(2), it is

clear that, in view of (16), they can be expressed explicitly
in terms of I

(1,2)
α , α = 1, 2 . . . , 7. Hence only 7 classical

invariants are independent.

C. m = 1, n = 2. At most 11 invariants are independent

An example of a S(1, 2) constitutive function of the form

W (v(1) ⊗ v(1),A(1),A(2)) = Ŵ (v(1),A(1),A(2)) (17)

can be found in Shariff et. al. [3]. There are 18 classical
invariants in the classical-minimal integrity basis for the
function (17), i.e.,

I
(1,2)
1 = I1 , I

(1,2)
2 = I2 , I

(1,2)
3 = I3 , (18)

I
(1,2)
4 = v(1) ·A(1)v(1) =

3∑
i=1

v
(1)2
i λi ,

I
(1,2)
5 = v(1) ·A(1)2v(1) =

3∑
i=1

v
(1)2
i λ2

i ,

(19)

I
(1,2)
6 = trA(2) =

3∑
i=1

A
(2)
ii ,

I
(1,2)
7 tr(A(2)A(1)) =

3∑
i=1

λiA
(2)
ii ,

I
(1,2)
8 = tr(A(2)A(1)2) =

3∑
i=1

λ2
iA

(2)
ii , (20)

I
(1,2)
9 = tr(A(2)2) = A

(2)2
11 +A

(2)2
22 +A

(2)2
33

+2(A
(2)2
12 +A

(2)2
13 +A

(2)2
23 ) ,

I
(1,2)
10 = tr(A(2)2A(1)) = λ1(A

(2)2
11 +A

(2)2
12 +A

(2)2
13 )

+λ2(A
(2)2
21 +A

(2)2
22 +A

(2)2
23 )

+λ3(A
(2)2
31 +A

(2)2
32 +A

(2)2
33 ) ,

I
(1,2)
11 = tr(A(2)2A(1)2) = λ2

1(A
(2)2
11 +A

(2)2
12 +A

(2)2
13 )

+λ2
2(A

(2)2
21 +A

(2)2
22 +A

(2)2
23 )

+λ2
3(A

(2)2
31 +A

(2)2
32 +A

(2)2
33 ) , (21)

I
(1,2)
12 = v(1) ·A(2)v(1) , I

(1,2)
13 = v(1) ·A(2)2v(1) ,

I
(1,2)
14 = trA(2)3 , I

(1,2)
15 = v(1) · (A(1)A(2)v(1)) ,

I
(1,2)
16 = v(1) · (A(1)A(2)2v(1)) ,

I
(1,2)
17 = v(1) · (A(2)A(1)2v(1)) ,

I
(1,2)
18 = v(1) · (A(1)2A(2)2v(1)) . (22)

We note that the invariants I
(1,2)
α , α = 12, 13, . . . , 18 can

be explicitly expressed in terms of λi, v
(1)
i and A

(2)
ij but, for

brevity, we omit such explicit expressions.
From (8) and (18), λi is expressed in terms of I(1,2)i . From

(6), with r = 1, and (19), we have 3 linear equations in
v
(1)2
i . On solving these linear equations we can express v(1)2i

explicitly in terms of I
(1,2)
α , α = 1, 2 . . . , 5. The invariants

A
(2)
ii can be expressed in terms of I

(1,2)
α , α = 1, 2, 3, 6, 7, 8

by solving the 3 linear equations in (20) for A
(2)
ii . In

Eqn. (21), the invariants A
(2)2
12 , A

(2)2
13 , A

(2)2
23 appear linearly.

Hence we can solve the 3 linear equations so that these
invariants (see Appendix D) can be expressed in terms of
I
(1,2)
α , α = 1, 2, 3, 6, 7 . . . , 11. Since the classical invariants
I
(1,2)
α , α = 12, 13, . . . , 17 can be explicitly expressed in

terms of λi, v
(1)
i , A(2)

ij , and taking the appropriate sign for
v
(1)
i and A

(2)
ij , they can be expressed in terms of I(1,2)α , α =

1, 2, . . . , 11, indicating that only 11 classical invariants are
independent.

D. m = 2, n = 2. At most 13 invariants are independent

An example of a S(2, 2) constitutive function of the form

W (v(1) ⊗ v(1),v(2) ⊗ v(2),A(1),A(2))

= Ŵ (v(1),v(2),A(1),A(2)) (23)

can be found in [27]. There are 37 classical invariants for
the function (23) in the classical-minimal integrity basis and
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they are:

I
(2,2)
1 = I1 , I

(2,2)
2 = I2 , I

(2,2)
3 = I3 , (24)

I
(2,2)
4 = v(1) ·A(1)v(1) =

3∑
i=1

v
(1)2
i λi ,

I
(2,2)
5 = v(1) ·A(1)2v(1) =

3∑
i=1

v
(1)2
i λ2

i ,

I
(2,2)
6 = v(2) ·A(1)v(2) =

3∑
i=1

v
(2)2
i λi ,

I
(2,2)
7 = v(2) ·A(1)2v(2) =

3∑
i=1

v
(2)2
i λ2

i ,

(25)

I
(2,2)
8 = trA(2) =

3∑
i=1

A
(2)
ii ,

I
(2,2)
9 tr(A(2)A(1)) =

3∑
i=1

λiA
(2)
ii ,

I
(2,2)
10 = tr(A(2)A(1)2) =

3∑
i=1

λ2
iA

(2)
ii ,

(26)

I
(2,2)
11 = tr(A(2)2) = A

(2)2
11 +A

(2)2
22 +A

(2)2
33

+2(A
(2)2
12 +A

(2)2
13 +A

(2)2
23 ) ,

I
(2,2)
12 = tr(A(2)2A(1)) = λ1(A

(2)2
11 +A

(2)2
12 +A

(2)2
13 )

+λ2(A
(2)2
21 +A

(2)2
22 +A

(2)2
23 ) +

λ3(A
(2)2
31 +A

(2)2
32 +A

(2)2
33 ) ,

I
(2,2)
13 = tr(A(2)2A(1)2) = λ2

1(A
(2)2
11 +A

(2)2
12 +A

(2)2
13 )

+λ2
2(A

(2)2
21 +A

(2)2
22 +A

(2)2
23 ) +

λ2
3(A

(2)2
31 +A

(2)2
32 +A

(2)2
33 ) , (27)

I
(2,2)
14 = v(1) ·A(2)v(1) , I

(2,2)
15 = v(1) ·A(2)2v(1) ,

I
(2,2)
16 = trA(2)3 , I

(2,2)
17 = v(1) · (A(1)A(2)v(1)) ,

I
(2,2)
18 = v(1) · (A(1)A(2)2v(1)) ,

I
(2,2)
19 = v(1) · (A(2)A(1)2v(1)) ,

I
(2,2)
20 = v(1) · (A(1)2A(2)2v(1)) ,

I
(2,2)
21 = v(2) ·A(2)v(2) ,

I
(2,2)
22 = v(2) ·A(2)2v(2) ,

I
(2,2)
23 = v(2) · (A(1)A(2)v(2)) ,

I
(2,2)
24 = v(2) · (A(1)A(2)2v(2)) ,

I
(2,2)
25 = v(2) · (A(2)A(1)2v(2)) ,

I
(2,2)
26 = v(2) · (A(1)2A(2)2v(2)) ,

I
(2,2)
27 = (v(1) · v(2))(v(1) ·A(1)v(2)) ,

I
(2,2)
28 = (v(1) · v(2))(v(1) ·A(2)v(2)) ,

I
(2,2)
29 = (v(1) · v(2))(v(1) ·A(1)A(2)v(2)) ,

I
(2,2)
30 = (v(1) · v(2))(v(1) ·A(2)A(1)v(2)) ,

I
(2,2)
31 = (v(1) · v(2))(v(1) ·A(1)2A(2)v(2)) ,

I
(2,2)
32 = (v(1) · v(2))(v(1) ·A(2)A(1)2v(2)) ,

I
(2,2)
33 = (v(1) · v(2))(v(1) ·A(1)A(2)2v(2)) ,

I
(2,2)
34 = (v(1) · v(2))(v(1) ·A(2)2A(1)v(2)) ,

I
(2,2)
35 = (v(1) · v(2))(v(1) ·A(2)2A(1)2v(2)) ,

I
(2,2)
36 = (v(1) · v(2))(v(1) ·A(1)2A(2)2v(2)) ,

I
(2,2)
37 = (v(1) · v(2))2 .

(28)

From (8) and (24), λi is expressed in terms of I
(2,2)
i .

From (6), with r = 1, 2, and (25) we have 6 linear
equations in v

(r)2
i . On solving 3 linear equations for each

r, we can express v
(1)2
i and v

(2)2
i explicitly in terms of

I
(2,2)
α , α = 1, 2 . . . , 7. The invariants A

(2)
ii appear linearly

in (26). On solving the 3 linear equations in (26), we can
express A(2)

ii explicitly in terms of I(2,2)α , α = 1, 2, 3, 8, 9, 10.
The invariants A(2)2

ij , i ̸= j appear linearly in the 3 equations
given by (27). On solving these equations we can express
explicitly for A(2)2

ij in terms of I(2,2)α , α = 1, 2, 3, 8, . . . , 13.
The remaining classical invariants I

(2,2)
α , α = 14, 15, . . . , 37

in (28) can be expressed explicitly in terms of λi , v
(r)
i A

(2)
ij .

Using the appropriate sign for v(r) and A
(2)
ij , i ̸= j, we can

express the remaining classical invariants explicitly in terms
of the 13 independent invariants I

(2,2)
α , α = 1, 2 . . . , 13.

E. Relations for general m and n. At most 2m + 6n − 3
invariants are independent

In this section we only construct relations between classi-
cal invariants for an isotropic function of the form

W (v(1) ⊗ v(1),v(2) ⊗ v(2), . . . ,v(m) ⊗ v(m),

A(1),A(2), . . . ,A(n)) . (29)

Our intention is just to show relations, we shall not construct
all the classical invariants in the general classical-minimal
integrity basis, only the independent 2m+6n−3 invariants,
and they are:

I
(m,n)
1 = I1 , I

(m,n)
2 = I2 , I

(m,n)
3 = I3 , (30)

I
(m,n)
2r+2 = v(r) ·A(1)v(r) =

3∑
i=1

v
(r)2
i λi ,

I
(m,n)
2r+3 = v(r) ·A(1)2v(r) =

3∑
i=1

v
(r)2
i λ2

i ,

r = 1, 2, . . . ,m , (31)

I
(m,n)
2m+3+6s−5 = trA(s+1) =

3∑
i=1

A
(s+1)
ii ,

I
(m,n)
2m+3+6s−4 = tr(A(s+1)A(1)) =

3∑
i=1

λiA
(s+1)
ii ,

I
(m,n)
2m+3+6s−3 = tr(A(s+1)A(1)2)

=
3∑

i=1

λ2
iA

(s+1)
ii , (32)
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I
(m,n)
2m+3+6s−2 = tr(A(s+1)2) = A

(s+1)2
11 +A

(s+1)2
22 +

A
(s+1)2
33 + 2(A

(s+1)2
12 +A

(s+1)2
13 +A

(s+1)2
23 ) ,

I
(m,n)
2m+3+6s−1 = tr(A(2)2A(1)) = λ1(A

(s+1)2
11 +

A
(s+1)2
12 +A

(s+1)2
13 ) + λ2(A

(s+1)2
21 +A

(s+1)2
22 +

A
(s+1)2
23 ) + λ3(A

(s+1)2
31 +A

(s+1)2
32 +A

(s+1)2
33 ) ,

I
(m,n)
2m+3+6s = tr(A(2)2A(1)2) = λ2

1(A
(s+1)2
11 +

A
(s+1)2
12 +A

(s+1)2
13 ) + λ2

2(A
(s+1)2
21 +A

(s+1)2
22 +

A
(s+1)2
23 ) + λ2

3(A
(s+1)2
31 +A

(s+1)2
32 +A

(s+1)2
33 ) ,

s = 1, 2 . . . n− 1 , n > 1 . (33)

From (8) and (30), λi is expressed in terms of I
(m,n)
i .

From (6), with r = 1, 2, . . . ,m, and (31) we have 3m linear
equations in v

(r)2
i . On solving the 3 linear equations for

each r, we can explicitly express, for all v
(r)2
i , in terms

of I
(m,n)
α , α = 1, 2 . . . , 2m + 3. The invariants A

(s+1)
ii , s =

1, 2, . . . , n−1 appear linearly in (32). On solving the 3 linear
equations in (32) for each s, we can express A(s+1)

ii explicitly
in terms of I(m,n)

α , α = 1, 2, 3 and α = 2m+3+6s−5, 2m+
3 + 6s− 4, 2m+ 3 + 6s− 3. The invariants A

(s+1)2
ij , i ̸= j

appear linearly in the 3 equations given by (33). On solving
these equations for each s, we can explicitly express A(s+1)2

ij

in terms of I(m,n)
α , α = 1, 2, 3, 2m+4, . . . , 2m+6n−3. The

remaining classical invariants I(m,n)
2m+6n−3+α , α = 1, 2, . . . can

be expressed explicitly in terms of λi , v
(r)
i A

(s+1)
ij . Using the

appropriate sign for v(r) and A
(s+1)
ij , i ̸= j, we can express

the remaining classical invariants explicitly in terms of the
independent invariants I

(m,n)
α , α = 1, 2 . . . , 2m+ 6n− 3.

Note that for S(m, 1), we have 2m + 3 independent
invariants, which concurs with the result of Shariff [10].
However, Shariff did not give classical invariant relations in
his work [10]; the relations above for S(m, 1) supplement
the results of [10]. In the case of S(0, n), we obtain 6n− 3
independent invariants; this agrees with the result of Shariff
[15], however, the relation forms in [15] are different from
the above.

APPENDIX A: P -PROPERTY

The description of the P -property uses the eigenvalues
λi and eigenvectors ui of the symmetric tensor A(1) .
A general anisotropic invariant, where its arguments are
expressed in terms spectral invariants with respect to the basis
{u1,u2,u3} can be written in the form

Φ = W (λi,ui ·A(s)uj ,ui · v(r))

= W̃ (λ1, λ2, λ3,u1,u2,u3) , (A1)

where

r = 1, 2, . . . ,m, , s = 2, . . . ,m, (A2)

and, in Eqn. (A1)2, the appearance of A(s) and v(r) is
suppressed to facilitate the description of the P -property. In
view of (4)1, W̃ must satisfy the symmetrical property

W̃ (λ1, λ2, λ3,u1,u2,u3) = W̃ (λ2, λ1, λ3,u2,u1,u3)

= W̃ (λ3, λ2, λ1,u3,u2,u1) . (A3)

In view of the non-unique values of ui and uj when λi = λj ,
a function W̃ should be independent of ui and uj when

λi = λj , and W̃ should be independent of u1, u2 and u3

when λ1 = λ2 = λ3. Hence, when two or three of the
principal stretches have equal values the scalar function Φ
must have any of the following forms

Φ =

{
W(a)(λ, λk,uk) , λi = λj = λ , i ̸= j ̸= k ̸= i

W(b)(λ) , λ1 = λ2 = λ3 = λ

For example, consider

Φ = a •A(1)a =
3∑

i=1

λi(a • ui)
2 , (A4)

where a is a fixed unit vector and
3∑

i=1

(a • ui)
2 = 1 . (A5)

. If

λ1 = λ2 = λ , (A6)

we have

Φ = W(a)(λ, λ3,u3) = λ+ (λ3 − λ)(a • u3)
2 (A7)

and in the case of λ1 = λ2 = λ3 = λ,

Φ = W(b)(λ) = λ . (A8)

Hence, the invariant (A4) satisfies the P -property and we
note that all the classical invariants described in Spencer
[1] satisfy the P -property. In reference [33], the P -property
described here is extended to non-symmetric tensors such as
the two-point deformation tensor F .

APPENDIX B: FUNCTIONAL AND INTEGRITY BASES

Let J1, . . . , Jr be isotropic invariants of the set S(m,n)
given in (1).

1) A single-valued function of J1, . . . , Jp

f(S(m,n)) = g(J1, , . . . Jq) (B1)

is called a representation for isotropic scalar-valued
functions of S(m,n). If one of the invariants in the
set {J1, . . . , Jq} can be expressed as a single-valued
function of the remainders, the invariant is declared to
be functionally reducible. We call the representation
to be complete, if any isotropic scalar-valued function
of S(m,n) is expressible in the form (B1). A set
of invariants in a complete representation is called a
functional basis. A functional basis is declared to be
irreducible, if none of its proper subsets is a functional
basis.

2) If the function f(S(m,n)) is constrained to poly-
nomial functions, then we are dealing with integrity
bases. A reducible polynomial invariant is an invari-
ant that can be expressed as a polynomial in other
invariants; otherwise, it is an irreducible polynomial
invariant. An integrity basis is a polynomial invariant
set which has the property that any polynomial scalar
function is expressible as a polynomial in members of
the given set. A minimal integrity basis is an integrity
basis, where none of its proper subset is an integrity
basis. Syzygies are polynomial relations between in-
variants, which do not permit any one invariant to be
expressed as a polynomial in the remainder.
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3) A minimal integrity basis is not necessarily an ir-
reducible functional basis. In general, an irreducible
functional basis contains fewer elements than a mini-
mal integrity basis.

APPENDIX C

In this Appendix we only give results for the case of m =
1 and n = 2 and when λ1 = λ2 = λ3 = λ. Results when
two of the eigenvalues λi are not-distinct are not given. Our
main intention is to show that at most 2m+6n−3 invariants
are independent and that when the eigenvalues A(s) are not
distinct, the number of independent invariants is less than
2m+ 6n− 3.

When λ1 = λ2 = λ3 = λ, the eigenvectors ui are
arbitrary. We select ui to coincide with the eigenvectors of
A(2). Hence,

A(1) = λI , A(2) =
3∑

i=1

λ̄iui ⊗ ui . (C1)

From Section III-C, we have,

I
(1,2)
1 = 3λ , I

(1,2)
2 = 3λ2 , I

(1,2)
3 = λ3 ,

I
(1,2)
4 = λ , I

(1,2)
5 = λ2 , (C2)

I
(1,2)
6 =

3∑
i=1

λ̄i , I
(1,2)
7 tr(A(2)A(1)) = λ

3∑
i=1

λ̄i ,

I
(1,2)
8 = λ2

3∑
i=1

λ̄i , (C3)

I
(1,2)
9 =

3∑
i=1

λ̄2
i , I

(1,2)
10 = λ

3∑
i=1

λ̄2
i ,

I
(1,2)
11 = λ2

3∑
i=1

λ̄2
i , (C4)

I
(1,2)
12 =

3∑
i=1

v
(1)2
i λ̄i , I

(1,2)
13 =

3∑
i=1

v
(1)2
i λ̄2

i ,

I
(1,2)
14 =

3∑
i=1

λ̄3
i ,

I
(1,2)
15 = λ

3∑
i=1

v
(1)2
i λ̄i , I

(1,2)
16 = λ

3∑
i=1

v
(1)2
i λ̄2

i ,

I
(1,2)
17 = λ2

3∑
i=1

v
(1)2
i λ̄i ,

I
(1,2)
18 = λ2

3∑
i=1

v
(1)2
i λ̄2

i . (C5)

It is clear from (C2) to (C5) that only 6 of the classical
invariants are independent and we can consider the indepen-
dent invariants to be

I
(1,2)
1 , I

(1,2)
6 , I

(1,2)
9 , I

(1,2)
12 , I

(1,2)
13 , I

(1,2)
14 . (C6)

We also have 6 independent spectral invariants

λ , A
(2)
ii = λ̄i , v

(1)
1 , v

(1)
2 . (C7)

The number of independent invariants is further reduced
if, for example, λ̄1 = λ̄2 = λ̄3 = λ̄. In this case, we have,

I
(1,2)
6 = 3λ̄ , I

(1,2)
7 = 3λλ̄ , I

(1,2)
8 = 3λ2λ̄ ,

I
(1,2)
9 = 3λ̄2 , I

(1,2)
10 = 3λλ̄2 ,

I
(1,2)
11 = 3λ2λ̄2 , I

(1,2)
12 = λ̄ , I

(1,2)
13 = λ̄2 ,

I
(1,2)
14 = λ̄3 , I

(1,2)
15 = λλ̄ ,

I
(1,2)
16 = λλ̄2 , I

(1,2)
17 = λ2λ̄ , I

(1,2)
18 = λ2λ̄2 . (C8)

Hence, it is clear from (C8) that the classical invariants
are independent of v(1)i and only 2 of them are independent.
We can consider the invariants

I
(1,2)
1 , I

(1,2)
6 (C9)

to be the independent invariants. However, the number of
independent spectral invariants is 4 and they are

λ , λ̄ , v
(1)
1 , v

(1)
2 . (C10)

It is expected that the number of independent classical
invariants in (C9) is less than that of spectral invariants in
(C10) due to the fact that the classical invariants satisfy
the P -property [21] while the spectral invariants are not
constrained to satisfy the P -property.

APPENDIX D

The solutions in the main body require the results 1 1 1
λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

−1

 α1λ2λ3 −α1(λ2 + λ3) α1

α2λ1λ3 −α2(λ1 + λ3) α2

α3λ1λ2 −α3(λ1 + λ2) α3

 (D1)

and  2 2 2
λ1 + λ2 λ1 + λ3 λ2 + λ3

λ2
1 + λ2

2 λ2
1 + λ2

3 λ2
2 + λ2

3

−1

=


−α3β3

2
α3(λ1 + λ2) −α3

−α2β2

2
α2(λ1 + λ3) −α2

−α1β1

2
α1(λ2 + λ3) −α1

 , (D2)

where

α1 =
1

(λ1 − λ2)(λ1 − λ3)
, α2 =

1

(λ2 − λ1)(λ2 − λ3)
,

α3 =
1

(λ3 − λ1)(λ3 − λ2)
,

β1 = λ1λ2 + λ1λ3 − λ2
1 + λ2λ3 ,

β2 = λ1λ2 + λ1λ3 − λ2
2 + λ2λ3 ,

β3 = λ1λ2 + λ1λ3 − λ2
3 + λ2λ3 . (D3)
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