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Abstract—The unsteady anisotropic Helmholtz type equation
of spatially varying coefficients is considered in this study.
The study is to find numerical solutions to initial boundary
value problems governed by the equation. Such problems
are relevant for anisotropic functionally graded materials.
A mathematical analysis is used to transform the variable
coefficient equation to a constant coefficient equation which
is then Laplace-transformed (LT) to get a time-independent
equation. The latest equation is then written as a boundary-
only integral equation of a time-free fundamental solution. A
boundary element method (BEM) which is derived from the
integral equation and combined with the Stehfest formula for
numerical Laplace transform inversion is then employed to find
the numerical solutions. Some problems are considered. The
combined LT-BEM is easy to implement. The results show that
the numerical solutions obtained are accurate.

Index Terms—anisotropic functionally graded materials,
variable coefficients, parabolic equation, Laplace transform,
boundary element method.

I. INTRODUCTION

We will consider initial boundary value problems governed
by a parabolic equation with variable coefficients of the form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
+ β2 (x)µ (x, t) = α (x)

∂µ (x, t)

∂t
(1)

The coefficients [κij ] (i, j = 1, 2) is a real symmetric positive
definite matrix. Also, in (1) the summation convention for
repeated indices holds. Therefore equation (1) may be written
explicitly as

∂

∂x1

(
κ11

∂µ

∂x1

)
+

∂

∂x1

(
κ12

∂µ

∂x2

)
+

∂

∂x2

(
κ12

∂µ

∂x1

)
+

∂

∂x2

(
κ22

∂µ

∂x2

)
+ β2µ = α

∂c

∂t

Equation (1) is usually used to model acoustic problems.
In equation (1), the coefficient κij may represent the con-
ductivity or the diffusivity, β describes the wave number,
and α may depict the rate of change. Since the coefficients
κij (x) , β (x) , α (x) are spatially continuous functions, then
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the material under consideration has properties which vary
spatially according to a specific continuous function. Such
a material is called a functionally graded material (FGM).
Specifically, since the coefficients κ11, κ12, κ22 may differ
then the material is called as an anisotropic material. There-
fore equation (1) is relevant for anisotropic FGMs.

During the last decade FGMs have become an important
topic, and numerous studies on FGMs for a variety of
applications have been reported (see for example Bounouara
et al. [1] and Karami et al. [2]). On the other hand, in some
applications anisotropy of the material of interest needs to
be taken into account. Among other studies that considered
material anisotropy have been done by Limberkar et al. [3] in
material science application, Daghash et al. [4] in chemical
engineering application, and Yusuf [5] in optics application.

Recently a number of authors had been working on
the Helmholtz equation to find its solutions. However the
works focus mainly on problems of isotropic homogeneous
materials. For such kind of materials, the boundary element
method (BEM) had been successfully used to find numerical
solutions of applications associated to the homogeneous ma-
terials. But this is not the case for inhomogeneous materials.

In [6] Ma et al. considered a use of the Galerkin boundary
element method for exterior problems of 2-D Helmholtz
equation with arbitrary wave number. In this paper the au-
thors assumed the internal and the external domain are homo-
geneous media. Loeffler et al. in [7] investigated numerical
solutions for Helmholtz problems. The Helmholtz equation
is treated like a Laplace equation with non-zero right-hand
side of the equation. The resulting boundary-domain integral
equation is then solved using a direct radial basis function
interpolation. In this study, the medium is supposed to be a
homogeneous material. In [8] Barucq et al. also considered
homogeneous media. The study is focused on the numerical
aspect of the BEM used for solving the Helmholtz problems.
Similarly, Wu and Alkhalifah in [9] also concerned on the
numerical aspect of a finite-difference method for solving
the Helmholtz equation of homogeneous media. Li et al.
[10] obtained numerical solutions of the Helmholtz equation
of homogeneous media using the method of fundamental
solutions with Bessel functions, in replacement of Hankel
functions, as the fundamental solutions. Some studies for
inhomogeneous media have been done, but they are limited to
the class of inhomogeneities which take the form of constant-
plus-variable functions of inhomogeneity.

Recently Azis and co-workers had been working on steady
state problems of anisotropic inhomogeneous media for sev-
eral types of governing equations, for examples [11]–[16] for
Helmholtz equation, [17]–[19] for the modified Helmholtz
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equation, [20] for elasticity problems, [21]–[25] for the
diffusion convection equation, [26]–[29] for the Laplace type
equation, [30]–[36] for the diffusion convection reaction
equation. These works considered the case of other classes
of inhomogeneities which are different from the class of the
constant-plus-variable inhomogeneity.

This paper is intended to extend the recently published
works in [11]–[16] for steady anisotropic Helmholtz type
equation with space variable coefficients of the form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
+ β2 (x)µ (x, t) = 0

to unsteady anisotropic parabolic equation with space vari-
able coefficients of the form (1).

This study is an attempt to solve numerically initial bound-
ary value problems for several other classes of anisotropic
FGMs governed by equation (1) using a combined LT-BEM.
The analysis of this paper is purely mathematical; the main
aim being to construct effective a BEM for the three typical
equations which fall within the type (1).

A brief outline of the paper is as follows. Section II defines
the initial boundary value problem to be solved. In Section
III a boundary-only integral equation is derived. In Section
IV several problems (test problems in Section IV-A and
problems without analytical solutions in Section IV-B) are
solved to primarily show the validity of the analysis used
in deriving the boundary-only integral equation in Section
III, and to specifically examine the accuracy of the present
approach. Finally, Section V concludes this paper with some
remarks.

II. THE INITIAL-BOUNDARY VALUE PROBLEM

Referred to a Cartesian frame Ox1x2 solutions µ (x, t)
and its derivatives to (1) are sought which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
closed curves. On ∂Ω1 the dependent variable µ (x, t)
(x = (x1, x2)) is specified and on ∂Ω2

P (x, t) = κij (x)
∂µ (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

µ (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation, and
then taking a Laplace transform of the constant coefficient
equation, and to obtain a boundary integral equation in the
Laplace transform variable s. The boundary integral equation
is then solved using a standard boundary element method
(BEM). An inverse Laplace transform is taken to get the
solution c and its derivatives for all (x, t) in the domain.
The inverse Laplace transform is implemented numerically
using the Stehfest formula.

The analysis is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the
coefficients in (1) take the form κ11 = κ22 and κ12 = 0 and
use of these equations in the following analysis immediately
yields the corresponding results for an isotropic medium. The

analysis also applies for homogeneous materials which occur
when the coefficients κij , β2 and α are constant.

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients κij , β2, α are required to take the form

κij (x) = κijg(x) (4)

β2 (x) = β
2
g(x) (5)

α (x) = αg(x) (6)

where the κij , β
2
, α are constants and g is a differentiable

function of x. Use of (4)-(6) in (1) yields

κij
∂

∂xi

(
g
∂µ

∂xj

)
+ β

2
gµ = αg

∂µ

∂t
(7)

Let
µ (x, t) = g−1/2 (x)ψ (x, t) (8)

therefore substitution of (4) and (8) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (9)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni

Also, (7) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
+ β

2
g1/2ψ = αg

∂
(
g−1/2ψ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
+ β

2
g1/2ψ = αg1/2 ∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
− ψ∂g

1/2

∂xj

)
+ β

2
g1/2ψ = αg1/2 ∂ψ

∂t

Rearranging and neglecting some zero terms gives

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
+ β

2
g1/2ψ = αg1/2 ∂ψ

∂t

It follows that if g is such that

κij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (10)

where λ is a constant, then the transformation (8) carries the
variable coefficients equation (7) to the constant coefficients
equation

κij
∂2ψ

∂xi∂xj
+
(
β

2 − λ
)
ψ = α

∂ψ

∂t
(11)

Taking the Laplace transform of (8), (9), (11) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x)µ∗ (x, s) (12)
Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ∗ (x, s)]×

g−1/2 (x) (13)
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κij
∂2ψ∗

∂xi∂xj
+
(
β

2 − sα− λ
)
ψ∗ = 0 (14)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (14) is

given in the form

η (x0)ψ∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ∗ (x, s)−

Φ (x,x0)Pψ∗ (x, s)] dS (x) (15)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The so called fundamental solution
Φ in (15) is any solution of the equation

κij
∂2Φ

∂xi∂xj
+
(
β

2 − sα− λ
)

Φ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =


K
2π lnR if β

2 − sα− λ = 0
ıK
4 H

(2)
0 (ωR) if β

2 − sα− λ > 0
−K
2π K0 (ωR) if β

2 − sα− λ < 0

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni
Kω
2π K1 (ωR)κij

∂R
∂xj

ni
if β

2 − sα− λ = 0

if β
2 − sα− λ > 0

if β
2 − sα− λ < 0

(16)

where

K = τ̈ /D

ω =

√
|β2 − sα− λ|/D

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in
(16) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]

Use of (12) and (13) in (15) yields

ηg1/2µ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
µ∗ −

(
g−1/2Φ

)
P ∗
]
dS

(17)
This equation provides a boundary integral equation for
determining µ∗ and its derivatives at all points of Ω.

Knowing the solutions µ∗ (x, s) and its derivatives
∂µ∗/∂x1 and ∂µ∗/∂x2 which are obtained from (17), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
µ (x, t) and its derivatives ∂µ/∂x1 and ∂µ/∂x2. The Stehfest
formula is

µ (x, t) ' ln 2

t

N∑
m=1

Vmµ
∗ (x, sm)

∂µ (x, t)

∂x1
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x1
(18)

∂µ (x, t)

∂x2
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

Possible multi-parameter solution g1/2 (x) to (10)

g1/2 (x) =

 cos (c0 + cixi) + sin (c0 + cixi)
exp (c0 + cixi)
c0 + cixi κijcicj + λ = 0, λ 6= 0
κijcicj − λ = 0, λ 6= 0
λ = 0

(19)

Specifically, the quadratic inhomogeneity function
g (x) = (c0 + cixi)

2 in (19) can be written in the
form of a sum of a constant and a variable terms as
g (x) = c20 +

(
2c0cixi + c2ix

2
i

)
so that the coefficients

κij (x) , β2 (x) , α (x) fall within the class of constant-
plus-variable coefficients. However, the trigonometric
inhomogeneity functions can not be written in a simple
form of a sum of a constant and a variable terms.

IV. NUMERICAL EXAMPLES

Some particular problems will be solved numerically by
employing the integral equation (17). The main aim is to
show the validity of the analysis for deriving the boundary
integral equation (17) and the appropriateness of the BEM
and Stehfest formula in solving the problems defined in
Section II through the derived boundary integral equation
(17).

For all problems considered, the function g(x) is required
to satisfy equation (10). We assume each problem belongs to
a system which is valid in given spatial and time domains.
The characteristics of the system which are represented by
the coefficients κij (x) , β2 (x) , α (x) in equation (1) are
assumed to be of the form (4), (5) and (6).
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TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA FOR N = 4, 6, 8, 10

Vm N = 4 N = 6 N = 8 N = 10
V1 −2 1 −1/3 1/12
V2 26 −49 145/3 −385/12
V3 −48 366 −906 1279
V4 24 −858 16394/3 −46871/3
V5 810 −43130/3 505465/6
V6 −270 18730 −236957.5
V7 −35840/3 1127735/3
V8 8960/3 −1020215/3
V9 164062.5
V10 −32812.5

Standard BEM with constant elements is employed to
obtain numerical results. And the value of N in (18) for the
Stehfest formula is chosen to be N = 10. For all problems
considered, a unit square (depicted in Figure 1) will be taken
as the domain, and the boundary of the domain is divided into
320 elements of the same length, that is 80 elements for each
side of the unit square, and the time domain is 0 ≤ t ≤ 5.
The integral on each element is evaluated numerically using
the Bode’s quadrature. A FORTRAN code is developed to
compute the solutions, and a specific FORTRAN command
is imposed to calculate the elapsed CPU time for obtaining
the results. A simple script is also developed and embedded
into the main FORTRAN code to calculate the values of the
coefficients Vm,m = 1, 2, . . . , N for any number N . Table
(I) shows the values of Vm for N = 4, 6, 8, 10 which are
obtained from the script.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Ω

A. Problem 1: Examples with analytical solutions

In order to see the accuracy of the BEM and the Stehfest
formula we will consider some problems with analytical
solutions. The examples are also aimed to show the steady
state solution. The analytical solutions are assumed to take
a separable variables form

µ (x, t) = g−1/2 (x)h (x) f (t)

where the functions h(x), g1/2(x), f(t) take the forms

h(x) = 1− 0.15x1 − 0.85x2

h(x) = cos (−1 + 0.15x1 + 0.85x2)

h(x) = exp (−1 + 0.15x1 + 0.85x2)

g1/2(x) = cos (−0.85 + 0.35x1 + 0.4x2)

g1/2(x) = exp (−0.85 + 0.35x1 + 0.4x2)

g1/2(x) = 0.85− 0.35x1 − 0.4x2

f(t) = 1− exp (−1.25t)

f(t) = t/5

f(t) = 0.16t (5− t)

Also, we take a mutual constant coefficient κij for the
problems

κij =

[
1 0.15

0.15 0.75

]
β

2
= 0.1

and a mutual set of boundary conditions (see Figure 1)

µ is given on side AB, BC, CD
P is given on side AD

1) Case 1 (trigonometrically graded material): We as-
sume the inhomogeneity function g(x) is a trigonometric
function

g(x) = [cos (−0.85 + 0.35x1 + 0.4x2)]
2

so that the medium under consideration is a trigonometrically
graded material. The time variation function is

f (t) = 0.16t (5− t)

For g(x) to satisfy (19)

λ = −0.2845

We take
h(x) = 1− 0.15x1 − 0.85x2

so that in order for h(x) to satisfy (14) with β
2−sα−λ = 0

(as to use the Laplace fundamental solution in (16)) then

α = 0.3845/s

2) Case 2 (exponentially graded material): Now we con-
sider an exponentially graded material with inhomogeneity
function g(x) of the form

g(x) = [exp (−0.85 + 0.35x1 + 0.4x2)]
2

so that from (19)
λ = 0.2845

The time variation function is

f (t) = 1− exp (−1.25t)

We assume

h(x) = cos (−1 + 0.15x1 + 0.85x2)

so that in order for h(x) to satisfy (14) with β
2− sα− λ =

0.602625 > 0 (as to use the Helmholtz fundamental solution
in (16))

α = −0.787125/s
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3) Case 3 (quadratically graded material): We assume
that the material is quadratically graded, with function of
gradation

g(x) = (0.85− 0.35x1 − 0.4x2)
2

so that from (19)
λ = 0

The time variation function is

f (t) = t/5

We suppose

h(x) = exp (−1 + 0.15x1 + 0.85x2)

so that in order for h(x) to satisfy (14) with β
2 − sα −

λ = −0.602625 < 0 (as to use the modified Helmholtz
fundamental solution in (16))

α = 0.702625/s

The results for Problem 1 are shown in Table II and Figure
2. Table II shows the accuracy of the numerical solutions
µ and the derivatives ∂µ/∂x1 and ∂µ/∂x2 solutions in the
domain. For the Case 1, 2 and 3 the errors mainly occur in the
fourth decimal place for the µ, ∂µ/∂x1, ∂µ/∂x2 solutions.
Figure 2 shows a variation of the µ solution values at some
interior points as the time increases from t = 0.0005 to
t = 5. As expected, the variation follows the way the
associated function f(t) changes. Specifically for the Case
2 of associated function f(t) = 1 − exp (−1.25t) the µ
solution will tend to approach a steady state solution. This
is also expected, as the function f(t) = 1 − exp (−1.25t)
will converge to 1 as t gets bigger. The elapsed CPU time
for the computation of the numerical solutions at 19 × 19
spatial positions and 11 time steps from t = 0.0005 to t = 5
is 451.171875 seconds for the Case 1, 642.40625 seconds
for the Case 2, and 319.078125 seconds for the Case 3.

B. Problem 2: Examples without analytical solutions

The aim is to show the effect of inhomogeneity and
anisotropy of the considered medium to the solution µ.
The medium is supposed to be an anisotropic or isotropic,
and inhomogeneous (functionally graded) or homogeneous
material. For all combinations of the material’s anisotropy
and inhomogeneity (isotropic homogeneous, isotropic inho-
mogeneous, anisotropic homogeneous, anisotropic inhomo-
geneous) we choose

β
2

= 0.1 α = 1

and a common set of boundary conditions that

P = f(t) on side AB
P = 0 on side BC
µ = 0 on side CD
P = 0 on side AD

where the function f(t) is defined as one of the following
two forms

f(t) = f1(t) = 1

f(t) = f2(t) = 1− exp (−1.25t)

TABLE II
COMPARISON OF THE NUMERICAL (NUM) AND THE ANALYTICAL

(ANAL) SOLUTIONS AT (x1, x2) = (0.5, 0.5) FOR PROBLEM 1

t
µ ∂µ

∂x1

∂µ
∂x2

Num Anal Num Anal Num Anal
Case 1

0.0005 0.0002 0.0002 -0.0001 -0.0001 -0.0004 -0.0004
0.5 0.2024 0.2024 -0.0972 -0.0972 -0.3859 -0.3857
1.0 0.3598 0.3598 -0.1726 -0.1727 -0.6860 -0.6857
1.5 0.4723 0.4723 -0.2267 -0.2267 -0.9005 -0.9000
2.0 0.5398 0.5398 -0.2590 -0.2591 -1.0291 -1.0286
2.5 0.5622 0.5622 -0.2699 -0.2699 -1.0720 -1.0715
3.0 0.5399 0.5398 -0.2592 -0.2591 -1.0292 -1.0286
3.5 0.4724 0.4723 -0.2268 -0.2267 -0.9007 -0.9000
4.0 0.3599 0.3598 -0.1725 -0.1727 -0.6863 -0.6857
4.5 0.2026 0.2024 -0.0974 -0.0972 -0.3862 -0.3857
5.0 0.0002 0.0000 -0.0003 -0.0000 -0.0004 -0.0000

Case 2
0.0005 0.0009 0.0009 -0.0002 -0.0002 0.0001 0.0001

0.5 0.6558 0.6558 -0.1757 -0.1758 0.0423 0.0422
1.0 1.0069 1.0069 -0.2698 -0.2699 0.0650 0.0648
1.5 1.1944 1.1948 -0.3200 -0.3203 0.0771 0.0769
2.0 1.2946 1.2953 -0.3469 -0.3472 0.0836 0.0834
2.5 1.3484 1.3492 -0.3614 -0.3616 0.0871 0.0868
3.0 1.3776 1.3780 -0.3692 -0.3694 0.0890 0.0887
3.5 1.3934 1.3934 -0.3734 -0.3735 0.0900 0.0897
4.0 1.4020 1.4017 -0.3757 -0.3757 0.0905 0.0902
4.5 1.4066 1.4061 -0.3769 -0.3769 0.0908 0.0905
5.0 1.4091 1.4084 -0.3776 -0.3775 0.0910 0.0906

Case 3
0.0005 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002

0.5 0.1277 0.1277 0.1133 0.1132 0.2162 0.2161
1.0 0.2555 0.2554 0.2265 0.2265 0.4323 0.4321
1.5 0.3831 0.3831 0.3397 0.3397 0.6484 0.6482
2.0 0.5108 0.5108 0.4530 0.4530 0.8646 0.8643
2.5 0.6387 0.6385 0.5663 0.5662 1.0809 1.0803
3.0 0.7662 0.7661 0.6793 0.6794 1.2969 1.2964
3.5 0.8940 0.8938 0.7927 0.7927 1.5132 1.5125
4.0 1.0217 1.0215 0.9057 0.9059 1.7293 1.7285
4.5 1.1494 1.1492 1.0191 1.0192 1.9454 1.9446
5.0 1.2771 1.2769 1.1323 1.1324 2.1618 2.1607

If the material is anisotropic then the constant coefficient κij
is

κij =

[
1 0.15

0.15 0.75

]
and

κij =

[
1 0
0 1

]
when it is isotropic. Regarding its inhomogeneity, three cases
of the material will be considered, namely a trigonometri-
cally, exponentially and quadratically graded material.

1) Case 1: The medium is supposed to be a trigonomet-
rically graded material with

g1/2(x) = cos (−0.85 + 0.35x1 + 0.4x2)

or it is homogeneous with

g1/2(x) = 1

So that if the material is anisotropic inhomogeneous then
λ = −0.2845, and λ = −0.2825 when it is isotropic
inhomogeneous, and λ = 0 when it is homogeneous.

2) Case 2: The medium is supposed to be a exponentially
graded material with

g1/2(x) = exp (−0.85 + 0.35x1 + 0.4x2)

or it is homogeneous with

g1/2(x) = 1
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Fig. 2. Solutions µ at some interior points (x1, x2) for the Case 1 (top),
Case 2 (center) and Case 3 (bottom) of Problem 1

So that λ = 0.2845 if the material is anisotropic inhomoge-
neous, and λ = 0.2825 when it is isotropic inhomogeneous,
and λ = 0 when it is homogeneous.

3) Case 3: The medium is supposed to be a quadratically
graded material with

g1/2(x) = 0.85− 0.35x1 − 0.4x2

or it is homogeneous with

g1/2(x) = 1

So that λ = 0 for all combinations of the material’s
anisotropy and inhomogeneity.

The results for Problem 2 are shown in Figures 3,
4, 5 and 6. The figures show solutions µ at points
(x1, x2) = (0.3, 0.5) , (0.7, 0.5) and at time t =
0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 for all four combina-
tions of anisotropy and inhomogeneity, all cases (Case 1:
trigonometrically graded material, Case 2: exponentially
graded material, Case 3: quadratically graded material), both
types of functions f1(t) = 1, f2(t) = 1− exp (−1.25t).

When the material under consideration is homogeneous
the problems for all Cases 1, 2, 3 are identical, and the
results are shown in Figure 3. Specifically, when the material
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Fig. 3. Solutions µ at (x1, x2) = (0.3, 0.5) , (0.7, 0.5) for Case 1, 2, 3
of Problem 2

is isotropic homogeneous the solutions µ at point (0.3, 0.5)
will coincide with the solutions at point (0.7, 0.5). This is
expected as for isotropic homogeneous material the problem
is symmetric about the axis x1 = 0.5.

Moreover, as the time increases from t = 0.25 to t = 5
the solutions µ of problems with functions f(t) = f1(t) =
1 and f(t) = f2(t) = 1 − exp (−1.25t) as the boundary
condition on side AB tend to approach a same steady state
solution. This is expected as for big value of t the limit of
the function f(t) = f2(t) = 1 − exp (−1.25t) is equal to
f(t) = f1(t) = 1.

Figures 3 – 6 also indicate that anisotropy and inhomo-
geneity of material give effect on the values of solution µ.
This suggests that it is important to take the anisotropy and
inhomogeneity into account in any practical application.

V. CONCLUSION

A combined Laplace transform and standard BEM has
been used to find numerical solutions to initial boundary
value problems for anisotropic functionally graded materials
which are governed by the parabolic equation (1). The
boundary-only integral equation (17) is employed to find the
numerical solutions so that the method is easy to implement.
The method involves a time variable free fundamental so-
lution therefore it gives more accurate solutions. It does not
involve round-off error propagation as it solves the boundary
integral equation (17) independently for each specific value
of t at which the solution is computed. Unlikely, the methods
with time variable fundamental solution may produce less
accurate solutions as the fundamental solution sometimes
contain time singular points and also solution for the next
time step is based on the solution of the previous time step
so that the round-off error may propagate.
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Fig. 4. Solutions µ at (x1, x2) = (0.3, 0.5) , (0.7, 0.5) for Case 1
(trigonometrically graded material) of Problem 2
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Fig. 5. Solutions µ at (x1, x2) = (0.3, 0.5) , (0.7, 0.5) for Case 2
(exponentially graded material) of Problem 2
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Fig. 6. Solutions µ at (x1, x2) = (0.3, 0.5) , (0.7, 0.5) for Case 3
(quadratically graded material) of Problem 2

It has been applied to a wide range of function-
ally graded materials, namely quadratically, exponentially
and trigonometrically graded materials. As the coefficients
κij (x) , β2 (x) , α (x) do depend on the spatial variable x
only and on the same inhomogeneity or grading function
g(x), it is interesting to extend the study in the future to
the case when the coefficients depend on different gradation
functions varying also with the time variable t.

In order to use the boundary integral equation (17), the
values µ (x, t) or P (x, t) of the boundary conditions as
stated in Section II of the original system in time variable t
have to be Laplace transformed first. This means that from
the beginning when we set up a problem, we actually put a
set of approached boundary conditions. Therefore it is really
important to find a very accurate technique of numerical
Laplace transform inversion. Based on the obtained results,
the Stehfest formula is a quite accurate technique for the
calculation of values of the numerical Laplace transform
inverse.
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