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Abstract—In this paper a combined Laplace transform and
boundary element method is used to find numerical solutions to
unsteady problems of anisotropic functionally graded materials
governed by a Laplace type equation. A mathematical transfor-
mation is used to transform the variable coefficients equation to
a constant coefficients equation from which a boundary-only in-
tegral equation is obtained. In addition, the analysis also results
in several classes of inhomogeneity functions for the functionally
graded materials. Some examples are considered to show the
validity of the analysis and accuracy of the numerical solutions.
A verification for the effect of the anisotropy and inhomogeneity
of the material on the solutions is also demonstrated.

Index Terms—Anisotropic functionally graded materials,
variable coefficients equation, Laplace equation, Laplace trans-
form; boundary element method

I. INTRODUCTION

We will consider initial boundary value problems governed
by a Laplace type equation with variable coefficients of the
form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
= α (x)

∂µ (x, t)

∂t
(1)

The coefficients [κij ] (i, j = 1, 2) is a real symmetric positive
definite matrix. Also, in (1) the summation convention for
repeated indices holds. Equation (1) is usually used to model,
among others, plane heat conduction problems, for which κij
may represent the conductivity coefficients, α may depict
the rate of change and µ is the temperature. Since the
coefficients κij (x) , α (x) are spatially continuous functions,
then the material under consideration has properties which
vary spatially according to a specific continuous function.
Such a material is called a functionally graded material
(FGM). Specifically, since the coefficients κ11, κ12, κ22 may
differ then the material is called as an anisotropic material.
Therefore equation (1) is relevant for anisotropic FGMs.

During the last decade FGMs have become an important
topic, and numerous studies on FGMs for a variety of

Manuscript received October 20, 2020; revised March 03, 2021.
∗Corresponding author. M.I. Azis is a lecturer at the Department of

Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin
University, Makassar, INDONESIA. E-mail: ivan@unhas.ac.id

I. Solekhudin is a lecturer at the Department of Mathematics, Universitas
Gadjah Mada, Jogjakarta, INDONESIA. E-mail: imams@ugm.ac.id

M.H. Aswad is a lecturer at the Department of Mathematics, Institut
Agama Islam Negeri, Palopo, INDONESIA. E-mail: aswad82@yahoo.co.id

S. Hamzah is a lecturer at the Department of Civil Engineering, Hasanud-
din University, Makassar, INDONESIA. E-mail: suharmanhz@unhas.ac.id

A.R. Jalil is a lecturer at the Department of Marine Science, Hasanuddin
University, INDONESIA. E-mail: abdrasyidjalil@gmail.com

applications have been reported (see for example Bounouara
et al. [1] and Karami et al. [2]). On the other hand, in some
applications anisotropy of the material of interest needs to
be taken into account. Among other studies that considered
material anisotropy have been done by Limberkar et al. [3] in
material science application, Daghash et al. [4] in chemical
engineering application and Yusuf [5] in optics application.

Recently a number of authors had been working on the
Laplace equation to find its solutions. However the works
mainly focus on problems of isotropic homogeneous mate-
rials. For example, Guo et al [6] considered transient heat
conduction problems of isotropic and homogeneous media
and solved them using a combined Laplace transform and
multiple reciprocity boundary face method. In [7] Fu et al.
examined a boundary knot method used to find numerical
solutions to problems of homogeneous isotropic media gov-
erned by a three-dimensional transient heat conduction with a
source term. Yang et al. [8] investigated steady nonlinear heat
conduction problems of homogeneous isotropic materials and
solved them using a radial integration boundary element
method. In [9] solutions of a Laplace type equation in
unbounded domains are discussed.

For such kind of materials, the boundary element method
(BEM) and other methods had been successfully used to
find the numerical solutions of problems associated to them.
But this is not the case for inhomogeneous materials, due
to the unavailability of fundamental solutions for equations
of variable coefficients which govern problems of inho-
mogeneous media. Some progress of solving problems for
inhomogeneous media using various techniques has been
done. Timpitak and Pochai [10] investigated finite difference
solutions of unsteady diffusion-convection problems for het-
erogeneous media. Noda et al. [11] studied the analytical
solutions to a transient heat conduction equation of variable
coefficients with a source term for a functionally graded
orthotropic strip (FGOS). In this study, the inhomogeneity
of the FGOS is simplified to be functionally graded in
the x variable only. In [12] Azis and Clements worked
on finding numerical solutions to nonlinear transient heat
conduction problems for anisotropic quadratically graded
materials using a boundary domain element method. The
quadratically varying coefficient in the governing equation
considered by Azis and Clements [12] can certainly be
represented as a sum of constant and variable coefficients.
Some later studies on the class of constant-plus-variable
coefficients equations had been done a number of authors.
Samec and Škerget [13] considered a non-steady diffusive–
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convective transport equation with variable velocity which
is represented as a sum of constant and variable terms.
Ravnik and Škerget in [14] studied steady state diffusion-
convection problems with inhomogeneous isotropic diffusiv-
ity, variable velocity and incompressible fluid using a domain
boundary integral equation method (DBIEM). In this work
both the diffusivity and the velocity take a constant-plus-
variable form. Ravnik and Škerget in [15] considered an
unsteady state diffusion-convection problems with sources,
inhomogeneous isotropic conductivity, variable velocity and
incompressible fluid using a DBIEM. In this study both the
diffusivity and the velocity are again taken to be of constant-
plus-variable form. AL-Bayati and Wrobel [16], [17] focused
on convection–diffusion–reaction equation of incompressible
flow with constant diffusivity and variable velocity taking the
form of constant-plus-variable terms. Ravnik and Tibuat [18]
also considered an unsteady diffusion-convection equation
with variable diffusivity and velocity. The diffusivity is
of the constant-plus-variable form. By taking the variable
coefficients as a sum of constant and variable coefficients,
the derived integral equation will then involve both boundary
and domain integrals. The constant coefficient term will
contribute boundary integrals as the fundamental solutions
are available, and the variable coefficient term will give
domain integrals.

Reduction to constant coefficients equation is another
technique that can be used to transform a variable coefficients
equation to a constant coefficients equation. Therefore the
technique will preserve the boundary-only integral equation.
Recently Azis and co-workers had been working on steady
state problems of anisotropic inhomogeneous media for sev-
eral types of governing equations, for examples [19]–[24] for
Helmholtz equation, [25]–[27] for the modified Helmholtz
equation, [28] for elasticity problems, [29]–[33] for the
diffusion convection equation, [34]–[37] for the Laplace type
equation, [38]–[44] for the diffusion convection reaction
equation. Some other classes of inhomogeneity functions for
FGMs that differ from the class of constant-plus-variable
coefficients are reported from these papers.

This paper is intended to extend the recently published
works in [34]–[37] for steady anisotropic Laplace type equa-
tion with spatially variable coefficients of the form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
= 0

to unsteady anisotropic Laplace type equation with spatially
variable coefficients of the form (1).

This study is an attempt to solve numerically initial bound-
ary value problems for several types of anisotropic FGMs
governed by equation (1) using a boundary-only element
method. The analysis of this paper is purely mathematical;
the main aim being to construct effective a BEM for (1).

A brief outline of the paper is as follows. Section II defines
the initial boundary value problem to be solved. In Section III
a boundary integral equation is derived. In Section IV several
problems (a test problem in Section IV-A and a problem
without analytical solutions in Section IV-B) are solved to
primarily show the validity of the analysis used in deriving
the boundary integral equation in Section III. Finally, Section
V concludes this paper with some remarks.

II. THE INITIAL-BOUNDARY VALUE PROBLEM

Referred to a Cartesian frame Ox1x2 solutions µ (x, t)
and its derivatives to (1) are sought which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
closed curves. On ∂Ω1 the dependent variable µ (x, t)
(x = (x1, x2)) is specified and on ∂Ω2

P (x, t) = κij (x)
∂µ (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

µ (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation, and
then taking a Laplace transform of the constant coefficient
equation, and to obtain a boundary integral equation in the
Laplace transform variable s. The boundary integral equation
is then solved using a standard boundary element method
(BEM). An inverse Laplace transform is taken to get the
solution c and its derivatives for all (x, t) in the domain.
The inverse Laplace transform is implemented numerically
using the Stehfest formula.

The analysis is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the
coefficients in (1) take the form κ11 = κ22 and κ12 = 0 and
use of these equations in the following analysis immediately
yields the corresponding results for an isotropic medium. The
analysis also applies for homogeneous materials which occur
when the coefficients κij and α are constant.

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients κij , α are required to take the form

κij (x) = κijg(x) (4)
α (x) = αg(x) (5)

where the κij , α are constants and g is a differentiable
function of x. Use of (4)-(5) in (1) yields

κij
∂

∂xi

(
g
∂µ

∂xj

)
= αg

∂µ

∂t
(6)

Let
µ (x, t) = g−1/2 (x)ψ (x, t) (7)

therefore substitution of (4) and (7) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (8)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni

Also, (6) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
= αg

∂
(
g−1/2ψ

)
∂t

which can be simplified
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κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
= αg1/2 ∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2 ∂ψ

∂xj
− ψ∂g

1/2

∂xj

)
= αg1/2 ∂ψ

∂t

Rearranging and neglecting some zero terms gives

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
= αg1/2 ∂ψ

∂t

It follows that if g is such that

κij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (9)

where λ is a constant, then the transformation (7) carries the
variable coefficients equation (6) to the constant coefficients
equation

κij
∂2ψ

∂xi∂xj
− λψ = α

∂ψ

∂t
(10)

Taking the Laplace transform of (7), (8), (10) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x)µ∗ (x, s) (11)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ∗ (x, s)] g−1/2 (x) (12)

κij
∂2ψ∗

∂xi∂xj
− (λ+ sα)ψ∗ = 0 (13)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (13) is

given in the form

η (x0)ψ∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ∗ (x, s)−

= Φ (x,x0)Pψ∗ (x, s)] dS (x) (14)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The so called fundamental solution
Φ in (14) is any solution of the equation

κij
∂2Φ

∂xi∂xj
− (λ+ sα) Φ = δ (x− x0) (15)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems, three types of fundamental solutions Φ and Γ
that can be obtained from (15), namely the fundamental
solutions for Laplace equation (λ+ sα = 0), for Helmholtz
equation (λ+ sα < 0) and for modified Helmholtz equation
(λ+ sα > 0), are given respectively by

Φ (x,x0) =


K
2π lnR if λ+ sα = 0
ıK
4 H

(2)
0 (ωR) if λ+ sα < 0

−K
2π K0 (ωR) if λ+ sα > 0

(16)

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni if λ+ sα = 0
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni if λ+ sα < 0
Kω
2π K1 (ωR)κij

∂R
∂xj

ni if λ+ sα > 0

where

K = τ̈ /D

ω =
√
|λ+ sα|/D

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in
(16) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
Use of (11) and (12) in (14) yields

ηg1/2µ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
µ∗ −

(
g−1/2Φ

)
P ∗
]
dS

(17)
This equation provides a boundary integral equation for
determining µ∗ and its derivatives at all points of Ω.

Knowing the solutions µ∗ (x, s) and its derivatives
∂µ∗/∂x1 and ∂µ∗/∂x2 which are obtained from (17), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
µ (x, t) and its derivatives ∂µ/∂x1 and ∂µ/∂x2. The Stehfest
formula is

µ (x, t) ' ln 2

t

N∑
m=1

Vmµ
∗ (x, sm)

∂µ (x, t)

∂x1
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x1
(18)

∂µ (x, t)

∂x2
' ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!
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The analysis of the section requires that the coefficients
κij , α are of the form (4) and (5) respectively with g satisfy-
ing (9). This condition on g allows for considerable choice in
the coefficients. For example, when λ = 0, g can assume a
number of multiparameter forms with the parameters being
employed to fit the coefficients to numerical data for the
coefficients. Possible multiparameter forms include

g (x) = (c0 + c1x1 + c2x2)
2

g (x) =
[
<{c0 + c1z + c2z

2 + . . .+ cnz
n}
]2

where the ck, k = 1, 2, . . . , n are constants, < denotes
the real part of a complex number and z = x1 + τx2.
More generally, the square of the real part of any analytical
function of the complex variable z can serve as a possible
form for g. For the case when λ 6= 0 some possible
multiparameter forms of g are

g (x) = [A cos (c0 + c1x1 + c2x2)

+B sin (c0 + c1x1 + c2x2)]
2
, κijcicj + λ = 0

g (x) = [A exp(c0 + c1x1 + c2x2)]
2
, κijcicj − λ = 0

where A,B, ci are real constants.

IV. NUMERICAL EXAMPLES

Some particular problems for FGMs will be solved by
employing a BEM for the boundary integral equation (17) to
obtain numerical solutions in the frame of Laplace transform.
The Stehfest formula (18) is used to get the solutions in the
time variable t. The main aim is to show the validity of
the analysis for deriving the boundary integral equation (17)
and the appropriateness of the BEM and Stehfest formula in
solving the problems defined in Section II.

For all problems considered, the gradation function g(x)
of the considered FGM is required to satisfy equation (9).
We assume each problem belongs to a system which is
valid in given spatial and time domains. The characteristics
of the system which are represented by the coefficients
κij (x) , α (x) in equation (1) are assumed to be of the form
(4) and (5).

The BEM with constant elements is employed to obtain
numerical results. And the value of N in (18) for the Stehfest
formula is chosen to be N = 10. For all problems considered,
a unit square (depicted in Figure 1) will be taken as the
domain, and the boundary of the domain is divided into 320
elements of the same length, that is 80 elements for each
side of the unit square, and the time domain is 0 ≤ t ≤ 5.
The integral on each element is evaluated numerically using
the Bode’s quadrature. A FORTRAN code is developed to
compute the solutions, and a specific FORTRAN command
is imposed to calculate the elapsed CPU time for obtaining
the results. A simple script is developed and embedded into
the main FORTRAN code to calculate the values of the
coefficients Vm,m = 1, 2, . . . , N for any number N . Table
(I) shows the values of Vm for N = 4, 6, 8, 10 which are
obtained from the script.

A. A test problem

1) Problem 1: In order to see the accuracy of the BEM
and the Stehfest formula we will consider a problem of
analytical solution. The problem is also aimed to show the

TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA FOR N = 4, 6, 8, 10

Vm N = 4 N = 6 N = 8 N = 10
V1 −2 1 −1/3 1/12
V2 26 −49 145/3 −385/12
V3 −48 366 −906 1279
V4 24 −858 16394/3 −46871/3
V5 810 −43130/3 505465/6
V6 −270 18730 −236957.5
V7 −35840/3 1127735/3
V8 8960/3 −1020215/3
V9 164062.5
V10 −32812.5

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Ω

steady state solution if exists. Three cases of FGMs will be
considered, namely trigonometrically (Case 1), exponentially
(Case 2) and quadratically (Case 3) graded materials. The
analytical solutions of all cases are assumed to take a
separable variables form

µ (x, t) = g−1/2 (x)h (x) f (t)

where the function h(x) satisfies (13). Also, we take a
common constant coefficient κij for all cases

κij =

[
1 0.05

0.05 0.45

]
and a mutual set of boundary conditions (see Figure 1)

µ is given on side AB, BC, CD
P is given on side AD

Case 1: trigonometrically graded material: We assume
the inhomogeneity function g(x) is a trigonometric function

g(x) = [cos (1− 0.55x1 − 0.25x2)]
2

so that the medium under consideration is a trigonometrically
graded material. The time variation function is (see Figure
2)

f (t) = 1− exp (−1.35t)

For g(x) to satisfy (9)

λ = −0.344375

We take
h(x) = 1− 0.85x1 − 0.15x2
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 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
g1/2(x1,x2) = cos(1-0.55x1-0.25x2)

x1 x2

g1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

f

t

f(t) = 1-exp(-1.35t)

Fig. 2. Functions g1/2 (x) and f (t) for Case 1 of Problem 1

 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
g1/2(x1,x2) = exp(-1+0.55x1+0.25x2)

x1 x2

g1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

f

t

f(t) = t/5

Fig. 3. Functions g1/2 (x) and f (t) for Case 2 of Problem 1

so that in order for h(x) to satisfy (13) with λ+ sα = 0 (as
to use the Laplace fundamental solution in (16))

α = 0.344375/s

Case 2: exponentially graded material: The FGM is
supposed to be an exponentially graded material with a
gradation function g(x) of the form

g(x) = [exp (−1 + 0.55x1 + 0.25x2)]
2

so that from (9)
λ = 0.344375

The time variation function is

f (t) = t/5

Functions g1/2(x) and f (t) are depicted in Figure 3.

 0  0.2  0.4  0.6  0.8  1  0  0.2 0.4 0.6 0.8 1

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
g1/2(x1,x2) = 1-0.55x1-0.25x2

x1
x2

g1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

f

t

f(t) = 0.16t(5-t)

Fig. 4. Functions g1/2 (x) and f (t) for Case 3 of Problem 1

We take

h(x) = sin (1− 0.85x1 − 0.15x2)

so that in order for h(x) to satisfy (13) with λ + sα =
−0.745375 < 0 (as to use the Helmholtz fundamental
solution in (16))

α = −1.08975/s

Case 3: quadratically graded material: We assume
that the material is quadratically graded, with a function of
gradation

g(x) = (1− 0.55x1 − 0.25x2)
2

so that from (9)
λ = 0

The time variation function is (see Figure 4)

f (t) = 0.16t (5− t)

We take

h(x) = exp (−1 + 0.85x1 + 0.15x2)

so that in order for h(x) to satisfy (13) with λ + sα =
0.745375 > 0 (as to use the modified Helmholtz fundamental
solution in (16))

α = 0.745375/s

The results for the three cases of Problem 1 are shown
in Table (II) and Figure 5. Table (II) shows the accuracy
of the numerical solutions µ and the derivatives ∂µ/∂x1 and
∂µ/∂x2 solutions at (x1, x2) = (0.5, 0.5) in the domain. For
all cases the errors mainly occur in the fourth decimal place
for the µ, ∂µ/∂x1, ∂µ/∂x2 solutions.

Figure 5 shows a variation of the µ solution values
at interior points (x1, x2) = (0.2, 0.2) , (0.8, 0.8) as the
time increases from t = 0.0005 to t = 5. As expected,
the variation follows the way the associated function f(t)
changes. Specifically for the Case 2 of associated function
f(t) = 1 − exp (−1.25t) the µ solutions tends to approach

Engineering Letters, 29:2, EL_29_2_23

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



TABLE II
THE ACCURACY OF THE NUMERICAL SOLUTIONS AT POSITION

(x1, x2) = (0.5, 0.5) FOR PROBLEM 1

t
Numerical Errors

µ ∂µ
∂x1

∂µ
∂x2

µ ∂µ
∂x1

∂µ
∂x2

Case 1
0.0005 0.0004 -0.0008 -0.0002 0.0000 0.0000 0.0000

0.5 0.2973 -0.6176 -0.1401 0.0001 0.0002 0.0001
1.0 0.4486 -0.9320 -0.2114 0.0001 0.0002 0.0001
1.5 0.5255 -1.0916 -0.2476 0.0004 0.0002 0.0001
2.0 0.5646 -1.1730 -0.2661 0.0005 0.0004 0.0001
2.5 0.5847 -1.2145 -0.2755 0.0004 0.0003 0.0000
3.0 0.5950 -1.2360 -0.2804 0.0003 0.0001 0.0000
3.5 0.6004 -1.2471 -0.2829 0.0001 0.0005 0.0001
4.0 0.6031 -1.2529 -0.2841 0.0000 0.0007 0.0000
4.5 0.6045 -1.2557 -0.2850 0.0001 0.0008 0.0003
5.0 0.6052 -1.2573 -0.2854 0.0001 0.0009 0.0004

Case 2
0.0005 0.0001 -0.0002 -0.0000 0.0000 0.0000 0.0000

0.5 0.0873 -0.1840 -0.0458 0.0000 0.0000 0.0000
1.0 0.1747 -0.3680 -0.0917 0.0001 0.0001 0.0000
1.5 0.2620 -0.5520 -0.1375 0.0001 0.0001 0.0000
2.0 0.3493 -0.7360 -0.1833 0.0001 0.0002 0.0000
2.5 0.4366 -0.9201 -0.2292 0.0001 0.0002 0.0000
3.0 0.5240 -1.1041 -0.2750 0.0002 0.0003 0.0000
3.5 0.6113 -1.2881 -0.3208 0.0002 0.0003 0.0000
4.0 0.6986 -1.4721 -0.3666 0.0002 0.0004 0.0000
4.5 0.7860 -1.6561 -0.4125 0.0002 0.0004 0.0001
5.0 0.8733 -1.8401 -0.4583 0.0003 0.0004 0.0000

Case 3
0.0005 0.0004 0.0007 0.0002 0.0000 0.0000 0.0000

0.5 0.3641 0.6431 0.2063 0.0001 0.0002 0.0001
1.0 0.6472 1.1433 0.3668 0.0003 0.0003 0.0002
1.5 0.8495 1.5006 0.4814 0.0004 0.0004 0.0003
2.0 0.9709 1.7151 0.5502 0.0005 0.0006 0.0003
2.5 1.0114 1.7865 0.5732 0.0005 0.0006 0.0004
3.0 0.9710 1.7150 0.5505 0.0005 0.0005 0.0005
3.5 0.8495 1.5009 0.4812 0.0003 0.0008 0.0001
4.0 0.6474 1.1436 0.3671 0.0005 0.0007 0.0004
4.5 0.3644 0.6436 0.2065 0.0005 0.0007 0.0003
5.0 0.0004 0.0005 0.0002 0.0004 0.0005 0.0002

TABLE III
THE ELAPSED CPU TIME (IN SECONDS) FOR PROBLEM 1

Case 1 Case 2 Case 3
472 685.984375 338.65625

a steady state solution. This is also expected, as the function
f(t) = 1− exp (−1.25t) converges to 1 as t gets bigger.

The elapsed CPU time for the computation of the numer-
ical solutions at 19× 19 spatial positions and 11 time steps
from t = 0.0005 to t = 5 is shown in Table III.

B. An example without analytical solution

1) Problem 2:: The aim is to show the effect of inho-
mogeneity and anisotropy of the considered medium to the
solution µ. The medium is supposed to be an anisotropic
or isotropic, and inhomogeneous (functionally graded) or
homogeneous material. For all combinations of the ma-
terial’s anisotropy and inhomogeneity (isotropic homoge-
neous, isotropic inhomogeneous, anisotropic homogeneous,
anisotropic inhomogeneous) we choose

α = 1

and a common set of boundary conditions that
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Fig. 5. Solutions µ at interior points (x1, x2) = (0.2, 0.2) , (0.8, 0.8) for
the Case 1 (top), Case 2 (center) and Case 3 (bottom) of Problem 1

P = f(t) on side AB
P = 0 on side BC
µ = 0 on side CD
P = 0 on side AD

where the function f(t) is defined as one of the following
two forms

f(t) = f1(t) = 1

f(t) = f2(t) = 1− exp (−1.35t)

If the material is anisotropic then the constant coefficient κij
is

κij =

[
1 0.05

0.05 0.45

]
and

κij =

[
1 0
0 1

]
when it is isotropic. Regarding its inhomogeneity, three
cases of FGMs will be considered, namely trigonometrically,
exponentially and quadratically graded materials. We take
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g1/2(x) = 1 (that is λ = 0) for the case of homogeneous
material.

Case 1: trigonometrically graded material: The grada-
tion function is

g1/2(x) = cos (1− 0.55x1 − 0.25x2)

So that if the material is anisotropic then λ = −0.344375,
and λ = −0.365 when it is isotropic.

Case 2: exponentially graded material: We assume

g1/2(x) = exp (−1 + 0.55x1 + 0.25x2)

So that λ = 0.344375 if the material is anisotropic and λ =
0.365 when it is isotropic.

Case 3: quadratically graded material: We take

g1/2(x) = 1− 0.55x1 − 0.25x2

So that λ = 0 for all combinations of the material’s
anisotropy and inhomogeneity.

It should be noted that when the considered material is
isotropic homogeneous then the problem is symmetric about
the axis x1 = 0.5. This symmetry condition will be used to
verify the numerical solutions.

The results for Problem 2 are shown in Figures 6, 7, 8
and 9.

When the material under consideration is homogeneous
the problems for all Cases 1, 2, 3 are identical. The results
are shown in Figure 6. Specifically, when the material is
isotropic homogeneous the solutions µ at point (0.1, 0.5)
will coincide with the solutions at point (0.9, 0.5). This is
expected as for isotropic homogeneous material the problem
is symmetric about the axis x1 = 0.5. Otherwise, if the
material is anisotropic then the values of µ at points (0.1, 0.5)
and (0.9, 0.5) differ. This indicates that anisotropy of the
material gives effects on the µ values.

Figures 6 – 9 also indicate that anisotropy and inhomo-
geneity of material give effect on the values of solution µ.
This suggests that it is important to take the anisotropy and
inhomogeneity into account in any applications.

Moreover, in all Figures 6 – 9 it is observed that at a
point (0.1, 0.5) or (0.9, 0.5) the solutions µ of problems with
boundary condition (on side AB) f(t) = f1(t) = 1 and
f(t) = f2(t) = 1− exp (−1.35t) converge to a steady state
solution as the time increases from t = 0.25 to t = 5. This
is expected as for big value of t the limit of the function
f(t) = f2(t) = 1− exp (−1.35t) is equal to f(t) = f1(t) =
1.

V. CONCLUSION

A combined Laplace transform and standard BEM has
been used to find numerical solutions to initial boundary
value problems for anisotropic functionally graded materials
which are governed by the parabolic equation (1). The
method is easy to implement as it uses a pure boundary
integral equation (17). It also involves a time variable free
fundamental solution therefore it gives more accurate solu-
tions. It does not involve round-off error propagation as it
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Fig. 6. Solutions µ at (x1, x2) = (0.1, 0.5) , (0.9, 0.5) for Problem 2
when the material is homogeneous with g(x) = 1
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Fig. 7. Solutions µ at (x1, x2) = (0.1, 0.5) , (0.9, 0.5) for Case 1 of
Problem 2
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Fig. 8. Solutions µ at (x1, x2) = (0.1, 0.5) , (0.9, 0.5) for Case 2 of
Problem 2
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Fig. 9. Solutions µ at (x1, x2) = (0.1, 0.5) , (0.9, 0.5) for Case 3 of
Problem 2

solves the boundary integral equation (17) independently for
each specific value of t at which the solution is computed.
Unlikely, the methods with time variable fundamental solu-
tion may produce less accurate solutions as the fundamental

solution sometimes contain time singular points and also
solution for the next time step is based on the solution of the
previous time step so that the round-off error may propagate.

It has been applied to three classes of anisotropic func-
tionally graded materials, namely quadratically, exponen-
tially and trigonometrically graded materials. The quadratic
inhomogeneity can be certainly written as a constant-plus-
variable inhomogeneity, but each of the other two types of
inhomogeneities (exponential and trigonometric) can not be
simply represented as constant-plus-variable inhomogeneity.

In order to use the boundary integral equation (17), the
values µ (x, t) or P (x, t) of the boundary conditions as
stated in Section II of the original system in time variable t
have to be Laplace transformed first. This means that from
the beginning when we set up a problem, we actually put a
set of approached boundary conditions. Therefore it is really
important to find a very accurate technique of numerical
Laplace transform inversion. Based on the obtained results,
the Stehfest formula is a quite accurate technique for the
calculation of the numerical Laplace transform inverse.
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