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Abstract—Computer technology provides new possibilities
for handling the multi-objective optimal reactive power
dispatch (MOORPD) problems with high-dimension and
non-differentiability. In this paper, a novel constraint
stratification ranking methodology integrated on dynamic
balance imperialist competition algorithm (ICA) is proposed
to deal with MOORPD problem, and this methodology is
called NCSR-DBICA. The proposed methodology includes
three sub-methods to solve three typical problems encountered
when dealing with MOORPD problems with ICA. These
typical problems include the original ICA which is easy to fall
into local optimum, it is difficult to handle the constraints in
MOORPD problem and there is no effective solution set
ranking method. Thus, the dynamic balance strategy (DBS) is
proposed to improve the searching ability of ICA, the
constraint-based country stratification mechanism (CCSM) is
proposed to deal with the constraint problem, and a novel
ranking method (NRM) is proposed to solve the ranking
problem. To verify the effectiveness of the improved method,
the NCSR-DBICA, MOICA-FS, NSGA-III, NSGA-II and
MOPSO-CD were tested on three test systems. Simulation
results show that NCSR-DBICA can find better results,
especially in large scale systems. In addition, two indicators:
Generational Distance (GD) and Hyper-volume (HV), were
selected to evaluate the diversity, stability and convergence of
the above algorithms. The evaluation results also verify the
superiority of NCSR-DBICA.

Index Terms—multi-objective optimal reactive power
dispatch problem, imperialist competition algorithm, novel
ranking method, constraint-based country stratification
mechanism, dynamic balance strategy
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HE optimal reactive power dispatch (ORPD) problem
is a sub-problem of the optimal power flow (OPF)

research, and it is also a classic optimization problem for
power systems [1-5]. This problem is a static nonlinear,
non-convex, multi-objective, multi-constrained,
multivariable problem which optimizes one or more
objective functions under certain equality and inequality
constraints. The objective functions that need to be
optimized generally include active power losses, voltage
deviation, and voltage stability index. And this optimization
process can be achieved by adjusting the generator voltage
(continuous variable), the transform taps (discrete variable)
and the reactive power generations of Volt-Ampere
Reactive (VAR) source (discrete variable). According to the
number of optimization targets, the ORPD problem can be
divided into single-objective ORPD (SOORPD) problem
and multi-objective ORPD (MOORPD) problem [6-8].
Different from the single-objective problems (SOPs), the
multi-objective problems (MOPs) are solved in order to
find a set of Pareto optimal solution sets, and then obtain a
best compromise solution (BCS).
Over the last decades, some classic methods such as

weight sum method, goal attainment method, and
ε-constraint approach have been applied to deal with the
MOPs. However, the searching capabilities of these
methods are very limited, which require a mass of runs and
a large amount of calculation time, and sometimes
researchers cannot even find a solution that meets the
requirements. In recent years, the emergence of intelligent
algorithms provides a new idea for MOPs. The successful
application of some algorithms such as non-dominated
sorting genetic algorithm II (NSGA-II), reference-point
based many-objective non-dominated sorting genetic
algorithm (NSGA-III), multi objective particle swarm
optimization (MOPSO), multi-objective evolutionary
algorithm (MOEA) and other algorithms also shows the
effectiveness of intelligent algorithms in dealing with the
MOPs [9-13]. In addition, some algorithms also have
obvious experimental advantages when dealing with the
MOORPD problem. In [14], the author solves the
MOORPD problem by using the multi-objective differential
evolution (MODE) algorithm. In [15], a two-archive
multi-objective grey wolf optimizer is proposed for solving
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MOORPD problem. In [16], a two-point estimate method is
proposed to model the load uncertainty in MOORPD
problem.
ICA is an intelligent algorithm inspired by social

competitive behavior [17-19]. A lot of research has shown
the superiority of this algorithm in dealing with the
optimization problems [20-23]. In [20], an enhanced ICA is
proposed to optimum design of skeletal structures. In [21],
an efficient hybrid method based on ICA and GA is
proposed for solving the optimal sitting and sizing problem
of DG and shunt capacitor banks simultaneously. In [23], a
multi-objective global best ICA is proposed and
successfully applied to solve MOORPD problems.
Therefore in this study, ICA is used to deal with the
MOORPD problem. Although ICA has obvious advantages
in dealing with SOPs, it also has some problems when
dealing with the MOORPD problem. For example: ICA is
easy to fall into local optimum, the solution may not satisfy
the constraint, and there is no effective multi-objective
solution set ranking method. For the first problem, a
dynamic balance strategy (DBS) is proposed to balance the
searching ability of the ICA. For the constraint problem, a
new constraint processing method based on Pareto
dominant is proposed, instead of using the commonly used
penalty coefficient method, which is called constraint-based
country stratification mechanism (CCSM). For the sorting
problem, a novel ranking method based on country
satisfaction and country distance is proposed to solve the
ranking problem of the multi-objective solution set.
To verify the effectiveness of the proposed methods, the

simulation experiments with different objective function
combinations of NCSR-DBICA, MOICA-FS [22],
NSGA-III [24, 25], NSGA-II [26] and MOPSO-CD [27] are
performed on IEEE 30, 57 and 118 test systems. The results
prove that NCSR-DBICA can find better BCS in different
cases. In addition, to explore the diversity, convergence and
stability of the algorithm, two indicators, GD and HV, are
selected to evaluate the performance of the algorithm
[28-30].
The sections of this paper are arranged as follows:

Section II introduces the mathematical model of the
MOORPD problem, Section III describes the original ICA
and the proposed NCSR-DBICA to solve the MOORPD
problem, Section IV presents the detailed results of the
improved algorithm in dealing with the MOORPD problem
and the experimental performance of the algorithms. Finally,
the conclusions are given in Section V.

II. THEMOORPD PROBLEM

In this paper, a MOORPD problem to be solved can be
defined as follows:

1 2Minimize ( , ) [ ( , ), ( , ), , ( , )]
subject to ( , ) 0, 1, 2,...,

( , ) 0, 1, 2,...,

m

j

k

F x u f x u f x u f x u
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(1)

Where x is the state variables, u is the control variables,
F(x, u) is the objective functions, m is the number of
objective functions, g(x, u) and h(x, u) are equality and
inequality constraints, J and K are the number of equality
and inequality constraints. In detail, state variables x

include UL (load bus voltages), QG (generator reactive
power outputs) and SL (transmission line loadings). Control
variables u include UG (generator bus voltages), T
(transformer taps) and QC (reactive power compensation).
Hence, x and u can be formed as follows:

1 1 1[ ,..., , , ... , , ...  , ]   
pq pv E

T
L LN G GN L LNx U U Q Q S S (2)

1 1 1[ ,..., , ,..., , ,..., ]
pv T C

T
G GN N C CNu U U T T Q Q (3)

Where Npq denotes the number of PQ buses, Npv
represents the number of PV buses, NE is the total number
of transmission branches, NC shows the total number of
shunt VAR compensators.

A. Objective Functions: F(x, u)

Minimization of active power losses: this objective
function is aims to minimize the total active power
transmission losses.

2 2
1( , ) min ( 2 cos )=

E

loss k i j i j ij
k N

f x u P g U U UU 


   (4)

Where f1 is the first objective function, Ploss represents the
total active power losses, gk is the conductance of the kth
branch, Ui and Uj are the voltage magnitude of ith node and
jth node, δij is the voltage angle between node i and node j.
Minimization of voltage deviation: this objective

function aims to enhance the voltage quality of the power
system.

2
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Where f2 is the second objective function, Vd is the total
voltage deviations, UREF is the preferred value of voltage
magnitude.
Minimization of voltage stability index: this objective

function aims to show the security of the power grid.

2
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Where f3(x, u) is the third objective function, L index is the
global voltage stability index, Lj is the local voltage stability
index and it can be detailed as follows.

1

1
LL LG

|1 |,

[ [Y ] [Y ]]

PVN
i

j ji PQ
i j

ji ji

UL F j N
U

F





  


  



 (7)

Where iU and jU are complex voltages of the ith PV bus
and the jth PQ bus, YLL and YLG are the sub-matrices. Y-bus
matrix is the node admittance matrix and it is acquired after
separating the PQ buses and PV buses [14].

B. Constraints: g (x, u) and h (x, u)

1) The g (x, u)
In the ORPD problem, the equality constraints g (x, u)

include active power and reactive power balance equations,
and the violations of g (x, u) are considered by using
Newton-Raphson load flow calculation [31, 32].

( cos sin ) 0,
i

Gi Di i j ij ij ij ij
j N

P P U U G B i N 


     (8)

( sin cos ) 0,
i

Gi Di i j ij ij ij ij PQ
j N

Q Q U U G B i N 


     (9)

Where PGi and PDi are the active power generation and
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active load demand; Ni is the number of nodes adjacent to
node i; Gij and Bij are the real part and imaginary part of the
ijth element of Y-bus matrix; N is the number of system
buses; QGi and QDi are the reactive power generation and
reactive load demand.
2) The h (x, u)
The h (x, u) include state variables and control variables

inequality constraints.
State variables inequality constraints: those constraints

mainly include ULi (the voltage limits of ith load bus), QGi

(the reactive power outputs limits of the ith generator bus),
and SLij (the transmission apparent power flow limits of the
ijth transmission line). Their lower and upper boundaries
can be formulated as below.

min max

min max

max

,

,

,
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(10)

Control variables inequality constraints: those
constraints mainly include UGi (the voltages limits of the ith
generator bus), Ti (the transformer tap settings limits of the
ith transformer), and QCi (the reactive power compensation
capacity limits of the ith capacitor bank). Their
corresponding boundaries can be expressed as below.

min max

min max

min max

,
,
,

Gi Gi Gi PV

i i i T

Ci Ci Ci C

U U U i N
T T T i N
Q Q Q i N

   


  
   

(11)

III. PROPOSEDMETHODOLOGY

A. Summary of ICA
The ICA, a new intelligent algorithm, was inspired by the

imperialistic competition [33]. The initial population of the
algorithm is called the country, and the power of the
country is determined by the value of the country's
objective function. In the minimum value problem, the
smaller the value of the objective function, the greater the
power of a country. Thus, all countries will be divided into
two categories: the colony (the weaker country) and the
imperialist country (the stronger country). After the
classification, the colonies will be occupied by the
imperialist countries through the roulette wheel selection,
and the empire will be formed (each empire consists of an
imperialist country and several colonies). To improve their
power and become an imperialist country, the colonies will
learn from their imperialist countries. In addition, the
empire will compete with other empire in order to gain
more colonial power. In this process, weak empire will be
disintegrated by other stronger empire. With the iteration of
the algorithm, there is only one strongest empire left, and
the position of the imperialist country in the empire is the
optimal solution that the algorithm seeks. Thus, the detailed
steps of the ICA can be explained as follows:
Step1: Set the primary parameters: Npop, Nimp, Ncol, θ, β, ξ,

maximum iterationMaxit.
Step2: Create the initial countries. In an Nvar dimensional

problem, an 1×Nvar array is called country and it can be
defined as below.

1 2 3[ , , , , ]
varNcountry p p p p  (12)

Where Nvar is the number of variables to be considered,
pis is the value of variables that should be optimized. For a
country, these variables include politics, culture, economy,
religion and other aspects [34]. As shown in the Figure 1.

Fig. 1. Socio-political characteristics of a country

Step3: Calculate the cost of countries.
1 2cost ( , , , ) 1, 2,...,

vari N popf p p p i N  (13)

In the first step of the algorithm, the total number of
countries Npop has been determined. Then, select the
strongest initial countries with size of Nimp to be the
imperialists and the remaining Ncol of countries form the
colonies.

col pop impN N N  (14)
Step4: Form the empires through the roulette wheel

selection and calculate the power of each imperialist.
To form empires, all colonies will be divided among the

imperialists according to their power. The normalized cost
of an imperialist can be determined as below.

max{c }n i ni
C c  (15)

Where cn is the cost of the nth imperialist, Cn is the
normalized cost. Therefore, the power of each imperialist
can be calculated based on its normalized cost.

1
| / |

impN

n n i
i

P C C


  (16)

Where pn is the power value of nth imperialist. Then, the
initial number of colonies for nth imperialist, NCn, can be
determined.

{ }n n colNC round p N (17)
Step5: Start assimilation process. In this movement, all

colonies will move to their imperialists to increase their
power. Figure 2 shows this process. The colony move
distance x is a random variable related to the distance
parameter β. The θ is the direction parameter with an angle
parameter γ. The x and θ can be defined as blow.

~ (0, )x U d  (18)
~ ( , )U    (19)

Fig. 2. Assimilation process

Step6: Execute revolution operation. In the history of
imperial, the colony can not only change its socio-political
characteristics through assimilation, but also strengthen its
own power by reforming its own politics, culture, economy
and other elements. Revolution, in brief, is that the colonies
change their position through reform. This change is similar
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to the mutation operation in GAs. In ICA, this sudden
random change is called the revolution of colony.
Step7: Exchange the position of a colony and an

imperialist, if we find any colony has better performance
than their relevant imperialist.
Step8: Calculate the total power of an empire. The total

power of the empire is mainly related to its imperialist, and
the power of the colonies also have a negative effect on the
total power. Therefore, the total power of an empire can be
calculated by the following formula.

( )
{ ( )}

n n

n

TC Cost imperialist
mean Cost colonies of empire




(20)

Where ξ is the colonial weight that has value between 0
and 1.
Step9: Start imperialistic competition. This process is a

competition between the empire and the empire. Depending
on the power of the empire, the weakest colony in the weak
empire will be encroached by a more powerful empire.
Before that, the total power of the empire needs to be
measured first. And the power calculation formula can be
obtained by the following two formulas.

max{ }n i ni
NTC TC TC  (21)

1

| / |
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N

p n i
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  (22)

Where NTCn is the normalized total cost, TCn is the total
cost of the nth empire, Ppn is the total power of the nth
empire.
Step10: Eliminate weak empire. The weak empire

gradually lost all the colonies to other stronger empires,
leaving only one imperialist country in this empire. This
imperialist country will become a colony and will be
occupied by other empires. Then, the weak empire was
eliminated.
Step11: Check the stopping condition. The searching

process is terminated when the certain number of iterations
are met. Otherwise, return to the Step5. The ideal
termination criterion is when all the empires have collapsed
and only one (the most powerful empires) remains to rule
all other countries.

B. Multi-Objective Solution Strategy

The purpose of solving the MOPs is to obtain a group of
Pareto optimal solutions and then find one BCS from those
solutions [35]. The ICA described above finds the desired
results by continuously optimizing the particles, and the
Pareto optimization method is the key to guiding ICA to
find the Pareto front. After obtaining the optimal Pareto
front, the fuzzy mathematics decision method is used to
find the BCS. Further description about these two methods
is shown below.
1) Pareto optimization method
Different from the SOPs, the solution vector of the

multi-objective problem is two-dimensional or
higher-dimensional. The core of Pareto optimization
method is to effectively judge the quality of the solution of
multi-objective problem, and then find the Pareto front. In
fact, the Pareto front is a set of solutions that cannot be
dominated by other solutions. For any solution u1 and
solution u2, u1 dominants u2 if and only if below

conditions are satisfied at the same time.
{1,2,..., } : ( , ) ( , )
{1, 2,..., } : ( , ) ( , )

1 2

1 2

i i

j j

i m f x u f x u
j m f x u f x u

  
  

(23)

Finally, a set of Pareto optimal solutions that are
non-dominated within the search space can be found. Due
to the large number of dominant solutions, in the
multi-objective problem, obtain the best one BCS is
necessary and is achieved by fuzzy mathematics decision
method.
2) Fuzzy mathematics decision method
After obtaining the Pareto front, that is, the Pareto

optimal solution sets, the decision maker needs to find the
BCS that satisfy the current conditions from these solution
sets. In order to obtain the only one BCS, the fuzzy
membership of each objective of each solution needs to be
calculated first.

min

max
min max

max min

max

1
( )

( )
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mi m

m mi
mi m mi m

m m

mi m

f f
f f x

S x f f f
f f

f f

 


   
 

(24)

Where Smi is the satisfaction function of mth objective
function of fm of individual i, fmmax and fmmin represent the
maximum and the minimum value of the mth objective
function. For each available solution, the normalized value
of satisfaction functions is calculated by (25).

( )
p

M
mim=1

N M
mii=1 m=1

S
sf i =

S


 
(25)

Where sf (i) is the normalized satisfaction function. The
aforementioned dominant solutions with the maximum sfi
can be chosen as the BCS.

C. Multi-Objective Solution Strategy

In this paper, our main purpose is to use ICA to solve the
MOORPD problem. The problems we encountered are the
improvement of algorithm search ability, the processing of
constraints and the processing of multi-objective solutions.
To solve the above three problems, three methods are
proposed to improve the performance of ICA in dealing
with MOORPD problems, namely the dynamic balance
strategy (DBS), the constraint-based country stratification
mechanism (CCSM) and the novel ranking method based
on country satisfaction and country distance (NRM). More
details about these improvements are presented as below.
1) DBS: Dynamic balance strategy
In the assimilation process of the original ICA, the

development of the colony mainly depends on its relevant
imperialist country, but this position update method may
lead to the algorithm easily falling into the local optimum.
Therefore, in order to improve the global searching ability
of the ICA, the strongest imperialist guidance mechanism is
introduced based on the original algorithm. This means that
the colony is not only influenced by the corresponding
imperialist country but also by the most powerful
imperialist country in its own development. Thus, the
colony's update formula can be improved as below.
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Where Pik (Colnew) and Pik (Colold) are the new position
and old position of the colony i at iteration k, Pik (Imprel) is
the position of relevant imperialist country of colony i at
iteration k, Pk (Impstrgest) is the position of the strongest
imperialist country at iteration k, r1 and r2 are random
numbers between 0 and 1, ωk is the inertia weight, βk and αk
are assimilation coefficients. And, the improved
assimilation process can be represented by Figure 3.

Fig. 3. Improved assimilation process

The successful application of the strongest imperialist
guidance mechanism effectively improve the global
searching ability of the original algorithm in the early
iteration. However, the local searching ability of the
algorithm in the middle and late period needs to be
strengthened. Therefore, in order to balance the searching
ability of different stages of the algorithm, a dynamic
balance strategy is proposed. This method can dynamically
adjust the assimilation coefficients βk and αk according to
the number of iterations, and then change the influence of
the relevant imperialist country and the strongest imperialist
country on the colonies during different periods. And, βk
and αk are optimized as below.

max min
min

max

=k k
k

 
 


  (27)

max min
max

max

=k k
k

 
 


  (28)

Where βmax and βmin are the maximum value and
minimum value of assimilation coefficient of the relevant
imperialist country, kmax is the maximum number of
iterations, k is the current number of iterations, αmax and αmin
are the maximum value and minimum value of assimilation
coefficient of the strongest imperialist country.
2) CCSM: Constraint-based country stratification
mechanism
In the SOPs, the quality of the country in ICA can be

judged directly by the objective function value. However,
the MOORPD problem that needs to be solved is a
multi-objective, multi-constrained issue. The traditional
methods have failed to meet the requirements of this
research. Therefore, based on the Pareto optimization idea,
the constraint is regarded as the premise of the country's
quality, and the constraint-based country stratification
mechanism is proposed to judge the quality of the country.
The essence of the ORPD problem is to obtain a set of

control variables u that is, the socio-political position that

determines the power of the country's power in ICA. Thus,
the constraints of these control variables need to be
processed first. For the country i, its position can be
adjusted as follows.

,min ,min

,min ,max

,max ,max

if
if
if

i i

i i i i

i i

u u u
u u u u u

u u u

 


  
 

(29)

The constraints mentioned above include not only control
variable constraints, but also state variable constraints. Here,
combined with the Pareto optimization idea and the ICA, a
method is proposed to solve the state variable violation
constraint in the MOORPD problem, which is called the
constraint-based country stratification mechanism.
Firstly, if any country violates the constraint, calculate the

total amount of constraint violation by (30).

1
( ) max( ( , ),0)

Ds

i k i
k

Tvio u h x u


 (30)

Where Tvio (ui) is the total amount of constraint
violations of country i, Ds is the dimension size of the state
variables.
Different from the original Pareto optimization method, the
proposed method first needs to judge the country's
constraint violations. It means that those countries that do
not violate the constraint dominate all other countries that
violate the constraint. For any country u1 and country u2,
their dominant relationship can be expressed as follows:
If Tvio (u1) < Tvio (u2), country u1 dominates country u2;
If Tvio (u1) > Tvio (u2), country u2 dominates country u1;
If Tvio (u1) = Tvio (u2) and the two following conditions

are satisfied at the same time, it can be judged that country
u1 dominates country u2: Firstly, fi (x, u1) ≤ fi (x, u2) for all i
ϵ {1, 2, …, M}. Secondly, fj (x, u1) < fj (x, u2) for any j ϵ {1,
2, …, M}. Otherwise, u1 and u2 belong to the same level.
Using this method, all countries can be divided into n

levels. The Rank (i) is defined as the level of country i, and
those countries are not dominate each other will have the
same level. In addition, the smaller the rank value is, the
stronger the country is. Countries with higher ranks are
more likely to become imperialist countries. Conversely,
countries with lower ranks will become colonies. Finally,
all countries are divided into n ranks with different power
levels according to the constraint-based country
stratification mechanism.
3) NRM: Novel ranking method based on country
satisfaction and country distance
When dealing with the MOPs, each generation of updated

countries will be stored in a repository, and then the
repository will sort all countries, leaving the best NR (the
size of repository) solutions for each generation. In the
classic NSGA-II algorithm, individuals are sorted by the
non-dominated sorting and the crowded distance calculation.
In our research, the non-dominated sorting is optimized by
the proposed constraint-based country stratification
mechanism. For countries at the same level, a novel ranking
method based on country satisfaction and distance is
proposed.
Country satisfaction sf (i) can be calculated by the

aforementioned (25). Similar to the crowded distance
calculation method, the country distance can be obtained
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according to the following equation.
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Where ui is the position of country i, Cdis (ui) is the
country distance of country i, fm (ui+1) and fm (ui-1) represent
the objective function values of the corresponding two
countries adjacent to country i, fm max and fm min represent the
maximum and minimum values of the mth objective
function, respectively.

Now, any country i has three attributes: country level
Rank (i), country satisfaction sfi and country distance Cdis
(ui). Then, make the following judgment:
If (any Country. Rank) ≠1
If Rank (i) < Rank (j), country i is stronger than country

j;
If Rank (i) > Rank (j), country j is stronger than country

i;
If Rank (i) = Rank (j)

Fig. 4. Flowchart of the proposed methodology for MOORPD problem

If sf (i) > sf (j), country i is stronger than country j;
else country j is stronger than country i;

Else if (all Country. Rank) =1
If Rank (i) < Rank (j), country i is stronger than country

j;
If Rank (i) > Rank (j), country j is stronger than country

i;
If Rank (i) = Rank (j)
If Cdis (i) > Cdis (j), country i is stronger than country

j;
else country j is stronger than country i.

In this way, country level Rank (i) ensures that the
country does not violate the constraint, country satisfaction
sf (i) can ensure that the country particles move to the BCS
at the beginning of the iteration. And the country distance
Cdis (ui) ensures that a Pareto front with better distribution
can be obtained later in the iteration.
4) The proposed methodology for MOORPD problem
The main purpose of this research is to solve the

MOORPD problem using the proposed dynamic balance
ICA combined with the novel constraint stratification
ranking methodology. In the process of solving this problem,
the dynamic balance strategy is mainly to improve the
searching ability of the ICA. The constraint-based country
stratification mechanism is used for the processing of
constraints and the stratification of individuals after each
power flow calculation. The new ranking method first
solves the judgment of the quality of the multi-objective
solution in the algorithm update process, and secondly
solves the sorting problem of the particles stored in the
repository. Figure 4 shows the flowchart of proposed
methodology for MOORPD problem.

In order to evaluate the performance and efficiency of the
proposed methodology, it has been applied to solve the
MOORPD problem in IEEE30, 57 and 118 bus power
systems. In order to substantiate the effectiveness of the
proposed methodology, its performance is compared with
four multi-objective optimization algorithms and these
comparison algorithms are listed as below.
(1) MOPSO-CD [27]: Multi-objective particle swarm

optimizers based on the crowding distance calculation
method, and in this paper, this algorithm is abbreviated as
MOPSO-CD.
(2) NSGA-II [26]: Non-dominated sorting genetic

algorithm II.
(3) NSGA-III [24]: Reference-point based non-dominated

sorting approach.
(4) MOICA-FS [22]: Multi-objective Imperialist

Competition Algorithm based on the fast non-dominated
sorting and the Sigma method.

IV. SIMULATION EXPERIMENT

TABLE I Objective Function Combinations
Cases Function Combinations Trials Test System
Case I f1 = Ploss & f2 = Vd 30 SystemA: IEEE30
Case II f1 = Ploss & f3 = L index 30
Case III f2 = Vd & f3= L index 30
Case Ⅳ f1 = Ploss & f2 = Vd 30 System B: IEEE57
Case Ⅴ f1 = Ploss & f3 = L index 30
Case Ⅵ f1 = Ploss & f2 = Vd 20 System C: IEEE118

TABLE II Algorithm parameter settings of NCSR-DBICA
Pars Case I Case II Case III Case Ⅳ Case Ⅴ Case Ⅵ
Npop 100 100 100 100 100 100
NR 100 100 100 100 100 100
Kmax 500 500 500 500 500 600
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Nimp 25 25 25 25 25 25
Ncol 75 75 75 75 75 75
ξ 0.1 0.1 0.1 0.1 0.1 0.1
ω 1 1 1 1 1 1
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Fig. 5. Pareto front obtained by NCSR-DBICA using different

population sizes for Case I

Three optimization objective functions are considered:
active power losses (P loss), voltage deviation (Vd) and
voltage stability index (L index). Six cases are considered in
this paper and the details of these cases are shown in Table I.
To find the most suitable population size, we performed
simulation experiments on NCSR-DBICA with different
population sizes. The Pareto fronts obtained by the
NCSR-DBICA with different population sizes and different
numbers of imperialist are shown in Figures 5-6. It can be
seen that when the number of particles and the number of
imperialists are 100 and 25, respectively, we can get a better
Pareto front. For different cases, the parameters of the
NCSR-DBICA are shown in Table II. And those algorithms
have been implemented in MATLAB 2014a and run them
on a PC with Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz
w i t h 3 . 4 1 G H z .
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Fig. 6. Pareto front obtained by NCSR-DBICA using different numbers

of imperialist for Case I

A. Results for the Test System A

The single line diagram of system A can be seen in Figure
7. The detailed data of the test system A is provided in [36,
37].In this system, the control variable of the ORPD
problem is a 19-dimensional vector, which including: 6
generator bus voltages, 4 transformer taps, and 9 reactive
power compensation variables. The lower and upper limits
for generator bus voltages amplitude are 0.95 p.u. and 1.05
p.u., the limits of transformer taps are set at 0.9-1.1, and the
limits of reactive power are set at 0.95 and 1.1 in p.u..

Fig. 7. The single line diagram of the System A

1) Discussion of Case I
In Case I, NCSR-DBICA is utilized to optimizing Ploss

and Vd simultaneously. The Pareto fronts obtained by
NCSR-DBICA, MOICA-FS, NSGA-II, NSGA-III and
MOPSO-CD are drawn in Figure 8. The results of BCS
achieved by those algorithms are presented in Tables 3. In
Table 3, it can be found that the BCS obtained by
NCSR-DBICA is better than MOICA-FS, NSGA-III,
NSGA-II and MOPSO-CD. Comparing the published
MGBICA algorithm, the results of the proposed method
dominate the results of the MGBICA algorithm. It can be
observed that the Ploss and the Vd are reduced by 0.02099
(MW), 0.02543 (p.u.), respectively.

TABLE III Comparison of the BCS for Case I
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA MGBICA[33]
VG1(p.u.) 1.0600 1.0563 1.0637 1.0561 1.0632 1.0592
VG2(p.u.) 1.0513 1.0484 1.0542 1.0475 1.0506 1.0493
VG5(p.u.) 1.0285 1.0209 1.0237 1.0257 1.0266 1.0044
VG8(p.u.) 1.0199 1.0212 1.0245 1.0237 1.0219 1.0250
VG11(p.u.) 1.0279 1.0511 1.0897 1.0611 1.0234 0.9969

Engineering Letters, 29:2, EL_29_2_24

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



VG13(p.u.) 1.0510 1.0220 1.0072 1.0254 1.0272 1.0454
T6-9 1.0539 0.9907 1.1000 1.0132 1.0627 1.04
T6-10 0.9000 1.0439 0.9508 0.9977 0.9080 1.0
T4-12 1.0685 0.9995 0.9973 1.0042 1.0229 1.03
T28-27 0.9863 0.9797 0.9801 0.9890 0.9880 0.98
C10(p.u.) 0.0090 0.0413 0.0000 0.0244 0.0287 0.27
C12(p.u.) 0.0293 0.0112 0.0484 0.0108 0.0030 --
C15(p.u.) 0.0429 0.0463 0.0293 0.0198 0.0358 --
C17(p.u.) 0.0021 0.0447 0.0240 0.0136 0.0359 --
C20(p.u.) 0.0277 0.0353 0.0500 0.0465 0.0399 --
C21(p.u.) 0.0500 0.0324 0.0294 0.0274 0.0332 --
C23(p.u.) 0.0272 0.0374 0.0500 0.0324 0.0386 --
C24(p.u.) 0.0254 0.0500 0.0379 0.0477 0.0499 0.13
C29(p.u.) 0.0338 0.0176 0.0072 0.0244 0.0253 --
Ploss (MW) 5.11401 5.09168 5.08912 5.08272 5.07861 5.0996
Vd (p.u.) 0.25846 0.25559 0.25682 0.25645 0.23387 0.2593
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Fig. 8. Pareto fronts obtained by NCSR-DBICA and other four algorithms in Case I

2) Discussion of Case II
In case II, the NCSR-DBICA algorithm is used to

optimize the Ploss and L index. It can be observed form
Figure 9 that the distribution of the Pareto front obtained in
case II is not as good as that of case I. which is because the
optimization of this objective function combination is more
difficult. However, it can be observed that the
NCSR-DBICA can still find a better Pareto front than other
four algorithms. The detailed data in Table 4 can prove that
the BCS obtained by the NCSR-DBICA algorithm is the
best. Although the L index obtained by the NCSR-DBICA
is a little higher than the MOCIPSO [37], the value of the
Ploss is much lower than the result of the reported
MOCIPSO [37]. This proves that the proposed
NCSR-DBICA algorithm has certain optimization
capabilities in this case.
3) Discussion of Case III
In case III, NCSR-DBICA is used in order to optimize Vd
and L index. Figure 10 presents the results of five
algorithms. It can be seen that all the five algorithms can
obtain a well distributed Pareto front. Especially the Pareto
front of the MOICA-FS and NSGA-III algorithms is very
close to NCSR-DBICA. It is proved that the optimization

effect of this objective function combination is very obvious.
Compared with the NSGA-II and MOPSO-CD algorithms,
the Pareto front obtained by the improved algorithm is more
effective. This can also be demonstrated by the data in
Table 5. According to the results from Table 5, the best BCS
was found by the NCSR-DBICA algorithm and it was
(0.47465, 0.13277).
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Fig. 9. Pareto fronts obtained by NCSR-DBICA and other four

algorithms in Case II.

TABLE IV Comparison of the BCS for Case II
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA MOCIPSO[37]
VG1(p.u.) 1.1000 1.1000 1.0992 1.1000 1.1000 1.1000
VG2(p.u.) 1.0970 1.0958 1.0958 1.0956 1.0964 1.1000
VG5(p.u.) 1.0793 1.0813 1.0804 1.0815 1.0781 1.1000
VG8(p.u.) 1.0843 1.0874 1.0848 1.0875 1.0845 1.1000
VG11(p.u.) 1.1000 1.1000 1.0998 1.0998 1.0999 1.1000
VG13(p.u.) 1.1000 1.1000 1.1000 1.0998 1.0996 1.1000
T6-9 1.0252 1.0373 0.9932 1.0379 1.0284 0.9400
T6-10 0.9005 0.9015 0.9329 0.9000 0.9002 1.1000
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T4-12 0.9784 0.9822 0.9812 0.9862 0.9769 1.1000
T28-27 0.9596 0.9604 0.9581 0.9617 0.9570 0.9400
C10(p.u.) 0.0489 0.0465 0.0339 0.0395 0.0488 0.2200
C12(p.u.) 0.0094 0.0500 0.0489 0.0479 0.0316 0.3000
C15(p.u.) 0.0493 0.0000 0.0268 0.0356 0.0500 0.1200
C17(p.u.) 0.0455 0.0500 0.0492 0.0486 0.0500 0.0900
C20(p.u.) 0.0138 0.0490 0.0375 0.0357 0.0406 0.0000
C21(p.u.) 0.0461 0.0485 0.0488 0.0468 0.0495 0.1100
C23(p.u.) 0.0483 0.0488 0.0234 0.0483 0.0069 0.0100
C24(p.u.) 0.0484 0.0447 0.0496 0.0490 0.0362 0.0700
C29(p.u.) 0.0022 0.0001 0.0021 0.0013 0.0031 0.3000
Ploss (MW) 4.583582 4.589364 4.584608 4.58357 4.579203 5.232
L index 0.124814 0.124756 0.124780 0.124768 0.124749 0.11821
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Fig. 10. Pareto fronts obtained by NCSR-DBICA and other four algorithms in Case III

TABLE V Comparison of the BCS for Case III
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA
VG1(p.u.) 1.0080 1.0390 1.0461 1.0303 1.0386
VG2(p.u.) 0.9987 1.0263 1.0423 1.0230 1.0290
VG5(p.u.) 0.9572 1.0042 0.9966 0.9859 0.9941
VG8(p.u.) 1.0239 1.0283 1.0357 1.0341 1.0299
VG11(p.u.) 1.1000 1.0436 1.0860 1.0955 1.0848
VG13(p.u.) 1.0920 1.0388 1.0239 1.0558 1.0226
T6-9 1.0905 0.9877 1.1000 1.0057 1.0935
T6-10 1.0364 0.996 0.9641 1.0983 0.9110
T4-12 1.0714 1.0792 1.0415 1.0842 1.0250
T28-27 0.9000 0.9001 0.9000 0.9001 0.9010
C10(p.u.) 0.0452 0.0057 0.0235 0.0205 0.0282
C12(p.u.) 0.0264 0.0375 0.0000 0.0021 0.0216
C15(p.u.) 0.0158 0.0406 0.0010 0.0206 0.0446
C17(p.u.) 0.0384 0.0097 0.0500 0.0294 0.0015
C20(p.u.) 0.0298 0.0214 0.0162 0.0499 0.0295
C21(p.u.) 0.0134 0.0079 0.0500 0.0011 0.0033
C23(p.u.) 0.0142 0.0475 0.0486 0.0099 0.0055
C24(p.u.) 0.0500 0.0374 0.0500 0.0483 0.0221
C29(p.u.) 0.0494 0.0484 0.0000 0.0344 0.0500
Vd (p.u.) 0.48950 0.48804 0.49480 0.48107 0.47465
L index 0.13339 0.13314 0.13356 0.13298 0.13277

4) Discussion of BP, BV and BL in System A
When solving multi-objective problems, the simulation
results can not only obtain the BCS, but also get the best
solution of a single target. Thus, in this subsection, the best
values for the five algorithms are listed, and Tables 6-8
present the best active power losses (BP), the best voltage
deviation (BV), and the best L index (BL), respectively. In
Table 6, from the comparison of BP obtained by

NCSR-DBICA with other reported algorithm such as
MGBICA [33], IGSA-CSS [38], MOCIPSO [37] and
CLPSO [39], it is found that NCSR-DBICA also has better
results in BP values. These can effectively prove that the
NCSR-DBICA has certain advantages in this case.
Furthermore, it can also be seen from Table 7 that the BV of
the NCSR-DBICA is much smaller than that of the
MGBICA [33]. In addition, Table 8 can also shows the
superiority of the NCSR-DBICA in finding the BL.

TABLE VI BP for System A
Algorithms Ploss(MW) Vd (p.u.) L index
MOPSO-CD 4.65732 1.04718 0.13720
NSGA-II 4.60790 1.59881 0.13218
NSGA-III 4.61923 1.31124 0.13455
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MOICA-FS 4.59265 1.51342 0.13305
NCSR-DBICA 4.53109 2.05353 0.12547
MGBICA[33] 4.937 0.8026 --
IGSA-CSS[38] 4.76601 -- --
MOCIPSO[37] 5.174 0.12664 --
CLPSO[39] 4.5615 -- --

TABLE VII BV for System A
Algorithms Ploss (MW) Vd (p.u.) L index
MOPSO-CD 5.44396 0.11440 0.14892
NSGA-II 5.30310 0.15332 0.14796
NSGA-III 5.32865 0.13747 0.14733
MOICA-FS 5.52422 0.12106 0.14889
NCSR-DBICA 5.61134 0.10835 0.14877
MGBICA[33] 5.6379 0.1239 --

TABLE VIII BL for System A
Algorithms Ploss (MW) Vd (p.u.) L index
MOPSO-CD 4.64215 2.10593 0.12466
NSGA-II 4.63979 2.10427 0.12459
NSGA-III 4.65010 2.07901 0.12467
MOICA-FS 4.68857 2.10861 0.12453
NCSR-DBICA 4.66795 2.07789 0.12451

Fig. 11. The single line diagram of the System B

B. Results for the Test System B

In this subsection, we will discuss the performance of the
proposed NCSR-DBICA algorithm in system B, whose
single line diagram can be seen in Figure 11. The detailed
data of this system are given in [38, 40]. In system B, the
control variable of the ORPD problem is a 27-dimensional
vector, it consists of 7 generator bus voltages, 17
transformer taps, and 3 reactive power compensation
variables. The minimum and maximum values of all
generator buses are set at 0.95 p.u. and 1.05 p.u., the limits
of transformer taps are set at 0.9-1.1, and the lower and
upper limits of reactive power are set at 0.95 and 1.1 in p.u.
1) Discussion of Case Ⅳ
In this case, the MOORPD problem is solved through

NCSR-DBICA and the other four algorithms with
consideration of Ploss and Vd. The result of each algorithm in
system B is a Pareto figure composed of 100 points. Figure
12 shows the Pareto front of five algorithms mentioned
above. The BCS achieved by the NCSR-DBICA,
MOICA-FS, NSGA-III, NSGA-II, MOPSO-CD and the
reported MGBICA [33] are shown in Table 9. It can be
observed that NCSR-DBICA can find a set of BCS, which
is better than the results of the MOICA-FS, NSGA-III,
NSGA-II, MOPSO-CD. And compared with the MGBICA,
the proposed NCSR-DBICA has a larger optimization
advantage.

TABLE IX Comparison of the BCS for Case Ⅳ
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA MGBICA[33]
VG1(p.u.) 1.0836 1.0740 1.0698 1.0761 1.0845 1.0585
VG2(p.u.) 1.0676 1.0590 1.0550 1.0610 1.0688 1.0429
VG3(p.u.) 1.0463 1.0372 1.0364 1.0372 1.0425 1.0231
VG6(p.u.) 1.0390 1.0265 1.0255 1.0224 1.0297 1.0201
VG8(p.u.) 1.0563 1.0425 1.0416 1.0470 1.0459 1.0462
VG9(p.u.) 1.0386 1.0227 1.0238 1.0230 1.0202 1.0115
VG12(p.u.) 1.0295 1.0224 1.0147 1.0103 1.0132 1.0191
T4-18 0.9903 1.0975 1.0814 1.0480 1.0848 0.9300
T4-18 1.0967 0.9991 1.0545 0.9237 0.9164 1.0100
T21-20 1.0329 1.0000 0.9866 1.0083 1.0024 1.0000
T24-25 1.0401 1.0430 1.0999 1.0673 0.9696 --
T24-25 0.9149 0.9266 0.9020 0.9437 1.0108 --
T24-26 1.0113 1.0111 1.0102 1.0141 1.0083 1.0400
T7-29 1.0165 1.0002 1.0053 0.9931 1.0004 0.9800
T34-32 0.9439 0.9398 0.9425 0.9348 0.9402 0.9200
T11-41 0.9099 0.9676 0.9653 0.9000 0.9023 0.9000
T15-45 0.9728 0.9749 0.9639 0.9874 0.9878 0.9500
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T14-46 0.9978 0.9714 0.9669 0.972 0.9841 0.9500
T10-51 1.0129 0.9828 0.9797 0.9818 0.9966 0.9800
T13-49 0.9464 0.9379 0.9478 0.9474 0.9139 0.9400
T11-43 0.9855 0.9194 0.9308 0.9721 0.9565 0.9600
T40-56 1.0046 0.9818 1.0732 0.9843 1.0224 1.0400
T39-57 0.9618 0.9787 0.9092 0.9318 0.9430 0.9500
T9-55 1.0235 1.0008 0.9996 0.9883 0.9957 0.9800
C18(p.u.) 0.2102 0.2050 0.2989 0.0068 0.0323 0.0300
C25(p.u.) 0.1266 0.1247 0.1521 0.1554 0.1387 0.0600
C53(p.u.) 0.1718 0.1568 0.1676 0.0890 0.1307 0.0300
Ploss (MW) 24.12873 24.33648 24.65094 24.62639 24.59119 25.3664
Vd (p.u.) 0.955922 0.878561 0.830849 0.836184 0.818256 0.83711
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Fig. 12. Pareto fronts obtained by NCSR-DBICA and other four

algorithms in Case Ⅳ

2) Discussion of Case Ⅴ
As shown in Figure 13, the distribution of the Pareto front

obtained by the five algorithms is obviously not as good as
the distribution of the Pareto fronts obtained in the previous
cases. It can be clearly observed that the MOPSO-CD falls
into local optimum, which is also the direct cause of the
algorithm cannot find better BCS. Although the NSGA-II,
NSGA-III and MOICA-FS have found the Pareto front, it is
obvious that their distribution and approximation are
inferior to the NCSR-DBICAmethodology.
The detailed data in Table 10 can further demonstrate the

superiority of the NCSR-DBICA methodology. It can be
seen that the BCS obtained by the NCSR-DBICA
methodology are better than the results of other four
algorithms. Compared with the BCS of the published
MOCIPSO [37], although the L index of NCSR-DBICA
methodology is higher than MOCIPSO by 0.01728, the Ploss
of NCSR-DBICA methodology is reduced by about
4.788(MW). The simulation results of this case can

effectively demonstrate the superiority of NCSR-DBICA
methodology in dealing with complex objective function
combinations and large-scale ORPD systems.
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Fig. 13. Pareto fronts obtained by NCSR-DBICA and other four

algorithms in Case Ⅴ

3) Discussion of BP, BV and BL in System B
Compared to system A, the optimization effect of the

algorithm will be more obvious in system B. It can be
observed from Tables 11-13 that the proposed algorithm
shows a greater advantage in finding BP, BV and BL. It can
be found that BP, BV and BL are 22.40864 (MW),
0.785003 (p.u.) and 0.253418 for NCSR-DBICA.
Compared with the reported MGBICA [32], MCS-DE [40]
and MOCIPSO [36] in Table 11, it point out that the BP
obtained by the NCSR-DBICA is reduced by 2.47766
(MW), 0.86036 (MW) and 4.66636 (MW), respectively.
The performance of NCSR-DBICA in finding the optimal
solution can also be confirmed by the BV in Table 12. In
addition, the BL values in Table 13 also verify the
optimization ability of the NCSR-DBICA.

TABLE X Comparison of the BCS for Case Ⅴ
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA MOCIPSO[33]
VG1(p.u.) 1.0999 1.0999 1.1000 1.1000 1.1000 1.1000
VG2(p.u.) 1.0892 1.0878 1.0911 1.0893 1.0925 0.9352
VG3(p.u.) 1.0772 1.0723 1.0849 1.0775 1.0901 0.9000
VG6(p.u.) 1.0710 1.0658 1.0807 1.0731 1.0833 0.9000
VG8(p.u.) 1.0904 1.0823 1.0998 1.0891 1.1000 1.0700
VG9(p.u.) 1.0703 1.0528 1.0820 1.0607 1.0869 0.9000
VG12(p.u.) 1.0670 1.0595 1.0761 1.0685 1.0819 0.9624
T4-18 1.0498 1.0704 1.0902 0.9663 1.0276 0.9600
T4-18 1.0364 0.9054 0.9050 1.0204 0.9462 0.9000
T21-20 1.0917 1.0166 1.0029 1.0241 1.0271 1.0100
T24-25 1.0643 1.0170 1.0809 0.9693 1.0366 1.1000
T24-25 1.0694 1.0384 1.0698 1.0943 1.0684 1.1000
T24-26 1.0203 0.9867 1.0125 1.0059 1.0089 1.0100
T7-29 0.9801 0.9728 0.9858 0.9762 0.9874 0.9300
T34-32 0.9157 0.9286 0.9202 0.9248 0.9429 0.9000
T11-41 0.9720 0.9000 1.0829 0.9341 0.9378 0.9700
T15-45 0.9708 0.9634 0.9779 0.9688 0.9814 0.9500
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T14-46 0.9504 0.9458 0.9583 0.9491 0.9629 0.9000
T10-51 0.9599 0.9540 0.9676 0.9561 0.9740 0.9700
T13-49 0.9233 0.9187 0.9287 0.9256 0.9330 0.9000
T11-43 0.9499 0.9432 0.9458 0.9470 0.9683 0.9000
T40-56 1.0020 0.9942 1.0812 1.0069 1.0174 1.0800
T39-57 0.9692 0.9832 1.0467 0.9842 0.9904 1.0200
T9-55 0.9822 0.9545 0.9826 0.9670 0.9883 0.9200
C18(p.u.) 0.0713 0.0715 0.0612 0.1296 0.0185 0.0000
C25(p.u.) 0.1785 0.1542 0.1887 0.1413 0.1716 0.1800
C53(p.u.) 0.1242 0.1154 0.1124 0.1277 0.1215 0.0480
Ploss (MW) 22.42967 22.54289 22.40651 22.40778 22.3598 27.122
L index 0.256937 0.256536 0.256322 0.255641 0.254233 0.23695

TABLE XI BP for System B
Algorithms Ploss (MW) Vd (p.u.) L index
MOPSO-CD 22.87811 1.928749 0.271031
NSGA-II 22.56162 2.306274 0.270848
NSGA-III 22.47279 2.615120 0.267883
MOICA-FS 22.54859 2.384117 0.272176
NCSR-DBICA 22.40864 2.566672 0.268255
MGBICA[33] 24.8863 1.0283 --
MCS-DE[41] 23.269 -- --
MOCIPSO[37] 27.075 0.24274 --

TABLE XII BV for System B
Algorithms Ploss (MW) Vd (p.u.) L index
MOPSO-CD 24.16134 0.938457 0.290774
NSGA-II 0.247881 0.795240 0.293412
NSGA-III 25.07677 0.764097 0.293808
MOICA-FS 24.67251 0.822601 0.293023
NCSR-DBICA 24.81992 0.785003 0.293090

TABLE XIII BL for System B
Algorithms Ploss (MW) Vd (p.u.) L index
MOPSO-CD 22.46472 3.332892 0.256734
NSGA-II 22.64132 3.512528 0.255118
NSGA-III 22.49395 3.653143 0.255305
MOICA-FS 22.50166 3.543053 0.254511
NCSR-DBICA 22.42215 3.707225 0.253418

C. Results for the Test System C

To demonstrate the performance of the NCSR-DBICA
methodology in dealing with the ORPD problem in large
system, the aforementioned five algorithms are applied to
system C to solve the ORPD problem. The single line
diagram of system C can be seen in Figure 14. The detailed
data of this system is provided in [40].The improved
reactive power generation limits and the transmission

apparent power flow limits can be found in [42]. In this
system, the control variable of the ORPD problem is a
75-dimensional vector, including: 54 generator bus voltages,
9 transformer taps, and 12 reactive power compensation
variables. The lower and upper limits for generator bus
voltages amplitude are 0.95 p.u. and 1.05 p.u., the limits of
transformer taps are set at 0.9-1.1, and the limits of reactive
power are set at 0.95-1.1 in p.u.
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Fig. 14. The single line diagram of the System C

TABLE XIV Comparis on of the BCS for Case Ⅵ
Variables MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA
VG1(p.u.) 0.9986 0.9897 0.9989 1.0016 1.0008
VG4(p.u.) 1.0154 1.0139 1.0107 1.0125 1.0168
VG6(p.u.) 1.0042 0.9952 1.0097 1.0012 0.999
VG8(p.u.) 0.9933 0.9749 0.9828 0.9916 0.995
VG10(p.u.) 1.0138 1.0162 1.0147 1.0067 1.0194
VG12(p.u.) 1.0033 1.0133 1.0071 1.006 1.0029
VG15(p.u.) 1.0013 1.0046 1.0011 0.9998 1.0061
VG18(p.u.) 1.0052 1.0275 0.9959 0.999 1.0067
VG19 (p.u.) 1.0072 1.0156 1.0017 1.0077 1.0089
VG24(p.u.) 1.0343 0.9954 0.9921 1.0243 1.0198
VG25(p.u.) 1.0565 1.0024 1.058 1.0421 1.0411
VG26(p.u.) 1.0652 0.9941 1.0708 1.0373 1.0436
VG27(p.u.) 1.0095 1.0171 1.0117 1.0033 1.0065
VG31(p.u.) 0.9991 1.0030 1.0003 1.007 1.0037
VG32(p.u.) 1.0013 0.9894 1.0046 1.0066 1.0052
VG34(p.u.) 1.0129 1.0113 1.0101 1.0107 1.0114
VG36(p.u.) 1.0072 1.0026 1.0013 1.0076 1.0031
VG40(p.u.) 1.0022 1.0034 1.0092 1.001 1.0007
VG42(p.u.) 1.0098 1.0328 1.0092 1.0192 1.0071
VG46(p.u.) 1.0145 1.0110 1.0256 1.0246 1.0114
VG49(p.u.) 1.0235 1.0035 1.0129 1.0312 1.023
VG54(p.u.) 1.0128 1.0219 1.0157 1.0107 1.019
VG55(p.u.) 1.0073 1.0208 1.0146 1.004 1.0154
VG56(p.u.) 1.0085 1.0112 1.0157 1.0048 1.0155
VG59(p.u.) 1.0091 1.0335 1.0191 1.0228 1.0273
VG61(p.u.) 1.0034 1.0018 0.9988 1.0016 1.0017
VG62(p.u.) 0.9995 0.9912 0.9839 1.003 0.9969
VG65(p.u.) 1.0113 1.0050 1.0012 1.0094 1.0171
VG66(p.u.) 1.0331 1.0210 1.0089 1.0395 1.0316
VG69(p.u.) 1.0405 1.0302 1.0183 1.0457 1.0407
VG70(p.u.) 1.0051 1.0040 1.0016 0.9984 1.0026
VG72(p.u.) 1.0394 0.9794 1.0171 1.0163 1.0032
VG73(p.u.) 0.9842 1.0050 1.0076 1.0011 0.9956
VG74(p.u.) 1.0018 1.0030 0.9973 0.993 0.9979
VG76(p.u.) 0.9963 1.0044 1.0025 1.0092 0.9872
VG77(p.u.) 1.0061 1.0048 1.0119 1.0047 1.0051
VG80(p.u.) 1.0121 1.0211 1.0125 1.0186 1.0171
VG85(p.u.) 1.0062 1.0040 1.0068 1.0173 1.0138
VG87(p.u.) 1.0694 1.0243 0.9987 0.9877 1.0063
VG89(p.u.) 1.045 1.0272 1.0328 1.0401 1.0347
VG90(p.u.) 1.0449 1.0112 0.999 1.0116 1.0193
VG91(p.u.) 1.0463 1.0100 1.0126 1.0139 1.0166
VG92(p.u.) 1.0194 1.0179 1.018 1.0182 1.0186
VG99(p.u.) 1.0273 0.9899 1.0307 1.0163 1.0163
VG100(p.u.) 1.025 1.0126 1.0312 1.0226 1.0212
VG103(p.u.) 1.0223 1.0047 1.0203 1.0142 1.0194
VG104(p.u.) 1.0216 0.9896 1.0233 1.0116 1.0202
VG105(p.u.) 1.0073 1.0005 1.0092 1.009 1.0073
VG107(p.u.) 1.0021 1.0101 0.9732 0.9889 0.9982
VG110(p.u.) 0.9988 0.9798 1.0156 0.9903 0.9953
VG111(p.u.) 1.01 1.0082 1.0275 0.9956 0.9953
VG112(p.u.) 0.9793 0.9600 0.9929 0.9706 0.9838
VG113(p.u.) 1.0101 1.0042 1.0024 1.0085 1.0077
VG116(p.u.) 0.9928 1.0108 0.9926 1.0007 0.9976
T8 0.9624 0.9420 0.9665 0.9588 0.9786
T32 1.0035 1.0321 0.9852 1.0371 1.0517
T36 0.9521 1.0020 0.9551 0.9723 0.9738
T51 0.9698 0.9812 0.96 0.9738 0.9611
T93 1.0774 0.9804 0.9823 0.9723 0.9713
T95 0.9558 0.9853 1.0188 0.999 0.9889
T102 0.9754 1.0176 1.0682 1.0232 1.0326
T107 1.0358 1.0473 0.986 0.9552 0.9449
T127 0.9957 0.9378 1.0333 0.9531 0.9655
C34(p.u.) 0.0265 0.0522 0.0832 0.0149 0.0177
C44(p.u.) 0.0396 0.2417 0.096 0.0956 0.1343
C45(p.u.) 0.2174 0.0631 0.1201 0.0501 0.1015
C46(p.u.) 0.2845 0.1418 0.2254 0.1004 0.2808
C48(p.u.) 0.0121 0.1548 0.1531 0.1906 0.1426
C74(p.u.) 0.0155 0.0854 0.1523 0.1841 0.1635
C79(p.u.) 0.299 0.1180 0.1844 0.2562 0.2755
C82(p.u.) 0.2553 0.1929 0.257 0.0181 0.1889
C83(p.u.) 0.2903 0.2945 0.1488 0.1432 0.1408
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C105(p.u.) 0.1491 0.1223 0.0727 0.1942 0.0773
C107(p.u.) 0.1828 0.2412 0.0736 0.0352 0.1477
C110(p.u.) 0.126 0.2946 0.0338 0.0504 0.2812
Ploss (MW) 126.1035 132.0426 128.4577 124.5649 124.3505
Vd (p.u.) 0.410095 0.325706 0.4098 0.380205 0.349527
We all know that the size of the system will directly affect

the complexity of the problem. System C has 75 reactive
optimization control variables, which is much higher than
the variable dimensions of system A and system B.
Therefore, the MOORPD problem in this case is more
complicated. However, the Pareto front presented in Figure
15 shows that the proposed NCSR-DBICA algorithm can
still find a well distributed and stable Pareto front. Although
the distribution of this algorithm is not as extensive as
MOICA-FS algorithm, it is clear that the NCSR-DBICA
algorithm can find better BCS, BP and BV. At the same
time, it can be seen that the distribution of the Pareto front
of NSGA-III and NSGA-II is obviously poor, and the
shortcoming of MOPSO-CD which is easy to fall into local
optimum is more obvious in system C. The data in Tables
14-16 also illustrates the superiority of NCSR-DBICA in
large-node systems. Table 14 shows that the BCS obtained
by NCSR-DBICA is superior to the other four algorithms.
And it can be seen in Table 15, comparing the published
NGBWCA [43], GSA [44] and CLPSO [39] algorithms, the
BP value of the NCSR-DBICA algorithm is the best. The
BV value of Table 16 can also explain the optimization
ability of NCSR-DBICA algorithm. Not only BV is smaller
than BV of NGBWCA [43], WCA [43] and OGSA [45], but
the Ploss value corresponding to BV is also much smaller
than that of other three published algorithms.
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Fig. 15. Pareto front obtained by NCSR-DBICA and other four

algorithms in Case Ⅵ
TABLE XV BP for Case Ⅵ

Algorithms Ploss (MW) Vd (p.u.)
MOPSO-CD 124.8260 0.512675
NSGA-II 126.9328 0.603065
NSGA-III 124.4407 0.826786
MOICA-FS 117.0452 1.33008

NCSR-DBICA 116.3312 1.465746
NGBWCA[43] 121.47 1.452
GSA[44] 127.7603 --
CLPSO[39] 130.96 --

TABLE XVI BV for Case Ⅵ
Algorithms Ploss (MW) Vd (p.u.)
MOPSO-CD 127.6464 0.37358
NSGA-II 136.1902 0.254913
NSGA-III 139.6224 0.232104
MOICA-FS 142.4927 0.188804
NCSR-DBICA 131.1776 0.179212
NGBWCA[43] 152.31 0.3194
WCA[43] 165.71 0.3752
OGSA[45] 157.72 0.3666

D. Performance Evaluation

The performance evaluation indicators of multi-objective
algorithms can be roughly divided into three categories: the
evaluation of the degree of approximation of the results and
the true Pareto front, the convergence evaluation of the
algorithm and the diversity evaluation of the solution. And
the best one Pareto front obtained from the five algorithms
is regarded as the true Pareto front. Thus, the GD and HV
are selected to evaluation the performance of
NCSR-DBICA, MOICA-FS, NSGA-III, NSGA-II and
MOPSO-CD. In addition, to analyze the stability and
convergence of the algorithm, the 30 or 20 experiment
results obtained by the algorithm and their convergence of
the Pareto front at different iterations will be analyzed.
1) Statistical Analysis
The GD is used to describe the distance between the

non-dominated solution obtained by the algorithm and the
true Pareto front. In our research, the best one Pareto front
will be selected as the true Pareto front in each case. For
GD, the smaller the value is, the closer to the true Pareto
front. For the HV evaluation method, it was first proposed
by Zitzler, which represents the volume formed by the
individual in the solution set and the reference point [29,
46]. And this indicator can simultaneously evaluate the
convergence and distribution of the solution set. It’s worth
noting that the larger the HV value is, the better the Pareto
front is.
In order to analyze the performance of the simulation

algorithms, a statistical analysis of 30 or 20 experiments is
performed using the above two indicators, and the box plots
will be used to illustrate the statistical results of the GD and
HV indicators. Figures 16-17 show the box plots of GD and
HV for five algorithms. Furthermore, Table 17 shows the
statistical data of the NCSR-DBICA, MOICA-FS,
NSGA-III, NSGA-II and MOPSO-CD algorithms for test
Cases I-Ⅵ.

TABLE XVII The mean and standard deviation of GD and HV for five algorithms
Algorithms Indictor Case I Case II Case III Case Ⅳ Case Ⅴ Case Ⅵ

MOPSO-CD

GD Mean 0.4240 0.4084 0.1303 0.6044 1.1305 0.6202
Std 0.2405 0.2357 0.0338 0.3954 0.0991 0.1915

HV Mean 0.9429 0.0002 0.0268 1.1676 0.0362 22.393
Std 0.2594 8.7E-05 0.0007 0.2815 0.0053 3.1509

NSGA-II GD Mean 0.0453 0.5186 0.1658 0.6120 0.8759 0.3773
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Std 0.0366 0.1026 0.0345 0.2283 0.1946 0.2110
HV Mean 1.3636 0.0002 0.0235 2.4793 0.0135 25.526

Std 0.0770 5.1E-05 0.0009 0.2914 0.0085 2.2551

NSGA-III

GD Mean 0.0705 0.4307 0.0946 0.8675 0.8157 0.3010
Std 0.0735 0.1232 0.0271 0.2305 0.2102 0.0785

HV Mean 1.0652 0.0004 0.0315 2.8371 0.0168 28.234
Std 0.0360 0.0001 0.0007 0.5931 0.0090 2.6867

MOICA-FS

GD Mean 0.0426 0.3547 0.0397 0.9053 0.3576 0.3312
Std 0.0270 0.0989 0.0198 0.1261 0.2213 0.1503

HV Mean 1.3475 0.0003 0.0303 2.5303 0.0117 31.609
Std 0.0187 5.7E-05 0.0005 0.3176 0.0094 2.8191

NCSR-DBICA

GD Mean 0.0337 0.1209 0.0234 0.1967 0.1398 0.0945
Std 0.0137 0.0517 0.0079 0.0938 0.0790 0.0251

HV Mean 1.9843 0.0007 0.0385 5.1232 0.0478 38.995
Std 0.0189 3.2E-05 0.0003 0.1520 0.0016 0.1563
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Fig. 16. Box plots of GD for NCSR-DBICA and other four algorithms.
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Figure 16 shows six box plots of the GD for five
algorithms in six cases. By analyzing the box plot of Case I,
it can be seen that the average value of NCSR-DBICA is
lower than the other four algorithms, which proves that the
Pareto front of the NCSR-DBICA is closest to the true
Pareto front among the five algorithms. In addition,
NCSR-DBICA does not have outliers, MOICA-FS,
NSGA-III and NSGA-II have 1, 4 and 2 outliers,
respectively, which proves the stability of the
NCSR-DBICA algorithm. Similarly, the superiority of the

NCSR-DBICA algorithm can also be derived by analyzing
Cases II-Ⅵ. Besides, through the HV box plots of the five
algorithms of Figure 17, it can be inferred that the
convergence and distribution of NCSR-DBICA are the best
in all six cases. In addition, it can also be seen form Table
17 that the mean and standard deviation of GD and HV for
the NCSR-DBICA algorithm are both optimal. The mean
CPU time of five algorithms for test systems of Cases I-Ⅵ
are shown in Table 18.

TABLE XVIII The mean CPU time of five algorithms for Cases I-Ⅵ

Test Case Mean CPU Time (sec)/Tmax
MOPSO-CD NSGA-II NSGA-III MOICA-FS NCSR-DBICA

Case I 339.44/500 336.46/500 345.86/500 396.25/500 338.42/500
Case II 328.02/500 325.43/500 360.88/500 393.43/500 337.46/500
Case III 310.89/500 297.72/500 326.18/500 376.60/500 312.26/500
Case Ⅳ 521.00/500 492.58/500 515.09/500 517.66/500 492.35/500
Case Ⅴ 510.09/500 503.10/500 519.90/500 524.27/500 495.32/500
Case Ⅵ 2043.0/600 2011.8/600 2156.5/600 2263.9/600 1956.6/600

2) Stability and Convergence Analysis

123 124 125 126 127 128 129 130 131 132 133

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Ploss(MW)

V
d(

p.
u.

)

MOPSO-CD

125 126 127 128 129 130
0.35

0.4

0.45

0.5

0.55

120 125 130 135 140 145 150 155
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ploss(MW)

V
d(

p.
u.

)

NSGA-II

125 126 127 128 129 130
0.3

0.4

0.5

0.6

0.7

0.8

120 125 130 135 140 145 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Ploss(MW)

V
d(

p.
u.

)

NSGA-III

125 126 127 128 129 130
0.3

0.4

0.5

0.6

0.7

0.8

115 120 125 130 135 140 145 150
0

0.5

1

1.5

Ploss(MW)

V
d(

p.
u.

)

MOICA-FS

125 126 127 128 129 130
0.2

0.3

0.4

0.5

110 115 120 125 130 135 140 145
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ploss(MW)

V
d(

p.
u.

)

NCSR-DBICA

125 126 127 128 129 130
0.1

0.2

0.3

0.4

0.5

Fig. 18. 20 independent experimental results of the NCSR-DBICA and other four algorithms in Case Ⅵ
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Fig. 19. Pareto fronts of the NCSR-DBICA and other four algorithms over different iterations for Case III

In this subsection, the stability and convergence of the
algorithms will be further analyzed. Figure 18 shows the
Pareto fronts obtained by the five algorithms in case Ⅵ.
The stability of the algorithm can be visually observed
through the comparison of experimental results. It can be
seen from Figure 18 that the distribution of 20 independent
experimental results of the MOPSO-CD is very scattered,
which indicates that the stability of the algorithm is poor.
The distribution of the results obtained by the
NCSR-DBICA is the most concentrated among the five
algorithms, which shows that the stability of the algorithm
is better than that of the other four algorithms.
To analyze the convergence of the algorithm, the Pareto

fronts of different iterations of MOPSO-CD, NSGA-II,
NSGA-III, MOICA-FS and NCSR-DBICA are recorded
and saved. Figure 19 shows the Pareto fronts of the five
algorithms over different iterations of Case III. It can be
seen that the MOPSO-CD and the NSGA-II can find a clear
Pareto front when they evolve to the 400th generation, the
NSGA-III and the MOICA-FS can find a suitable Pareto
front in the evolutions to 250th generation. For
NCSR-DBICA, a satisfactory Pareto front can be found in
the 70th generation. In addition, the NCSR-DBICA is stable
in the 300th generation, but the other four algorithms are
stable at least in the 400th generation, which proves that the
NCSR-DBICA has the fastest convergence speed among the
five algorithms.

V. CONCLUSION

In this paper, the proposed NCSR-DBICA methodology
with its sub-methods: the dynamic balance strategy, the
constraint-based country stratification mechanism and the
novel ranking method based on country satisfaction and
country distance has successfully solved the MOORPD
problem. The simulation results of different objective
function combinations considering the active power losses,
voltage deviation and voltage stability index on the IEEE 30,
57 and 118 bus test systems have proved the effectiveness
of the improved algorithm. Compared with the
experimental results of MOICA-FS, NSGA-III, NSGA-II
and MOPSO-CD, it can be found that the BCS, BP, BV and
BL of the NCSR-DBICA method are better than that of
other four algorithms, especially in the IEEE118 bus test
system. In addition, the performance evaluation results of
the five algorithms also show that the diversity, stability and
convergence of the NCSR-DBICA methodology are the
best. Therefore, through all the simulation results, it can be

concluded that the proposed NCSR-DBICA is effective and
superior in dealing with MOORPD problem.
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