
 

  

Abstract—In this paper, we consider a deterministic 

HIV/AIDS model to study the effect of information campaigns 

and treatment on the spread of HIV/AIDS. We demonstrate 

that the disease-free equilibrium is globally asymptotically 

stable when the basic reproduction numbers are less than one. 
However, if the basic reproduction number is greater than one, 

then a unique endemic equilibrium exists and it is globally 

asymptotically stable for a special case. The sensitivity analysis 

reveals that the effective contact rates of susceptible individuals 

with asymptomatic infected (pre-AIDS) individuals among 
other parameters contributed most significantly to the 

transmission and spread of HIV/AIDS. For the time-dependent 

controls, we formulated an appropriate optimal control 

problem. The Pontryagin’s Maximum Principle was applied to 

find the necessary conditions for the existence of optimal 
control. The optimal system was solved using the fourth-order 

Runge-Kutta forward-backwards sweep method. The 

numerical results showed that the control strategies have a 

significant effect in reducing the numbers of infected 

individuals. The cost-effectiveness analysis reveals that the 
control measure implementing treatment is the most cost-

effective among the strategies considered.  

 
Index Terms—HIV/AIDS model, education campaigns, basic 

reproduction number, optimal control 

 

I. INTRODUCTION 

HE Human Immunodeficiency Virus (HIV) has been 

the subject of scientific research and debate since the 

virus was identified in the 1980s. The virus causes acquired 

immune deficiency syndrome (AIDS), which first spread 

along the historic trade routes of Congo valley in the 1920s 

[1]. Viruses destroy human immunity as a result of a 

decreased immune system. The spread of HIV/AIDS 

continues to increase worldwide and is a major threat to 

society. According to an estimate of the global situation and  
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trends from the start of the epidemic (1980) until the end of 

2018 from WHO [2], there were 37.9 million people living 

with HIV, and about 62% (23.5 million people) of people 

with HIV receiving antiretroviral treatment in 2018 [2].  

Furthermore, there were 1.7 million people newly infected 

with HIV and 770,000 people who died from HIV-related 

illness in 2018. The initial global response to HIV focuses 

on prevention through behavioral changes and research on 

vaccines. With no primary vaccine to stop HIV transmission  

and expensive medical treatment, education campaigns are 

the less costly public response to reduce new infection. Over 

the years, the increasing epidemic in sub-Saharan Africa has 

been responded to using the ABC approach (Abstinence, 

Faithful, Condom). More studies showed that the ABC 

message initiated by the Uganda government in 1992 has 

changed behavior and there has been a dramatic decrea se in  

HIV prevalence in Uganda [3], [4]. However, this approach 

is not enough to stop the epidemic. According to [5], to 

accelerate HIV/AIDS prevention efforts, it is essential to 

combine prevention efforts between behavioral strategy a nd  

biomedical strategy. 

Mathematical models are useful to analyze the 

transmission dynamics of HIV and have received significa n t  

attention from researchers around the world (see, e.g. [6], 

[7], [8]]). So far, several studies have been developed to 

mathematically analyze the impact of public health 

education campaigns, screening of unaware infectives, and 

treatment (therapy) on the spread of HIV/AIDS. Joshi et al. 

[9] developed a modified SIR model dividing susceptible 

individuals into two classes based on AB and C behavior 

and the resulting different infectivity rates to investigate the 

effect of information campaigns on the HIV epidemic in 

Uganda. Moreover, research in [10], [11], [12], [13] showed 

that public health education campaigns were essential for 

HIV/AIDS transmission dynamics. This study showed that 

an important public health education campaigns that focused 

on the change of risky behavior with a reasonable coverage 

level could help prevent the spread of HIV/AIDS. 

Furthermore, treatment (antiretroviral therapy) or screening 

have been used to reduce the spread of HIV/AIDS (see [14], 

[15], [16] and the references therein). Global stability of the 

equilibrium point for the HIV/AIDS epidemic model has 

been of concern to some researchers, for example [18], [19], 

[20], [21], [22]. These studies, the global stability of 

equilibrium points is obtained using Lyapunov’s direct 

method combined with LaSalle's invariance principle. 

Optimal control theory is a powerful mathematical tool 

[23], [24] to solve epidemiological model problems in their 
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efforts to find primary control strategies to minimize the 

number of people infected. Joshi et al. [25] studied an 

extended SIR model by changing behavior through 

information campaigns (education) as a control for 

managing disease epidemics if available treatment was not 

available or was too expensive. Hota et al. [26] extended the 

model in [25] by adding treatment interventions as a second 

control in addition to the education campaigns. Further 

studies on application of optimal control for HIV/AIDS can 

be found in [27], [28], [29], [30] and references therein. 

In this paper, we considered an HIV/AIDS epidemic with 

behavioral change and treatment. The model developed 

considered the combination of aspects of behavioral 

interventions through information campaigns (ABC 

approach) in susceptible individuals and biomedical 

interventions through the treatment of individuals with pre-

AIDS. This is in line with the effective prevention of HIV 

epidemic which requires a combination of behavioral 

interventions, biomedical interventions, and structural 

interventions [31].  

This paper is organized as follows. In Section 2, an HIV 

model with information campaigns and treatment is 

formulated. The global asymptotic stability of the disease-

free and endemic equilibrium points of the model is 

investigated in Section 3. In Section 4, we present the 

optimal control analysis followed by numerical simulations 

of the model in Section 5. Finally, some conclusions are 

described in Section 6.  

II. MODEL FORMULATION 

We considered a sexually active population and the total 

population N divided into seven subpopulations depending 

on individuals’ HIV/AIDS status. The classes consisted of 

susceptibles individuals ( S ), susceptible individuals who 

choose to be abstinent and be faithful due to information 

campaigns or AB behavior group ( 1S ), susceptible 

individuals who used condom due to information campaigns 

or C behavior group ( 2S ), asymptomatic infected 

individuals ( I ) who did not receive treatment, pre-AIDS 

individuals ( P ) who did not receive treatment, treated 

individuals ( T ), and individuals with full-blown AIDS ( A ) 

not receive treatment, so that, 
1 2N S S S I P T A= + + + + + + . 

Due to the interaction of individuals in class S  with the 

control of information campaigns E , susceptible 

individuals are divided into three subclasses 1 2( , , )S S S . 

The proportion of the susceptibles S moves to S1 and S2 at 

the rate 1 and 2 is , 1, 2i iES i =  [26], [27]. The susceptible 

individuals 1 2( , , )S S S  are individuals who are not yet 

infected but can be infected through sexual contacts with 

two types of infective (I, P). These two types of infective are 

considered active in spreading the infection. Treated class 

are individuals who use the treatment after having pre-AI DS 

which can become full-blown AIDS. It is assumed that the 

incidence in human interaction is standard incidence. 

Asymptomatic infected individuals and pre-AIDS 

individuals can infect susceptible at different rates 1 and 2 , 

respectively where 1 2.   Thus, the force of infection is 

given by 

 

1 2

1 2

.
I P

S S S I P T A

 


+
=

+ + + + + +
 

 

It is also assumed that the sexually mature susceptible 

individuals are recruited into the population at a  constant 

rate .  Susceptible individua ls is reduced by infection, 

following primary contact with asymptomatic infected 

individuals at the rate 1 and pre-AIDS individuals at the 

rate 2 for the model with standard incidence rate. It is 

facilitated by the interaction of individual in susceptible 

individuals who have been impacted by the control of 

information campaigns ( E ) and move to susceptible 

individuals who are abstinent and faithful (AB behavior) at 

the rate 1 and move to susceptible individuals who use a 

condom (C behavior) at the rate 2 . It is reduced further by 

a natural death at the rate  . Therefore, the rate of change of 

the susceptible individuals is given by 

 

1 2( ) .
dS

E E S S
dt

   =  − + + −  

  

The population of susceptible individuals who AB 

behavior due to education campaigns is increased by the 

proportion of the susceptible individuals who leave the 

general susceptible at the rate 1 . It is diminished by the 

infection of susceptible individuals whose AB behavior due 

to education campaigns at the rate 1(1 ) − , where 1  

measured the efficacy of information campaigns into AB 

behavior group. It is reduced further by a  natural death a t the 

rate  . Thus, the rate of change of susceptible individuals 

who have AB behavior due to information campaigns is 

given by 

 

1
1 1 1 1(1 ) .

dS
E S S S

dt
   = − − −  

 

The population of susceptible individuals who have C 

behavior due to information campaigns has increased by the  

proportion of the susceptible individuals who leave the 

general susceptible at the rate 2 . It is reduced by infection 

of susceptible individuals who have C behavior due to 

information campaigns at the rate 2(1 ) − , where for C 

behavior group. It is reduced further by natural death at the 

rate  . Thus, the rate of change of susceptible individuals 

who have C behavior due to information campaigns is given  

by 

 

2
2 2 2 2(1 ) .

dS
E S S S

dt
   = − − −  

 

The population of asymptomatic infected individuals is 

increased by infection of susceptible individuals at the rate 

 , susceptible individuals who are abstinent and faithful, or  

have AB behavior, due to information campaigns at the 

rate 1(1 ) − , and susceptible individuals who use condom, 
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or have C behavior, due to information campaigns at the rate 

2(1 ) − . It is reduced by treatment of progression to pre-

AIDS individuals at the rate
1 , and a natural death at the 

rate .  Hence, mathematically, it is: 

 

1 1 2 2 1(1 ) (1 ) ( ) .
dI

S S S I
dt

    = + − + − − +  

 

The population of pre-AIDS individuals is generated by 

following the development of asymptomatic infected 

individuals at the rate 1 . It is diminished by treatment of 

pre-AIDS individuals at the rate  , progression to full-

blown AIDS at the rate 2 , and natural death at the rate  . 

The corresponding differential equation is given by 

 

1 2( ) .
dP

I P
dt

   = − + +  

 

Finally, the population of individuals with full-blown 

AIDS is increased by progression to full-blown AIDS (at the 

rate 2  for pre-AIDS individuals and 3  for treated 

individuals). It is decreased by natural death at the 

rate  and by disease-induced mortality a t the rate  . Thus, 

 

2 3 ( ) .
dA

P T A
dt

   = + − +  

 

Thus, the model for HIV/AIDS prevention through 

information campaigns and treatment of pre-AIDS 

individuals is given by the following nonlinear differential 

equations (the detailed biological descriptions of all the 

parameters are given Table I): 

 

1 2

1
1 1 1 1

2
2 2 2 2

1 1 2 2 1

1 2

3

2 3

( ) ,

(1 ) ,

(1 ) ,

(1 ) (1 ) ( ) ,

( ) ,

( ) ,

( ) .

dS
E E S S

dt
dS

E S S S
dt

dS
E S S S

dt
dI

S S S I
dt
dP

I P
dt
dT

P T
dt
dA

P T A
dt

   

   

   

      

   

  

   

=  − + + −

= − − −

= − − −

= + − + − − +

= − + +

= − +

= + − +

 (1) 

 

The initial conditions for system (1) are given as follows 

 
0 0 0 0

1 1 2 2
0 0 0

(0) , (0) , (0) , (0) ,

(0) , (0) , (0) .

S S S S S S I I

P P T T A A

= = = =

= = =
 (2) 

 

A. Positivity of Solutions 

Since (1) is the model that monitors changes in the human 

population, it is assumed that all parameters to be positive 

for all 0t  . Further, the solution of the system (1) is 

nonnegative, we stated and proved the following lemma.  

 

Lemma 2.1. Let 
1 2(0), (0), (0), (0), (0), (0), (0)S S S I P T A  are 

positive, then the solution of the system (1) is nonnegative 

for all 0t  .  

 

Proof. Let 1 1 2sup 0 : 0, 0, 0, 0, 0,t t S S S I P=        

0, 0, 0 in [0, ]P T A t   . From the first equation of 

system (1) we have  

  

1 2( ) ( ) ,
dS

t S E E S
dt

   =  − − + +  (3) 

 

where 1 2( )
I P

N
t

 


+
= .  The equation (3) is equivalent to 

 

1 2( ( )) ,
dS

E E t S
dt

   + + + + =   

 

and this implies that 

 

1 2
0

1 2
0

( )exp ( ) ( )

exp ( ) ( ) .

t

t

dS
S t E E u u du

dt

E E u u du

   

   

  
+ + +  

  
 

=  + + + 
 




 

 

Integrating both sides from 0t =  to 1t t= we get     

 

1

1

1 1 2 1
0

1 2
0 0

( ) exp ( ) ( ) (0)

    exp ( ) ( ) .

t

t x

S t E E t u du S

E E x v dv dx

   

   

  
+ + + −  

  
 

=  + + + 
 



 
 

  

Hence,  

 

1

1

1

1 1 2 1
0

1 2 1
0

1 2
0 0

( ) (0)exp ( ) ( )

           exp ( ) ( )

           exp ( ) ( )

        0,

t

t

t x

S t S E E t u du

E E t u du

E E x u du dx

   

   

   

  
= − + + +  

  
  

+ − + + +  
  

 
  + + + 

 






 

 

 

where (0)S  represents the initial conditions of the 

susceptible. Thus, ( )S t  equal to the sum of positive terms, it 

is also positive for  0.t    

In the same way, it can be shown that 

1 20, 0, 0, 0, 0, 0S S I P T A       for all time  0.t   

This completes the proof.          

 

B. Positively Invariant 

Lemma 2.2. Let 1 2( , , , , , , )S S S I P T A  be the solution of the 

system (1) with initial conditions 1 2(0), (0), (0), (0), (0),S S S I P  

(0), (0)T A nonnegative and the biological feasible region 
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  with 

 

( ) 7
1 2, , , , , , | .S S S I P T A R N




+ =    (4) 

 

Then,   is positively invariant. 

 

Proof. The total population 1 2( ) ( ) ( ) ( ) ( )N t S t S t S t I t= + + +  

( ) ( ) ( )P t T t A t+ + + . Differentiation of  ( )N t  with respect to 

time and by adding all the equations of system (1), we have 

 

( ) ( ).
dN

N t A N t
dt

  =  − −   −  (5) 

 

Solving this differential equation and by using standard 

comparison theorem in [31], we obtain 

 

( )( ) (0) 1 ,t tN t N e e 



− −
 + −  (6) 

 

where (0)N  represents the initial values of the total 

population. Moreover, if (0)N   , then ( )N t   .  

From equation (6), it is clear that limsup ( )t N t →    

we have ( )N t   . On the other hand, if (0)N   , 

then the solution N will decrease to   as t →  .  This 

means that if (0)N   , then the solution 

1 2( , , , , , , )S S S I P T A  enters the closed set   or 

asymptotically approaches  . Thus, the region   is 

positively invariant.                                                                                                     

 

III. MODEL ANALYSIS 

A. Existence and Stability of Equilibria 

 

Disease-Free Equilibrium and Basic Reproduction 

The system (1) has a disease-free equilibrium 0E , 

obtained by setting the right-hand sides of the equations in 

(1) to zero, given by  

 

1
0

1 2 1 2

2

1 2

, ,
( )

          , 0, 0, 0, 0 .
( )

E
E

E E E E

E

E E



      



   

 
= 

+ + + +



+ + 

 (7) 

 

Using the next-generation matrix method described by 

[33], [34], we can calculate the basic reproduction number 

of the model system (1). By using the notation as in [33], iF  

is the rate at which new infections appear in compartment i 

and iV is the rate of transfer of individuals into and out of 

compartment i. Let ( , , , )Tx I P T A= . The right-hand side of 

system (1) is written as ( ) ( )i ix x−F V , 

 

1 1 2 2

1

1 2

3

2 3

0
( ) ,

0

0

( )

( )
( ) .

( )

( )

i

i

S k S k S

x

I

I P
x

P T

P T A

  

 

   

  

   

+ + 
 
 =
 
 
 

+ 
 

− + + + =
 − + +
  − − + + 

F

V

 (8) 

 

The matrices F is the Jacobian matrices of iF at 0E and the 

matrices V is the Jacobian matrices of iV at 0E  are given by 

 

1 2

1

2 3

0 0 00 0

0 00 0 0 0 , ,
0 00 0 0 0

00 0 0 0

B B

Q Q
K

L
F V

M

W

 





 

   
   

−   = =   −
      − −  

 (9) 

 

where 

 

1 1 2 2 1 2

1 2 3

1 1 2 2

, ,
, , , ,

1 , 1 .

B k E k E Q E E
K L M W
k k

     
        

 

= + + = + +
= + = + + = + = +
= − = −

 

 

The eigenvalues of the next generation matrix 1FV −  are 

 

1 2 10, 0, 0, .
B B

QK QKL

   
+ 

 
 (10) 

 

The basic reproduction number of the system will be the 

spectral radius of matrix 1FV − denoted by 0R  and thus 

 

1 1 2 1
0 ( ) .

B B
R FV

QK QKL

  
 −= = +  (11) 

 

 

 

 

 

TABLE I 

THE DESCRIPTIONS OF PARAMETERS OF MODEL 

Parameter Description of Parameters  

Π Recruitment rate 

β1, β2  Effective contact rates of susceptible individuals with 

asymptomatic infected individuals and pre-AIDS 
individuals

 

σ1, σ2 Progression rate from asymptomatic infected into pre-
AIDS and progression rate from pre-AIDS into full-

blown AIDS individuals 
σ3 Rate at which treated individuals develop full-blown 

AIDS 

ψ1, ψ2 The efficiency of information campaigns into S1 and S2 
α1, α2 Rate of educating adults into S1 and S2   
E Rate of information campaigns 

 Rate of treatment of screened infective 

 Natural death rate 

 AIDS-induced death rate 
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The basic reproduction number shows the average 

number of new infections caused by a single HIV-infected 

individual in a population where education campaigns and 

treatment are used to control strategies. 

The local stability of the disease-free equilibrium 

0E holds the following Theorem 2 of [33]. 

 

Theorem 3.1.  The disease-free equilibrium of the system 

(1), 0E , is locally asymptotically stable if 0 0R   and 

unstable if 0 0R  . 

 

Proof.  The Jacobian matrix of the system (1) at the disease-

free equilibrium point 0E  is 

 

1 2

1 1 1 1 2 1

2 1 2 2 2 2

1 2

1

2

0

1

2 3

0 0 0 0

0 0 0

0 0 0

( ) .
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

Q Q

k E k E

Q Q

k E k E

Q Q

B B

Q Q

Q

E

E

J E
K

L

M

W

   

   

   

 

 

 





 

 − − −
 
 

− − − 
 

− − − 
 =
 −
 

− 
 

− 
 − 

 (12) 

 

There are seven eigenvalues of the matrix 
0( )J E , three of 

the eigenvalues are  1 2 3 4 5, , ,W M Q     = − = = − = − = −   

and the remaining eigenvalues are given by reducing matrix 

0( )J E into 2 2 matrix as shown below, 

 

1 2

1

1

.

B B

Q Q
K

J
L

 



 −
 =
 − 

 (13) 

 

Using an elementary row operation to reduce the matrix 

1J  to echelon form, we obtain the following matrix 

 

2

11
2

22

,
0

B

Q
d

J
d

 −
 =
 − 

 (14) 

 

where 

 

( )
( )

( )

1 2 1

1

1 2 1

1

1 1
11

1 2 1
22

1

1 ,

1

1

1
     .

1

B B

QK QKL

B

QK

B B

QK QKL

B

QK

KQ B B
d K

Q QK

KLQKLQ BL B
d

KQ B KQ

L

  



  



 

  



 −
= = − 

 

− −− −
= =

− −

− −
=

−

 

 

From 0 1R   caused  

 

1 2 1 11
B B B

QK QKL QK

   
 +    and  1 2 11 .

B B

QK QKL

  
 +  

 

Hence, 

 

11 0
B

QK


−    and  1 2 11 0.

B B

QK QKL

  
− −   

 

Thus, the eigenvalues of the Jacobian matrix 
0( )J E  are 

 

( )
( )

1

1 2 1

1

1 2 3 4 5

6 11

7 22

, , , ,

1 ,

1
.

1

B

QK

B B

QK QKL

B

QK

Q M W

d K

L
d



  



     





= − = = − = − = −

= − = − −

 − −
 

= − = −
 

− 
 

 

Hence, all eigenvalues of the Jacobian matrix 
0( )J E have 

negative real parts. Using the Routh-Hurwitz criteria, the 

disease-free equilibrium point 0E  of system (1) is locally 

asymptotically stable in   when 0 1R  .                  

 

Global Stability of Disease-free Equilibrium 

In the following, we will prove the global stability of the 

disease-free equilibrium 0E . We observed the global 

stability property of the disease-free equilibrium of the 

system (1) to ensure that the elimination of HIV did not 

depend on the number of initial sub-population of the 

model. For this purpose, we considered the feasible region   

 

 0 0 0
1 1 2 1 1 2 2( , , , , , , ) | , , .X S S S I P T A S S S S S S = =       

 

Lemma 3.1.  The region 1  is positively invariant for the 

system (1). 

 

Proof.  From the first equation of the system (1) we have 

 

.
dS

S QS QS
dt

=  − −   −  

 

Solving differential equation and by using standard 

comparison theorem [31], we obtain 

 

( ) ( )0 0(0) (0)Qt Qt

Q Q
S S e S S S e− −  − − = − −  

 

where 
0 .

Q
S =  Thus, if 

0(0)S S  for all 0,t   

then
0( )S t S for all 0.t   

Using similar approach, from the second and the third 

equations of the system (1), it is proved that for all 0,t   

0

1 1( )S t S  if 
0

1 1(0)S S where 10

1

E

Q
S






=  and 

0

2 2( )S t S  if 

0

2 2(0)S S where 20
2 .

E

Q
S






=  Hence, by adding the above 

three we have the region 1.                                                

In the next theorem we have studied the global 

asymptotic stability of the disease-free equilibrium 0E  of 
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the system (1). To investigate the global stability of 
0E , we 

used the method presented by Castillo-Chavez et al. [35] 

and reading [32]. 

 

Theorem 3.2. The disease-free equilibrium 0E of the system 

(1) is globally asymptotically stable in 1 if 0 1.R   

 

Proof.  Following Castillo-Chavez et al. [35], let ( )1 2, ,S S S=Y  

represent the number of non-infectious individuals and 

( )1 2, , ,I I T A=Z  represent the number of infected 

individuals. Then system (1) can be written as 

 

( , ) ,

( ), ( , ) ,

d
F

dt
d

G G
dt

=

= =

Y
Y Z

Z
Y, Z Y 0 0

 (15) 

 

where  

 

1 1 1 1

2 2 2 2

( )

S QS
d

F E S k S S
dt

E S k S S



  

  

 − − 
 

= = − − 
 − − 

Y
Y,Z  and 

 

1 1 2 2

1

2 3

( ) .

S k S k S KI

I LP
G

P MT

P T WA

  





 

+ + − 
 

− =
 −
  + − 

Y,Z  

 

Consider the disease-free equilibrium 

 
0 0 0 0

0 1 2( , , ,0,0,0,0) ( ,0,0,0,0),E S S S= = Y  

 

where ( )1 20 , , .
E E

Q Q Q

 

 

 =Y  We need show the two 

following conditions (H1) and (H2) are satisfied: 

 

(H1) For 
0( , ),d

dt
F=Y Y 0 Y is globally asymptotically stable  

        in 1.  

(H2) ( , )G =Y 0 0  and ( ) ( ), ( )G C G G= − Y,Z Z Y,Z Y,Z 0   

        for ( , )Y Z  and  
0( , ).C D G= Z Y 0  

 

From the first equation of the system (15) 

 

1 1

2 2

( , ) .

QS
d

F E S S
dt

E S S

 

 

 − 
 

= = − 
 − 

Y
Y 0  (16) 

 

The solution of (16) are 

 

( )(0) ,Qt

Q
S S e

Q

−
= + −

( ) ( )11
1

1 1

(0)(0)
(0) ,

Qt Qt
E SE SE

S S e e
Q Q Q

 


  



− −

   −−   = − − −
  − −   

   

 

( ) ( )22
2

2 2

(0)(0)
(0) .

Qt Qt
E SE SE

S S e e
Q Q Q

 


  



− −

   −−   = − − −
  − −   

   

  

It can be shown 1 2

1 2, ,
E E

Q Q Q
S S S

 

 

 → → →  as ,t →   

implying the global convergence of the solution of (16) 

in 1.  Hence 0
Y is globally asymptotically stable. Thus, 

condition (H1) is satisfied. 

Next, we show that ( )G Y,Z satisfies the two conditions 

given in (H2). It is clear that ( , ) .G =Y 0 0  Let 

 

0 0 0 0 0 0
1 1 1 1 2 1 2 2 1 2 1 2 2 2

0 0 0 0 0 0
1 2 1 2

0

1

2 3

( , )

0 0

0 0  .

0 0

0

Z

S k S k S S k S k S

S S S S S S

C D G

K

L

M

W

     





 

+ + + +

+ + + +

=

 −
 
 

−=  
 −
  − 

Y 0

 

 

Now consider ( )= ( ),G C G−Y, Z Z Y, Z  

 

1 1 2 2

1

2 3

( ) .

S k S k S KI

I LP
G

P MT

P T WA

  





 

+ + − 
 

− =
 −
  + − 

Y,Z  

 

Since all off-diagonal entries of matrix C are nonnegative, 

then C is an M-matrix. Then ( ) ( ),G C G= −Y,Z Z Y,Z  

where 

 

( )
0 0 0 0 0 0

1 1 1 1 2 1 2 2 1 2 1 2 2 2

0 0 0 0 0 0
1 2 1 2

1

2 3

,

S k S k S S k S k S

S S S S S S
K I P

I LPC

P MT

P T WA

     





 

+ + + +

+ + + +

 
− + 

 
−=  

 −
 
 + − 

Z  

 

( ) ( )
0 0 0 0 0 0

1 2 1 1 2 2
1 2 1 1 2 2

0 0 0 0 0 0
1 2 1 1 2 2

)(
1

0( ) .

0

0

I P S k S k S S S S S k S k S

NS S S S k S k S

G

 + + + + + + +

+ + + +

 
− 

 
 =
 
 
 
 

Y,Ζ  

 

In the region 
1, 0 0 0

1 1 2 2, ,S S S S S S    and hence we 

have 0 0 0
1 1 2 2 1 1 2 2S k S k S S k S k S+ +  + +  for 0 1 ( 1, 2)ik i  = .  

Since total population is bounded by N

  and 

0 0 0

1 2S S S

+ + =  we have 

0 0 0

1 2 .N S S S + +  Thus, 

0 0 0
1 2 1 1 2 2

0 0 0
1 1 2 2

1 0
S S S S k S k S

NS k S k S

+ + + +

+ +
−   therefore ( ) 0.G Y,Z  Thus, 

( )G Y,Z  satisfies the two conditions which imply that 

condition (H2) is satisfied. This completes the proof.                                  
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Existence of Endemic Equilibrium 

The endemic equilibrium ( )* * * * * * *
1 1 2, , , , , ,E S S S I P T A=  of system 

(1) is obtained by solving the following equilibrium 

conditions of the system (1). With at least 
* * * *, , ,I P T A  being 

different from zero, we obtain 

 

* * 1
1* * *

1

* 2
2 * *

2

* **
* 1 1 2 2

* * * * *
1 2

* * * * * *
1 2 3

, ,
( )( )

,
( )( )

,
( ) ( )( ) ( )( )

, , ,

E
S S

Q k Q

E
S

k Q

k E k E
I

K Q K k Q K k Q

P w I T w I P w I



   



  

   

      


= =

+ + +


=

+ +

 
= + +

+ + + + +

= = =

 (17) 

where 
2 1 3 21 1

1 2 3, , ,
w w

L LM W
w w w

   +
= = =  

 

* *
* 1 2

* * * * * *
1 2

.
I P

S S S I P T

 


+
=

+ + + + +
 (18) 

 

Substituting (17) into (18), we obtain  

 

( )* *3 *2 *
3 2 1 0 0,h h h h   + + + =  (19) 

 

where 

 

 

 

 
( )

3 1 2 1 2 3

2 1 2 1 2 1 2 1 2 3

1 2 1 2 1 1 2

1 1 2 1 1 2 1 2 1 2

1 2 3

2 1 1 2 1 2

0 0

(1 ),

( ) ( ) (1 )

  ( ) ,
( ) ( ) ( )

   + (1 )

   + ( ) ,

1 .

h k k w w w

h k k E k k w w w

k k w Kk k
h w k k E k k

B w w w

K k E k E k k

h KQ R

  
 

    


  



= + + +

= + + + + + +

− + +
= − + + + +

+ + +

+ + +

= −

 

 

We observe that 3 0h  and 0 0h    when 0 0R  .  From 

polynomials (19), one solution is * 0 =  related to the 

disease-free equilibrium. Another solution is the roots of a  

cubic polynomial 

 
*3 *2 *

3 2 1 0 0,h h h h  + + + =  (20) 

 

which is related to situations where HIV disease exists. 

Using Cardan’s formula as in [36], the cubic equation (20) 

has solutions one positive real root and two complex 

conjugates roots (see details in Appendix) 

                         

* 2
1

3

* 2
2

3

* 2
3

3

,
3

3
( ) ,

2 3 2

3
( ) ,

2 3 2

h
u v

h

hu v i
u v

h

hu v i
u v

h







= + −

+
= − − + −

+
= − − − −

 (21) 

 

where 
2 3 2 33 3,u r r q u r r q= + + = − + , and  

2 2 2
3 1 2 3 2 1 3 0 2

2 2
3 3

3 9 27 2

9 54
, .

h h h h h h h h h

h h
q r

− − −
= =  

Components of the endemic equilibrium point 1E  can be 

obtained by substituting the value of * *
1 = into the steady-

state expression for each state in (17).  

This result is summarized in the following lemma. 

 

Lemma 3.2. The system (1) has a unique endemic 

equilibrium 1E  whenever 0 0R   with * *

1 =  are the 

positive real roots of equation (20). 

 

Global Stability of Endemic Equilibrium 

We will prove the global stability of the endemic 

equilibrium 1E . We investigated the global stability 

property of the endemic equilibrium of the HIV system (1) 

for the case when there is no disease-induced death ( 0 = ). 

By letting 

 

 7
0 1 2( , , , , , , ) | 0S S S I P T A I P T A+ =  = = = =  

 

and 01 0| 0R R  == . Then we claim the following theorem. 

 

Theorem 3.3. The endemic equilibrium 1E  of the model 

system (1) with 0 = is globally asymptotically stable in  

0\  whenever 01 0R  . 

 

Proof. Let 01 1R  , then the endemic equilibrium of system 

(1) exists. To study the endemic equilibrium is globally 

asymptotically stable, we define the Lyapunov function V, 

using the ideas in [37]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *
1 1 2 2

2
* * *

1
( )

2

          .

V t S S S S S S I I

P P T T A A

= − + − + − + −


+ − + − + −


 (22) 

 

 Clearly, V is positive definite. We have  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *
1 1 2 2

* * *        .

dV
S S S S S S I I

dt
dN

P P T T A A
dt

= − + − + − + −


+ − + − + −


 

 

Since * * * * * * *
1 2S S S I P T A


+ + + + + +   and  

( )=  −dN
dt

N t , it follows that 

 

( ) ( )

( ) ( )( )

( )

* * * * * * *
1 2 1 2

2

, , , , , , , , , , , ,

1
      ( ) ( ) ( ) ( )

1
      ( ) .

dV dN
S S S I P T A S S S I P T A

dt dt

N t N t N t N t

N t

  
 




= − 
 

 −  − = −   − 
 

= −  −
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It follows that, that 0dV
dt

  for 
01 0R    and 0dV

dt
=  if and 

only if * * * * * *
1 1 2 2, , , , ,S S S S S S I I P P T T= = = = = = and *.A A=  

Hence, V is a  Lyapunov function on 0\  . Thus, 

* * * * * *
1 1 2 2, , , , ,S S S S S S I I P P T T→ → → → → →  and  

*A A→  as t →  .  Hence, V is a  Lyapunov function on 

0\   and the largest compact invariant set in 

 1 2( , , , , , , ) | 0dV
dt

S S S I P T A   = is the singleton set  1E . 

Thus, by LaSalle’s invariance principle [38], [39], the 

endemic equilibrium 1E  is globally asymptotically stable 

(GAS) in 0\  when 01 1.R                                                               

 

B. Sensitivity Analysis of the Basic Reproduction Number 

The sensitivity analysis of the basic reproduction number 

is used to determine important parameters in the model that 

has a high transmission influence on HIV/AIDS. Initial 

disease transmission is directly related to the basic 

reproduction number 0R . This sensitivity analysis was done 

by calculating the sensitivity index of 0R  to the parameters 

in the model by using the approach of [40]. In performing 

the system ana lysis, we apply the method called normalized 

forward sensitivity index of a variable to a parameter, which  

is a ratio of the relative change in the variable to the relative 

change in the parameter. The sensitivity index of the basic 

reproduction number 0R , that depends differentially on a 

parameter, say  , is defined as  

 

0 0

0

Y .
R R

R







=


 (23) 

 

The basic reproduction number ( 0R ) of the system (1) 

depends on eleven parameters, namely, 1 2 1, , , , ,      

2 1 2 1, , , , ,E     and  2 . For example, the sensitivity 

index of 0R  related to parameter 1, ,   and E are 

 

0

1

0

0

0 1 1

1 0 1 2 1

0 2 1

0 1 2 1

0 1 2 1 1 2 2

0

Y ,

Y ,
( )

( ) ( )
Y .





 

   
 

   

   


= =

 +


= = −
 +

  + − +
= = − 

  

R

R

R
E

R L

R L
R L

R L L

R B Q k kE

E R BQ

 

 

Other indices 0 0 0 0 0 00

2 1 2 1 2 1
Y , Y , Y , Y , Y , Y , Y ,

R R R R R RR
      and 

0

2
Y

R

  are obtained following the same method. 

 

C. Optimal Control 

The purpose of this section is to develop a deterministic 

system (1) into an optimal control problem with the controls 

being continuous in time. The information campaigns 

control that varies in time is represented by 1u and the 

treatment rate control that varies in time is represented by 

2u . The control functions 1u  and 2u  were defined at the 

closed interval [0, ]fT , where 0 ( ) 1, [0, ], 1,2i fu t t T i   =  

and fT  is the final time of the controls. The corresponding 

state system for the system (1) is given by 

 

1 1 1 2

1
1 1 1 1 1

2
1 2 2 2 2

1 1 2 2 1

1 2 2

2 3

2 3

( ) ,

(1 ) ,

(1 ) ,

(1 ) (1 ) ( ) ,

( ) ,

( ) ,

( ) ,

dS
u u S S

dt
dS

u S S S
dt

dS
u S S S

dt
dI

S S S I
dt
dP

I u P
dt
dT

u P T
dt
dA

P T A
dt

   

   

   

      

  

 

   

=  − + + −

= − − −

= − − −

= + − + − − +

= − + +

= − +

= + − +

 (24) 

 

where  

 

1 2

1 2

.
I P

S S S I P T A

 


+
=

+ + + + + +
 

 

We will now find an optimal strategy that minimizes the 

number of infected individuals ( I and P ) during a specific 

period and the cost of information campaigns ( 1u ) on 

susceptible individuals and treatment on pre-AIDS 

individuals ( 2u ) during the intervention period. The 

objective functional J  is given 

 

( )2 2
1 2 1 2 1 1 2 2

0

1
( , ) ( ) ( ) ( ) ( ) ,

2

fT

J u u b I t b P t w u t w u t dt
 

= + + + 
 

 (25) 

where 1b  and 2b  represent positive weight constant for the 

associated infected individuals ( I ) and pre-AIDS 

individuals ( P ). The constants 1 2, 0w w  , are weights of 

the relative costs of the controls associated with 1u and 2u . 

We seek an optimal control pair ( * *
1 2,u u ) such that 

 

 * *
1 2 1 2 1 2( , ) min ( , ) | ,J u u J u u u u U=   (26) 

 

where  1 2( , ) | 0 1, 1, 2, [0, ]i fU u u u u i t T= =   =   is the 

control set. 

Next, we prove the existence of optimal control for the 

model system (24).  

 

Existence of an Optimal Control Pair 

Pontryagin’s maximum principle converts the state 

system (24) with the objective functional (25) and (26) into 

a problem of minimizing pointwise a Hamiltonian H with 

respect to 1u  and 2 .u  The Lagrangian of the optimal control 

problem is given by 

 

( )2 2
1 2 1 1 2 2

1
( ) ( ) ( ) ( )

2
L b I t b P t w u t w u t= + + +  (27) 
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and the Hamiltonian H is defined as follows 

 

( )
( )
( )
( )
( )
( )
( )

2 2
1 2 1 1 2 2

1 1 1 1 2

2 1 1 1 1 1

3 1 2 2 2 2

4 1 1 2 2 1

5 1 2 2

6 2 3

7 2 3

1

2
       ( )

       

       

       ( )

       ( )

       ( )

       (

H b I b P w u w u

S u u S

u S k S S

u S k S S

S k S k S I

I u P

u P T

P T

    

   

   

     

   

  

   

= + + +

+  − − + +

+ − −

+ − −

+ + + − +

+ − + +

+ − +

+ + − +( )) .A

 (28) 

 

Next, we examine the sufficient conditions for the 

existence of a solution to the optimal control for the model 

system (25). 

 

Theorem 3.4.  For the model system (24) with control 

measure and initial conditions at 0t = , there exists an 

optimal control pair * *
1 2( , )u u   with a corresponding 

solution * * * * * * *
1 2( , , , , , , )S S S I P T A , that minimizes 1 2( , )J u u   

over U. 

 

Proof.  The existence of an optimal control pair * *
1 2( , )u u , we 

need to show the following conditions are satisfied based on 

[41]. 

(i)    The set of controls and corresponding state variable is     

nonempty. 

(ii) The control set U is closed and convex. 

(iii) The right-hand side of the state system (24) is bounded 

by a linear function in the state and control variables. 

(iv) The integrand L in (27) is convex on U and additionally 

satisfies, 

1 1 2 2( , ) ,L u u


  −  

where 1 20, 0,   and 1  . 

All the model states 1 2( , , , , , , )S S S I P T A  are bounded 

below and above, it can be said that any solutions to the 

state equations are bounded. The state system of Lipschitz 

property concerning the state variables is satisfied since the 

state solutions are bounded. Thus, the condition (i) is 

satisfied. By the definition of the control set, U is closed and 

convex such that the condition (ii) is satisfied. From the 

state equation system (24), the state equations can be 

expressed as a  linear function of the controls 1u  and 2u with  

coefficients depending on state variables. Thus, condition 

(iii) is satisfied. The integrand L into J defined by (27) is 

convex on  since it is a  quadratic function of 1 2( , )u u on 

U. Then, bounded on L is shown as follows: 

 
2 21

 1 2 1 1 2 22
2 21

1 1 2 22
2 2 21

1 1 2 2 1 1 1 12
2 21 1

1 2 1 2 12 2
2

1 2 1

( )

   ( ) since 0, 1, 2

   ( ) since w 0

   min( , )( )

   ( , ) ,

i

L b I b P w u w u

w u w u b i

w u w u w u w

w w u u w

u u w

= + + +

 +  =

 + − − 

 + −

 −

 

 

where 1 1
1 1 2 2 12 2

min( , ), , and 2w w w   = = = = . Thus, 

condition (iv) also holds. The proof is completed.            

Characterization of the Optimal Control Pair 

We characterized the optimal control pair * * *
1 2( , )u u u=  

of the system and the corresponding states 
* * * * * * * *

1 2( , , , , , , )x S S S I P T A=  with its control functions 1u  

and 2u with the objective functional (25). Using the 

Pontryagin’s Maximum Principle [23], [24], we obtained the 

necessary conditions for the optimal controls. 

 

Theorem 3.5. Given an optimal control * * *
1 2( , )u u u=  and 

solution * * * * * * * *
1 2( , , , , , , )x S S S I P T A=  that are corresponding  

optimal state variables of the control problem (24)-(26), 

then there exists an adjoint variable 

, 1,2,3,4,5,6,7j j = are associated by 1 2, , , , , ,S S S I P T A  

satisfying the following equations: 

 

1
1 4 1 2 1 1 1 3 1 2

1 1 1 2
4 2 4 3 1

2 1 1
4 1 2 4 1

2 2
4 3 2

3 1 1
4 1 4 2

( ) ( ) ( )

         ( ) ( ) ,

( ) ( )

         ( ) ,

( ) ( )

         (

d S
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dt N
k S k S

N N
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k
dt N N

k S

N
d k SS

dt N N
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        

 
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 
    


   

 
   



 
= − − + − + − 

 

+ − + − +

 
= − + − − 

 

+ − +

= − + −

+ 2 2
3 4 2 3

4 1 1 1 1
1 1 4 2 4

2 1 2
3 4 4 1 5 1

5 2 1 2 1
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2 2 2
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u

N


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 
      
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   

 
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− −
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−
+ − + + −
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6 1 1
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( ) ( )

         ( ) ( ) ,

u

d k SS
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k S

N
d k SS

dt N N
k S

N

 
 

   


      

 
   


    

−

= − + −

+ − + + −

= − + −

+ − + +

 (29) 

with transversality conditions 

 

( ) 0i fT =  for  1,2,3,4,5,6,7.i =  (30) 

 

Furthermore, use boundary conditions for 0 1, 1,2iu i  =  

to obtain  
* * *

1 2( , ),u u u=  

*
1 2 1 1 3 2*

1
1

*
* 5 6
2

2

( ) ( )
min max 0, , 1 ,

( )
min max 0, , 1 .

S
u

w

P
u

w

     

 

  − + −    =  
 

   
  − 

=    
   

 (31) 
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Proof. The adjoint equations in (29) are obtained by 

differentiating the Hamiltonian function H in (28) with 

respect to each of the state variables: 

 

31 2

1 2

5 64

7

, , ,

, , ,

,

dd dH H H

dt S dt S dt S
d dd H H H

dt I dt P dt T
d H

dt A

 

 



  
= − = − = −

  
  

= − = − = −
  


= −


 

 

with ( ) 0,i fT = for 1,2,3,4,5,6,7.i =  

Furthermore, to obtain the expression for optimal control 
*
1u and *

2u , we differentiate (29) with respect to 1u and 2u on 

the set U, respectively to get the following optimality 

equations: 

 

*
1 1 1 2 1 1 3 2 1 1

1

*
2 2 5 6 2 2

2

( ) ( ) at ,

( ) at .

H
w u S u u

u
H

w u P u u
u

     

 


= − − + − =  




= − − =


 

 

Hence, solving for *
1u and *

2u  at the interior sets gives 

 

*
1 2 1 1 3 2*

1 1
1

*
* 5 6
2 2

2

( ) ( )
ˆ ,

( )
ˆ .

S
u u

w

P
u u

w

     

 

− − −  
= =

−
= =

 (32) 

 

Let us consider the control bound for *0 1, 1,2iu i  = . 

By using the bounds on the control *
1u and *

2u  we conclude 

that 

 

1 2
* *
1 1, 1 2 2, 2

1 2

ˆ ˆ0,    if      0,   0,     if      0,   

ˆ ˆ ˆ ˆ   if   0 1,    if   0 1,

ˆ ˆ1,  if      1,   1,  if      1.  

u u

u u u u u u

u u

  
 

=   =   
   

  

 

Hence, optimal control *
1u and *

2u  are formulated as 

follows: 

  

*
1 2 1 1 3 2*

1
1

*
* 5 6
2

1

( ) ( )
min max 0, , 1 ,

( )
min max 0, , 1 .

S
u

w

P
u

w

     

 

  − + −    =  
 

   
  − 

=    
   

 

 

Consequently, the characterization of the optimal control 

as in equation (31) can be derived. 

 

IV. NUMERICAL SIMULATIONS 

In this section, we first present the numerica l simulations 

of the autonomous system (1). Next, we investigate 

numerically the optimal control strategies that are designed 

and presented using one or both control strategies to find the 

optimal values of the objective functional one by one.  

 

A. Stability of Equilibria 

In this subsection, we illustrate the analytical results by 

carrying out numerical simulations of the model system (1) 

using the set of parameter values given in Table II. The 

parameters that were not available in the literature were 

assumed. 

Next, we illustrate the invariance properties of the system 

(1). Precisely, for varying initial conditions the model 

solutions converge to either the disease-free equilibrium or 

the endemic equilibrium point. 

 

 

 

 
Fig. 1.  Simulation of the system (1) showing the stable  b eh av ior  o f th e 

model at 0E  (a) the trend of 1 2, ,S S S ; (b) the trend of , , , .I P T A . 

  

 
Fig. 2.  3-dimension diagram of the population showing global stability of  

0E with various initial values. 

 
  

 
Fig. 2.  3-dimension diagram of the population showing global stability of  

0E with various initial values. 
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Case 1: 
0 1R   

First, we choose 0.8E =  and 0.8 = . The numerical 

simulation of the system (1) shows that the disease-free 

equilibrium (DFE) point is globally stable for some other 

parameter values in Table II. The corresponding basic 

reproduction number is equal to 0 0.85988 1R =  . Fig. 1 

illustrates stable behavior of the model at 0E  proved in 

Theorem 3.1. Theorem 3.2 is numerically illustrated in Fig. 

2, which shows globally stable behavior of the model a t 0E . 

This figure shows the dynamics of the population of 

educated susceptible that have C behavior ( 2S ), pre-AIDS 

individuals ( P ), and treated individuals (T ) in 3-dimension 

phase portrait of the model system (1). In this figure, all 

solution tra jectories converge to 0E  for four different initial 

populations: 

 
4 4 4

1(1.3 10 , 5.9 10 , 3.7 10 , 20, 20, 20, 20),N         

4 4 4
2(1.4 10 , 5.1 10 , 3.8 10 , 50, 50, 50, 50),N           

4 4 4
3(1.5 10 , 5.2 10 , 3.9 10 ,100,100,100,100),N     

4 4 4
4(1.6 10 , 5.3 10 , 4 10 ,150,150,150,150).N      

 

Case 2: 0 1R   

Second, we choose 0.1E =  and 0.1 = . The numerical 

simulation of the system (1) shows that the disease-free 

equilibrium (DFE) point is globally stable for some other 

parameter values in Table II. The corresponding basic 

reproduction number is equal to 0 1.553162 1R =  . We 

have     the     cubic    equation (22)    with   3 0.385143,h =  

2 10.003269, 0.007896,h h= − = −  and 0 0.000083h = − .  

Using Cardan’s formula, this cubic equation has the positive  

real roots * 0.101203 = . Hence, the endemic equilibrium 

1E    is    given   by   1 (14640.9, 2217.5,1460.5, 7541.1,E =  

2566.9,1286, 4054.9) . The numerical result illustrated in 

Fig.3 confirms that system (1) has only one unique positive  

endemic equilibrium when 0 1R  . This implies that HIV 

infection will persist in the population. Theorem 3.3 is 

numerically illustrated in Fig. 4, which shows the dynamics 

of the population of pre-AIDS ( P ), educated susceptible 

that have AB behavior ( 1S ), and AIDS individuals ( A ) in 

drawing of stability diagram in three-dimension. This Figure 

shows that all solution trajectories converge to the endemic 

equilibrium 1E for four different initial populations: 

4 3 3 3 3 3 3
1(1.4 10 ,2.2 10 ,1.4 10 ,7 10 ,2 10 ,1 10 ,3.5 10 ),N       

4 3 3 3 3 3 3
2(1.5 10 ,3 10 ,2 10 ,8 10 ,3 10 ,2 10 ,4.5 10 ),N       

4 3 3 3 3 3 3
3(1.6 10 , 4 10 ,3 10 ,9 10 ,4 10 ,3 10 ,5.5 10 ),N         

4 3 3 4 3 3 3
4(1.7 10 , 5 10 ,4 10 ,1 10 ,5 10 ,4 10 ,6.5 10 ).N         

 

B. Sensitivity Index 

The basic reproduction number 0R of system (1) depends 

on eleven parameters, namely, 1 2 1 2 1 2 1, , , , , , , ,         

2 , ,E  . From an explicit formula for 0R in (24), we 

derived an analytical expression for the sensitivity of 0R to 

each of the eleven different the parameters involved in 0R . 

Thus, using parameter values in Table II, we obtained the 

results presented in Table III. Table III shows that the 

 

 
Fig. 3.  Simulation of the system (1) showing the stable  b eh av ior  o f th e 

model at 1E  (a) the trend of 1 2, ,S S S ; (b) the trend of , , , .I P T A . 

 

  

TABLE II 
THE DESCRIPTIONS OF PARAMETERS OF MODEL 

Parameter Value (year
-1

) References 

Π 2000 Assumed 

β1, β2  0.3, 0.45 Assumed 

σ1, σ2, σ3 0.198, 0.4621, 0.18 [29], [29], [11] 
ψ1, ψ2 0.6, 0.53 Assumed 

α1, α2 0.091, 0.067 Assumed 
E 0.1, 0.8 Assumed 

 0.1, 0.8 Assumed 

 0.0196 [15] 

 0.33 [12] 

 

 
Fig. 4.  3-dimension diagram of the population showing global stab ility  o f 

1E with various initial values 
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sensitivity indices of 
1 2, ,   and   have a positive sign 

and the remaining 1 2 1 2 1 2( , , , , , , )        have a 

negative sign. The parameters are arranged from the most 

sensitive parameter to the least. The most sensitive 

parameter is the effective contact rates ( 1 ). 0

1
Y 0.6620

R


=  

implies that an increase (or a  decrease) of the effective 

contact rates 1  by 10% will be followed by an increase (or 

a  decrease) in 0R  by 6.62%. Similarly, an increase (or a  

decrease) of the parameters 2 ,   by 10% will be followed 

by an increase (or a  decrease) in 0R  by 3.379%, 0.876% 

respectively. On the other hand, 0

1
Y 0.57193

R


= −  indicates 

that an increase (or a  decrease) of 1 by 10% will be 

followed by a decrease (or an increase) in 0R  by 5.7193%. 

In the same way, an increase (or a  decrease) of the 

parameters 2 1 2 1 2, , , , , ,E       indicates a decrease (or 

an increase) in 0R  by 2.685%, 2.069%, 1.891%, 1.191%, 

0.699%, 0.581%, respectively.  

Thus, the sensitivity analysis of the ba sic reproductive 

rate model (1) provides excellent insights into the dynamics 

of disease transmission. In particular, it assists public health 

authorities in implementing appropriate intervention 

strategies to prevent and control the spread of HIV/AIDS 

such as information campaigns and treatment. In from Fig. 

5, we show the relationship between 0 , ,R E  and  . As the 

values of E  and   increase at the time, the basic 

reproduction number decreases sharply. This shows that 

increasing the level of information campa igns and the rate of 

treatment has a significant effect in reducing the numbers o f  

, ,I P A .  

C. Numerical Simulation of the Optimal 

In this subsection, we discuss the numerical results of the 

system (24) to investigate the effect of the following 

itemized optimal control strategies on the spread of the 

disease in a population. Using the MATLAB software tools, 

this section focuses on demonstrating some numerical 

results of qualitative analysis and optimal control problem 

(24)-(26) through the forward-backwards Sweep method 

[24]. The state equations (24) are solved forward in time 

with the initial guess for the controls over the time interval 

[0, ]fT  using the fourth order Runge-Kutta scheme. Using 

the transversality conditions (30), the adjoint equations (29) 

is solved by a backward fourth-order Runge-Kutta scheme 

using the current iteration solutions of the state equations. 

Then the controls are upda ted using a convex combination 

of the previous control values and the new control values 

(31). The process continues and iterations are stopped if the 

values of the solution of the state equations at the present 

iteration is very close to the previous iteration values [24]. 

Furthermore, in describing the control strategy the 

parameter values are used in [29] and weights at the end of 

the period ( 20fT = ). 

 

1 2 1 210, 10, 1, 1000,b b w w= = = =  

 

and the initial conditions as in [30], 

 

1 2(0) 957263, (0) 500, (0) 459,
(0) 67, (0) 34, (0) 996, (0) 89.

S S S
I P T A

= = =
= = = =

 

 

The parameter values given in Table II used in the 

simulations (Case 2 with 0 1.553162 1R =  ). Thus, to 

investigate the effect of the different optimal control 

strategies on the spread of HIV/AIDS in population, we will 

investigate and compare numerical results from the 

simulation using the following scenario: 

 

Strategy 1: Using Information Campaigns and Treatment 

In this strategy, we used controls of information 

campaigns ( 1u ) and treatment ( 2u ) to optimize the objective  

function (25). Following Figs. 6(a)-6(c), this strategy results 

in a significant decrease in the numbers of asymptomatic 

infected individuals, pre-AIDS individuals, and AIDS 

individuals when compared to cases without controls. The 

numbers of asymptomatic infected individuals, pre-AIDS 

individuals, and AIDS individuals with controls and without 

controls at the end of the period are 
* *78.87, 23.36,I P= =   

* 72.84A = and 4986, 1432, 1206I P A= = =  respectively. 

Fig. 6(d) represents the control profile for the 

implementation of Strategy 1. The control 1u (black solid 

line in Fig. 6(d)) is at the upper bound for almost the whole 

period (19.97 years) before dropping to the lower bound and 

the control 2u  (black dotted line in Fig. 6(d)) is at the upper 

 
Fig. 5.  The relationship among 0, ,R E and .  

 
  

TABLE III 
SENSITIVITY INDEX OF R0 

Parameters Sensitivity Index 

1 +0.6620
 

σ1 -0.5719
 

β2 +0.3379
 

σ2 -0.2685 

ψ1 -0.2069 

E -0.1891 

ψ2 -0.1346 

α1 -0.1191 

 +0.0876 

α2 -0.0699 

 -0.0581 
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bound for 15.55 years before dropping to the lower bound at  

the end of the control period. 

 

Strategy 2: Using Treatment Only 

In Strategy 2, we used the treatment control ( 2u ) to 

optimize the objective functional J, whereas we set the 

control 1u  to zero. There is a significant reduction in the 

numbers of asymptomatic infected individuals, pre-AIDS 

individuals, and AIDS individuals compared to cases 

without control (Figs. 7(a)-7(c)). The numbers of 

asymptomatic infected individuals, pre-AIDS individuals, 

and AIDS individuals with control at the end of the period 

are * * *1147, 184, 310.6I P A= = =  and these numbers 

become lower when compared with the optimal control 

strategy in Figs. 6(a)-6(c). The control profile 2u  (black 

dotted line in Fig. 7(d)) is at the upper bound for 18.8 years 

before dropping to the lower bound at the end of the period.  

 

Strategy 3: Using Information Campaigns Only 

The control of information campaigns ( 1u ) is used to 

optimize the objective function (25), whereas we set the 

control   2u   to  zero.   Figs.  8(a)-8(c)   shows  a   significant    

reduction in the numbers of asymptomatic infected 

individuals, pre-AIDS individuals, and AIDS individuals 

when compared to cases without controls. The numbers of 

asymptomatic infected individuals, pre-AIDS individuals, 

and AIDS individuals with controls at the end of the period 

are * * *246.5, 99.52, 146.1I P A= = = . The reduction in the 

numbers of asymptomatic infected individuals, pre-AIDS 

individuals, and AIDS individuals was greater compared to 

the optimal control strategies in Figs. 7(a)-7(c), but this 

number is lower when compared to the optimal control 

strategy in Figs. 6(a)-6(c). The control profile of the control 

1u  (black dotted line in Fig. 8(d)) is the same when 

compared to the strategy in Figure 6(d).   

Based on the explanation above, it appears that the 

control strategies implemented either of the strategies 

considered have a significant effect in reducing the number 

of infected individuals. 

 

D. Cost-effectiveness Analysis 

It is important to determine the most cost-effective 

strategy of all the three strategies (1, 2, and 3) in Subsection 

C. To compare the differences between the costs and health 

outcomes of these three strategies competing for the same 

limited sources, we used the incremental cost-effectiveness 

ratio (ICER) [28], [30], [42]. The ICER is used to compare 

any two competing intervention strategies incrementally, 

one intervention should be compared with the next less-

effective alternative. The ICER formula is as follows: 

 

Difference in total costs of strategies i and j
ICER .

Difference in total infection averted of strategies i and j 
=   

 

The total cost for the implemented strategies in the given 

period is
1

* * * *
1 2 2

0
[ ]

fT

w u S w u P dt+ , whereas the total number     

of infections averted is calculated from the difference 

between the total number of infected individuals without 

and with control. 

Table IV summarizes the strategies ranked in increasing 

order of the total infection averted. Using the ICER formula, 

the ICER for Strategies 1, 2, and 3 controls measures shown 

in Table IV are calculated as follows. 

 

918,570
ICER(2) 36.5469,

25,134
= =  

 

 

 

 
Fig. 6.  Simulation results of the system (25) showing the effect of control of 
information campaigns: (a) infected individuals, (b) pre-AIDS individ uals,  

(c) AIDS individuals, and (d) control profile of 1u and 2u . 
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5,396, 200 918,570
ICER(3) 1132.144,

29,089 25,134

−
= =

−
 

5,659,600 5,396, 200
ICER(1) 71.479.

32,774 29,089

−
= =

−
 

 

The comparison between Strategy 2 and Strategy 3 shows 

that ICER(2) is less than ICER(3). This means that Strategy 

3 is strongly dominant over Strategy 2. In other words, 

Strategy 3 is more costly and less effective than Strategy 2. 

Therefore, Strategy 3 is excluded from the set of alternatives 

and ICER recomputed for Strategies 2 and 1 using a similar 

procedure, see Table V. 

 

 
Fig. 7.  Simulation results of the system (25) showing the effect of control of 
information campaigns: (a) infected individuals, (b) pre-AIDS individ uals,  

(c) AIDS individuals, and (d) control profile of 2u .   

 

 
 
  
 

 
 

TABLE IV 

TOTAL INFECTED AVERTED, TOTAL COST, AND ICER 

Strategy 
Total Infection 

Averted 
Total Cost  ICER 

Strategy 2 25,134 918,570 36.547 

Strategy 3 29,089 5,396,200 1,132.144 

Strategy 1 32,774 5,659,600 71.479 

 
 

 

 

 

 
Fig. 8.  Simulation results of the system (25) showing the effect of control of 
information campaigns: (a) infected individuals, (b) pre-AIDS individ uals,  

(c) AIDS individuals, and (d) control profile of 1u . 
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The comparison between Strategy 2 and Strategy 1 shows 

that ICER(2) is less than ICER(1). This means that Strategy 

1 is strongly dominant over Strategy 2. In other words, 

Strategy 1 is more costly and less effective than Strategy 2.  

With these results, it can be concluded that Strategy 2 

implementing treatment is the most cost-effective of all the 

strategies for the control of the HIV/AIDS consider in this 

work. 

 

V. CONCLUSION 

In this paper, we formulated and analyzed a mathematical 

model with the inclusion of two control strategies to study 

the effect of education campaigns of susceptible individua ls 

and the treatment of pre-AIDS individuals on the 

transmission of HIV infection in a population. Using the 

theory of differential equations, the positivity and 

boundedness of solutions for the model is proved. By 

analyzing the model, we derive the basic reproduction 

number 
0R by using the next-generation matrix method. The 

existence of a disease-free equilibrium and an endemic 

equilibrium point is shown. The components of the endemic 

equilibrium can be obtained by substituting the positive real 

root of the cubic equations. The disease-free equilibrium 

point is globally asymptotically stable whenever the basic 

reproduction number is less than unity. Further, by using a 

Lyapunov function and LaSalle’s invariant set theorem, the 

endemic equilibrium point is also globally asymptotically 

stable whenever the basic reproduction number greater than 

unity. The unique endemic equilibrium point of the model is 

shown to be globally asymptotically sta ble for a  special 

case.  

Numerical simulations have been performed to support 

the analysis results. The results of the sensitivity analysis of 

the basic reproduction number show that the most sensitive 

parameters of the model are the effective contact rates of 

susceptible individuals with asymptomatic infected 

individuals, followed by progression rate from 

asymptomatic infected into pre-AIDS and the effective 

contact rates of susceptible individuals with pre-AIDS 

infected individuals. Numerically, the optimal control 

analysis shows that control strategies have a significant 

effect in reducing the number of infected individuals in the 

population. By cost-effectiveness analysis, we conclude that  

Strategy 2 implementing treatment is the most cost-effective 

among the three strategies considered. 

For future work. it will be interesting to include the effect 

of progression rate from asymptomatic infected into pre-

AIDS as a control measure because it has a large sensitivity 

index.  

APPENDIX 

Theorem (The Cardan’s Formula). The cubic polynomial 
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Proof. To depress the cubic polynomial (A.1), we substitute 

2

3

*

3

h

h
y = − and make it monic by dividing by 3h . We get 
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3 3 2 0.y qy r+ − =  (A.2) 

 

Now, consider the identity 3 3 3( ) 3 ( ) ( ) 0.u v uv u v u v+ − + − + =  

If we make it match with (A.2), we get the system of 

equations 

 
3 3, , 2 .y u v uv q u v r= + = − + =  (A.3) 

 

Then, we get  
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The sixth order polynomial can be solved by using the 

quadratic formula, by taking 
3z u=  and the equation 

reduces to 

 
2 32 0.z rz q− − =  (A.4) 

 

Solving using the quadra tic formula , we get the roots of 

(A.4)  

 

TABLE V 
TOTAL INFECTED AVERTED, TOTAL COST, AND ICER 

Strategy 
Total Infection 

Averted 
Total Cost  ICER 

Strategy 2 25,134 918,570 36.547
 

Strategy 1 32,774 5,659,600 620.554 
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By substituting z back to u , we get 3 2 3u r r q= + + . 

Notice that the system of equation is symmetric in u and 

v , so the order we choose does not matter, and the value of 

y  will the same. So 

 

2 3 2 33 3, ,m nu w r r q v w r r q= + + = − +  

 

where 0 , 2m n   and w  is any 3rd primitive root of unity  

( 3 1w =  and 21 0w w+ + = ). We see that then we have 9 

combinations for the value u v+ , but only 3 of them work. 

By looking at the second equation, we see that m n+  must 

be a multiple 0f 3, so ( , ) (0, 0), (1, 2), (2,1)m n =  and our 

solutions are 

 
2 2

1 2 3, , .y u v y uw vw y uw vw= + = + = +  

 

We choose 1 3

2

iw − +=  and 
2 1 3

2

iw − −= , so  
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2 2 2 2
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y y
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Undo the change 2

3

*

3

h

h
y = − , we get our desired 

solutions. 
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