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Abstract—This paper studies the interactions of two light
beams in the nematic liquid crystal in the local response regime,
which are referred to as two-color nematicons. For the light
of same wavelength, we derive the traveling wave solutions of
two nematicon equations under some suitable conditions. Then
we find plane-wave solutions of two-color nematicon equations
and examine their stability. Using a standing-wave ansatz,
we obtain a system of amplitude equations for the spatially
modulated states corresponding to the two-color nematicon
equations in the non-resonant case. By perturbation theory and
the method of averaging, we determine the equilibrium point of
this averaged system, which leads to the existence of spatially
periodic solutions of the system.

Index Terms—Nematicon, liquid crystal, plane-wave solution,
average equation.

I. INTRODUCTION

IN recent years, the propagation of two-dimensional non-
linear light beams (spatial solitary waves) in nematic

liquid crystals [1]–[4] and colloidal suspensions [5]–[7] have
attracted considerable attentions. The reason is that scholars
have proved under some conditions stable solitary waves can
be generated in these media. Assanto and his collaborators
first proposed the nematicons in nonlinear light beam exis-
tence experiments. They proved that stable spatial solitons
may be generated in nematic liquid crystals [8], [9]. Since
the equations of the nematic body are the same as those
of the thermoelastic waveguide, Kuznetsov and Rubinzick
concluded that the nematicon is stable [10]. Usually guided
wave propagation in nematic liquid crystals is considered in
the nonlocal limit, but in the experiment, the local interaction
between light and the nematic will be caused by adjusting
the temperature and the external electrostatic field. Therefore,
we can study both the local limit and the nonlocal limit
[11]. Since the equation of the nematic particles can saturate
to the nonlinear Schrödinger (NLS) equation under local
conditions, the nematic particles are stable [12]–[14].
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The primary consideration on nematicons researched the
propagation of a single soliton. Reimbert et al. proved that in
the limit of low light intensity and local material response,
the full governing equations can be reduced to a higher-order
nonlinear Schrödinger equation [13]. For the plane case of
nematicons, the exact traveling wave solutions were obtained
[15]–[17]. Recently, many authors studied the interaction
of two nematicons with same wave length(color) [18] and
two different wave lengths (colors) [19], [20]. Later, using
a suitable method, Skuse and Smyth derived the interaction
of two-color nematicons, in a nematic liquid crystal in the
nonlocal and local limit. In the local limit, they using a
suitable trial function derived approximate equations which
control the evolution of two color nematicons [21]. In the
nonlocal case, they deduced the approximate modulation
equations which control the evolution of the beams, and
then considered the influence of the diffractive radiation
by the beams in this equations [22]. Horikis studied the
stable evolution of two nonlinear interacting waves in the
nonlocal nematic crystals [23]. At the same time, Horikis
and Frantzeskakis also found vector solitons which can
be utilized to model beam propagation in nematic liquid
crystals, in the nonlinear Schrödinger system of equations
[24].

In this paper, we investigate the interactions between the
two color nematicons are further investigated mathematically.
Firstly, to study the interactions between two color nemati-
cons based on light of the same wavelength, we derive the
traveling wave solutions of the two color nematicon equa-
tions and depict the phase diagram. In recent years, traveling
wave solutions have been widely studied in the fields of
physics, mathematics, economics, and so on. Therefore, the
study of traveling wave solutions is particularly important.
We can refer to [25]–[30] for some related development.
Second, inspired by Porter et al. [31], we investigated the
interactions between two color nematicons based on light of
different wavelengths. In particular, we study the plane wave
solutions of the two color nematicon equations and analyze
its stability under certain parameter conditions. Finally, we
use a standing-wave ansatz to derive a system of amplitude
equations for spatially modulated states. Using the averaging
method [32] we determine equilibrium points of this system
and derive the existence of spatial periodic solutions of the
system, which correspond to the modulated amplitude wave
solutions of the system when spatial non-resonance occurs.
For more results, see [33], [34]. To the best of our knowledge,
some phenomena arising from spatial non-resonance states
in the two color nematicon models in the local limit have
not been considered before.
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We consider the interaction between two polarized, coher-
ent light beams of two different wavelengths, in the local
regime, propagating through a cell filled with nematic liquid
crystal. The light propagates in the z direction orthogonal to
the (x, y) plane. The electric field envelopes of the two light
beams are defined as u(x, y, z), υ(x, y, z). In a static pretilt
electric field case, the nondimensional equations controlling
two color nematicons propagation are

i
∂u

∂z
+

1

2
Du∇2u+Auu sin 2θ = 0, (1)

i
∂υ

∂z
+

1

2
Dυ∇2υ +Aυυ sin 2θ = 0, (2)

ν∇2θ − q sin 2θ = −2Au|u|2 cos 2θ−2Aυ|υ|2 cos 2θ, (3)

where the Laplacian ∇2 is in the (x, y). The q ∈ R denotes
the strength of the static electric field and ν measures the
elasticity of the nematic. Usually, by changing the operating
temperature and the strength of the pretilt field q, we obtain
the values range of ν from small(the local regime) to
large(the nonlocal regime) [11]. In this work, we consider
the local regime with ν → 0. The parameters Du, Dυ ∈ R
are the diffraction coefficients for the two wavelengths and
Au, Aυ ∈ R are the coupling coefficients between the
electric fields of the light and the nematic director for the
two wavelengths [35]. The θ is the perturbation of the optical
director angle due to its static value of the beams. Eq. (3)
reduces to

tan 2θ =
2

q

(
Au|u|2 +Aυ|υ|2

)
, (4)

as ν → 0. Substituting (4) into Eqs. (1) and (2), we get

i
∂u

∂z
+

1

2
Du∇2u

+
2Au

(
Au|u|2 +Aυ|υ|2

)
u√

q2 + 4 (Au|u|2 +Aυ|υ|2)
2

= 0, (5)

i
∂υ

∂z
+

1

2
Dυ∇2υ

+
2Aυ

(
Au|u|2 +Aυ|υ|2

)
υ√

q2 + 4 (Au|u|2 +Aυ|υ|2)
2

= 0. (6)

From the above equations, we find the propagation of the
two color nematicons can be written as a system of vec-
tor saturating nonlinear Schrödinger equations in the local
regime.

The paper is organized as following. In Section 2, we
derive the traveling wave solutions and draw phase portraits
for the two nematicon equations of the same wave color
length. In Section 3, we study the plane-wave solutions of
two-color nematicon equations and analyze their stability.
In Section 4, we introduce the modulated amplitude waves
and receive equilibrium points of the average equation to
obtain the existence of the space periodic solution of two-
color nematicon equations under the non-resonant condition.

II. TRAVELING WAVE SOLUTIONS

To research the traveling wave solution and phase por-
traits of two color nematicon equations, we shall introduce
traveling wave transformations

u = R1(ξ)exp (−i (λ1z + θ(ξ))) ,

υ = R2(ξ)exp (−i (λ2z + θ(ξ))) ,
(7)

where ξ = ax + by, Rj(j = 1, 2) and θ are functions of ξ,
and a, b, λj(j = 1, 2) ∈ R. Inserting Eq. (7) into Eqs. (5)
and (6) yields

(a2 + b2)

2
Du

(
R

′′

1 −R1(θ
′
)2 − i

(
2R

′

1θ
′
+R1θ

′′
))

+λ1R1 +
2Au

(
AuR

2
1 +AυR

2
2

)
R1√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0, (8)

(a2 + b2)

2
Dυ

(
R

′′

2 −R2(θ
′
)2 − i

(
2R

′

2θ
′
+R2θ

′′
))

+λ2R2 +
2Aυ

(
AuR

2
1 +AυR

2
2

)
R2√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0. (9)

Suppose that λ1 ≡ λ2 ≡ λ and two beams have the same
color (wavelength), that is Au ≡ Aυ ≡ A, Du ≡ Dυ ≡ D,
then Eqs. (8) and (9) have solution R1(ξ) = R2(ξ). There-
fore, Eqs. (8) and (9) can be reduced to a single equation

(a2 + b2)

2
D
(
R

′′
−R(θ

′
)2 − i

(
2R

′
θ
′
+Rθ

′′
))

+λR+
4A2R3√

q2 + 16A2R4
= 0. (10)

Equating the real and the imaginary components of Eq. (10),
we obtain

(a2 + b2)

2
D
(
R

′′
−R(θ

′
)2
)

+ λR

+
4A2R3√

q2 + 16A2R4
= 0, (11)

− (a2 + b2)

2
D
(

2R
′
θ
′
+Rθ

′′
)

= 0. (12)

Eq. (12) implies that R2(ξ)θ
′
(ξ) = k, where k is arbitrary

integration constant. Next we consider the value of k in two
cases, where R(ξ) 6= 0.

A. The Case of k = 0

When k = 0, we obtain θ
′
(ξ) = 0 and θ(ξ) =

m, where m is an arbitrary constant. Assuming u∗ =
R(ξ)exp (−i(λz + θ(ξ))) is the solution of Eq. (10). Then
u∗exp (−im0) is also the solution of Eq. (10). Therefore,
according to the invariability of the solution, we assume
θ(ξ) = m = 0. Now Eq. (7) becomes

u = υ = R(ξ)exp (−iλz) .

The form of Eq. (10) can be rewritten as

1

2
D(a2 + b2)R

′′
+ λR+

4A2R3√
q2 + 16A2R4

= 0. (13)

Defining R
′

= ϕ, then Eq. (13) is equivalent to the
following Hamiltonian system

dR

dξ
=ϕ,

dϕ

dξ
=− 8A2

D(a2 + b2)

R3√
q2 + 16A2R4

− 2λ

D(a2 + b2)
R

(14)
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with the first integral

H(R,ϕ) =
1

2
ϕ2 +

λ

D(a2 + b2)
R2 +

√
q2 + 16A2R4

4D(a2 + b2)
= h,

where h is the Hamiltonian constant. Next, we consider the
phase portraits of system (14). We need to obtain equilibrium
points of Eq. (13) and determine the type of equilibrium
points. According to the theory of planar dynamical systems
in integrable systems, if the Jacobian determinant J < 0,
then the equilibrium point is the saddle point. If J > 0
and the trace of Jacobian matrix trN(Ri, 0) = 0, then the
equilibrium point is the center.

If λ > 0, the system (14) has only one equilibrium point
E(0, 0). The Jacobian determinant of the system (14) at this
equilibrium point is

J(0, 0) =
2λ

D(a2 + b2)
.

It follows from the above conclusions that the equilibrium
point is center, when D > 0 and the equilibrium point is a
saddle point, when D < 0.

If λ < 0, the system (14) has three equilibrium points

E1(0, 0),

E2

(
R+, 0

)
=

(
4

√
λ2q2

16A2 (A2 − λ2)
, 0

)
,

E3

(
R−, 0

)
=

(
−4

√
λ2q2

16A2 (A2 − λ2)
, 0

)
.

The Jacobian determinants of the system (14) at these
equilibrium points are

J(0, 0) =
2λ

D(a2 + b2)

and

J(R±, 0) = detN(R±, 0) =
2λ

D(a2 + b2)

+
8A2(R±)2

(
3− 32(R±)4A2(q2 + 16A2(R±)4)−1

)
D(a2 + b2)

√
q2 + 16A2(R±)4

= −4λ(λ2 +A2)

D(a2 + b2)
.

When D > 0, the equilibrium points E1(0, 0) is a saddle
point, E2(R+, 0) and E3(R−, 0) are center. When D < 0,
the equilibrium point E1(0, 0) is center, E2(R+, 0) and
E3(R−, 0) are saddle points. Fig. 1 shows the phase portraits
of system (14), when λ < 0.

B. The Case of k 6= 0

When k 6= 0, we obtain θ
′
(ξ) = k/R2(ξ). Therefore, the

form of Eq. (10) can be rewritten as

(a2 + b2)

2
D

(
R

′′
− k2

R3

)
+ λR

+
4A2R3√

q2 + 16A2R4
= 0. (15)

(a) λ < 0 and D < 0

(b) λ < 0 and D > 0

Fig. 1: The phase portraits of (14)

Similarly, Eq. (15) is equivalent to the following Hamiltonian
system

dR

dξ
=ϕ,

dϕ

dξ
=
k2

R3
− 2λ

D(a2 + b2)
R

− 8A2

D(a2 + b2)

R3√
q2 + 16A2R4

(16)

with the first integral

H(R,ϕ) =
1

2
ϕ2 +

k2

2R2
+

λ

D(a2 + b2)
R2

+

√
q2 + 16A2R4

4D(a2 + b2)

=h.

The Jacobian determinant of system (16) is

J(R, 0) = detN(R, 0)

=
3k2

R4
+

2λ

D(a2 + b2)
+

8A

D(a2 + b2)(
6R5√

16A2R4 + q2
− 32A2R9

(16A2R4 + q2)
3/2

)
.

Since it is difficult to judge the type of equilibrium points
from the above formula, we analyze it numerically. Given
the parameters λ = −1, q = 2, D = 0.8, A = 0.9,
a2 + b2 = 10, k2 = 1, we obtain two equilibrium points
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E1(R1, 0) = (−2.49288, 0) and E2(R2, 0) = (2.49288, 0)
of the system (16). And both of these two equilibrium points
are center. The phase portraits of system (16) are shown in
Fig. 2. The relevant discussion on phase portraits of such
system is provided in [36].

Fig. 2: The phase portraits of (16)

III. PLANE-WAVE SOLUTIONS

In this section, we derive plane-wave solutions of two-
color nematicon equations with different wavelengths and
analyze their stability. Eqs. (5) and (6) have the plane-wave
solutions of the form

u = R1exp (−i(λz + cx+ dy)) ,

υ = R2exp (−i(λz + cx+ dy)) ,
(17)

where Rj (j = 1, 2) are constant functions and c, d, λ ∈ R.
Inserting Eq. (17) into Eqs. (5) and (6) yields

− d2 + c2

2
DuR1 + λR1

+
2Au

(
AuR

2
1 +AυR

2
2

)
R1√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0, (18)

− d2 + c2

2
DυR2 + λR2

+
2Aυ

(
AuR

2
1 +AυR

2
2

)
R2√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0. (19)

In addition to the zero solution, Eqs. (18) and (19) have four
solutions

(R1, R2)

=

(
±
√

q

Au

1
4
√

4A2
u − (c2 + d2)Du (Du + 4λ) + 4λ2

, 0

)
,

(R1, R2)

=

(
0,±

√
q

Aυ

1
4
√

4A2
υ − (c2 + d2)Dυ (Dυ + 4λ) + 4λ2

)
.

The necessary existence conditions for these solutions are

qAu > 0,

qAυ > 0,

A2
u >

Du

4
(Du + 4λ)

(
c2 + d2

)
− λ2,

A2
υ >

Dυ

4
(Dυ + 4λ)

(
c2 + d2

)
− λ2.

Eqs. (18) and (19) also have nonzero solutions (R1, R2),
which satisfy the elliptic equation

AuR
2
1 +AυR

2
2 =

q
(
Du(c2 + d2)− 2λ

)
2

√
4A2

u − (Du(c2 + d2)− 2λ)
2
, (20)

where Aυ
(
Du(c2 + d2)− 2λ

)
= Au

(
Dυ(c2 + d2)− 2λ

)
,∣∣∣∣Du(c2 + d2)− 2λ

2Au

∣∣∣∣ < 1,

and q
(
Du(c2 + d2)− 2λ

)
, Au, Aυ have the same sign. In

this case, each point (R1, R2) of Eq. (20) corresponds to a
set of plane-wave solutions Eqs. (5) and (6).

To examine the stability of the plane-wave solutions, we
consider perturbed solutions of the form

u = û(x, y, z)[1 + ε1(x, y, z)], (21)
υ = υ̂(x, y, z)[1 + ε2(x, y, z)], (22)

where

û = R1exp (−i(λz + cx+ dy)) ,

υ̂ = R2exp (−i(λz + cx+ dy)) ,

and |ε2j | � 1, j = 1, 2. When R1, R2 6= 0, we substitute
Eqs. (21) and (22) into Eqs. (5) and (6) and reserve the first
order term in εj (j = 1, 2). Then we obtain

ε1z =2A2
ui

(
R2

1√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

1

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3
 ε1

+ i
2q2R2

1A
2
u√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3 ε∗1

+ i
2q2R2

2AuAυ√(
4 (R2

1Au +R2
2Av)

2
+ q2

)3 (ε2 + ε∗2)

+Du (cε1x + dε1y) +
iDu

2
(ε1xx + ε1yy) , (23)

ε2z =2A2
υi

(
R2

2√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

2

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3
 ε2

+ i
2q2R2

2A
2
υ√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3 ε∗2

+ i
2q2R2

1AuAυ√(
4 (R2

1Au +R2
2Av)

2
+ q2

)3 (ε1 + ε∗1)

+Dυ (cε2x + dε2y) +
iDυ

2
(ε2xx + ε2yy) , (24)
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where ∗ denotes the complex conjugate. Assuming that εj is
periodic in (x, y), it can be expanded in Fourier series

ε1(x, y, z) =
∞∑

n=−∞
εn(z)exp(iµn(x+ y)), (25)

ε2(x, y, z) =
∞∑

n=−∞
ε̃n(z)exp(iµn(x+ y)), (26)

where the n-th mode has wavenumber µn. It follows from
Eqs. (23), (24), (25) and (26), that the systems of ordinary
differential equations

d

dz


εn

ε∗−n

ε̃n

ε̃∗−n

 = Gn


εn

ε∗−n

ε̃n

ε̃∗−n

 , n = −∞, · · ·∞, n 6= 0

hold, where

Gn := i


E MR2

1 NR2
2 NR2

2

−MR2
1 P −NR2

2 −NR2
2

NR2
1 NR2

1 F MR2
2

−NR2
1 −NR2

1 −MR2
2 Q

 ,

and

E =2A2
u

(
R2

1√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

1

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3


+Du (c+ d)µn −Duµ
2
n,

P =− 2A2
u

(
R2

1√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

1

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3


+Du (c+ d)µn +Duµ
2
n,

F =2A2
υ

(
R2

2√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

2

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3


+Dυ (c+ d)µn −Dυµ
2
n,

Q =− 2A2
υ

(
R2

2√
4 (R2

1Au +R2
2Av)

2 + q2

−
4R2

2

(
R2

1Au +R2
2Av

)
2√(

4 (R2
1Au +R2

2Av)
2

+ q2
)3


+Dυ (c+ d)µn +Dυµ
2
n,

M =
2q2A2

u√(
4 (R2

1Au +R2
2Av)

2
+ q2

)3 ,
N =

2q2AuAυ√(
4 (R2

1Au +R2
2Av)

2
+ q2

)3 .
Furthermore, the eigenvalues λ̂n of Gn are given by

λ̂4n +Aλ̂3n +Bλ̂2n + Cλ̂n +D = 0, (27)

where

A =− 2iµn(c+ d) (Du +Dυ) ,

B =− 4(c+ d)2µ2
nDuDυ − FQ− EP

+M2
(
R4

1 +R4
2

)
,

C =2iµn(c+ d) (FQDu + EPDυ

−M2
(
R4

2Du +R4
1Dυ

))
,

D =
(
EP −M2R4

1

) (
FQ−M2R4

2

)
−N2(E − P )(F −Q)R2

1R
2
2.

Then the expression of λ̂n is

λ̂n =− A

4
∓ 1

2

√
A2

4
− 2B

3
+ ∆

∓
√√√√A2

2
− 4B

3
−∆− −A

3 + 4AB − 8C

4
√

A2

4 −
2B
3 + ∆

,

where

∆ =
3
√

2∆1

33

√
∆2 +

√
−4∆3

1 + ∆2
2

+

3

√
∆2 +

√
−4∆3

1 + ∆2
2

33
√

2
,

∆1 = B2 − 3AC + 12D,

∆2 = 2B3 − 9ABC + 27C2 + 27A2C − 72BD.

The λ̂n are the perturbation growth rates determining the
stability of the n-th mode. If λ̂n has positive real part,
then we obtain instable perturbation solutions and the side-
band modes c + µn, c − µn, d + µn, d − µn of perturbed
solutions to grow exponentially, which are close enough to
the fundamental modes c and d. Therefore, the plane-wave
solutions are instable, see [31], [37]. Next we present a
numerical example. When the parameters λ = −0.7, q =
2, Au = 1, Du = 1, Aυ = 0.9, Dυ = 0.62, c2 +d2 = 0.5,
we obtain nonzero solutions (R1, R2), which satisfy elliptic
equation

10R2
1 + 9R2

2 =
190√

39
, (28)

where each point of Eq. (28) corresponds to a set of plane-
wave solutions. For simplicity, we substitute R2

2 = 1 into Eq.
(28) and obtain R2

1 = 2.1424349. Then substituting the above
parameters into Eq. (27), we can obtain that the eigenvalue
satisfies

λ̂4n−1.62µniλ̂
3
n +

(
−0.62µ2

n − FQ− EP + 0.0051814
)
λ̂2n

+µn (FQ+ 0.62EP − 0.0035647) iλ̂n

+ (EP − 0.0042545) (FQ− 0.0009269)

−0.0000115 + 0.0004365µ2
n − 0.0039892µ4

n = 0, (29)
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where

E =0.0652251 + 0.5µn − µ2
n,

P =− 0.0652251 + 0.5µn + µ2
n,

F =0.0274 + 0.31µn − 0.62µ2
n,

Q =− 0.0274 + 0.31µn + 0.62µ2
n.

From Eq. (29), the λ̂n has positive real part, so in the above
parameters the plane-wave solution is instable.

IV. MODULATE AMPLITUDE WAVES

In this section, we assume solutions of Eqs. (5) and (6)
that describe coherent structures of the form

u = R1(ξ)exp (−i(λ1z + θ(ξ))) ,

υ = R2(ξ)exp (−i(λ2z + θ(ξ))) ,
(30)

where ξ = ax + by, Rj(j = 1, 2) and θ are functions of ξ,
and a, b, λj(j = 1, 2) ∈ R. Inserting Eq. (30) into Eqs. (5)
and (6), we obtain

(a2 + b2)

2
Du

(
R

′′

1 −R1(θ
′
)2 − i

(
2R

′

1θ
′
+R1θ

′′
))

+λ1R1 +
2Au

(
AuR

2
1 +AυR

2
2

)
R1√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0, (31)

(a2 + b2)

2
Dυ

(
R

′′

2 −R2(θ
′
)2 − i

(
2R

′

2θ
′
+R2θ

′′
))

+λ2R2 +
2Aυ

(
AuR

2
1 +AυR

2
2

)
R2√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0. (32)

Equating real and imaginary parts of Eqs. (31) and (32), we
conclude that

(a2 + b2)

2
Du

(
R

′′

1 −R1(θ
′
)2
)

+ λ1R1

+
2Au

(
AuR

2
1 +AυR

2
2

)
R1√

q2 + 4 (AuR2
1 +AυR2

2)
2

=0, (33)

(a2 + b2)

2
Dυ

(
R

′′

2 −R2(θ
′
)2
)

+ λ2R2

+
2Aυ

(
AuR

2
1 +AυR

2
2

)
R2√

q2 + 4 (AuR2
1 +AυR2

2)
2

=0, (34)

− (a2 + b2)

2
Du

(
2R

′

1θ
′
+R1θ

′′
)

=0, (35)

− (a2 + b2)

2
Dυ

(
2R

′

2θ
′
+R2θ

′′
)

=0. (36)

It follows from Eqs. (35) and (36) that

θ
′
(ξ) =

k1
R2

1(ξ)
=

k2
R2

2(ξ)

with arbitrary constants k1, k2. When k1, k2 6= 0, we have
R1(ξ) = mR2(ξ), where m ∈ R. Only when k1 = k2 = 0,
the solutions R1(ξ) and R2(ξ) are different. In this case, u
and υ are different. In other words, under consideration of
the solutions of null angular momenta, R1(ξ) and R2(ξ) are

different. In this situation, Eqs. (33) and (34) have the form

(a2 + b2)

2
DuR

′′

1 + λ1R1

+
2Au

(
AuR

2
1 +AυR

2
2

)
R1√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0, (37)

(a2 + b2)

2
DυR

′′

2 + λ2R2

+
2Aυ

(
AuR

2
1 +AυR

2
2

)
R2√

q2 + 4 (AuR2
1 +AυR2

2)
2

= 0. (38)

Assuming R
′

i = ϕi(i = 1, 2), then Eqs. (37) and (38) are
equivalent to the following Hamiltonian system

dR1

dξ
=ϕ1,

dϕ1

dξ
=− 2λ1R1

(a2 + b2)Du

−
4Au

(
AuR

2
1 +AυR

2
2

)
R1

(a2 + b2)Du

√
q2 + 4 (AuR2

1 +AυR2
2)

2
,

dR2

dξ
=ϕ2,

dϕ2

dξ
=− 2λ2R2

(a2 + b2)Dυ

−
4Aυ

(
AuR

2
1 +AυR

2
2

)
R2

(a2 + b2)Dυ

√
q2 + 4 (AuR2

1 +AυR2
2)

2
.

By simplifying Eqs. (37) and (38), we obtain

R
′′

1 +
2λ1

(a2 + b2)Du
R1

= −
4Au

(
AuR

2
1 +AυR

2
2

)
R1

(a2 + b2)Du

√
q2 + 4 (AuR2

1 +AυR2
2)

2
, (39)

R
′′

2 +
2λ2

(a2 + b2)Dυ
R2

= −
4Aυ

(
AuR

2
1 +AυR

2
2

)
R2

(a2 + b2)Dυ

√
q2 + 4 (AuR2

1 +AυR2
2)

2
. (40)

When λ1/Du = λ2/Dυ , we use the notation

α :=
2λ1

(a2 + b2)Du
=

2λ2
(a2 + b2)Dυ

.

Then Eqs. (39) and (40) have the form

R
′′

1 + αR1

= −
4Au

(
AuR

2
1 +AυR

2
2

)
R1

(a2 + b2)Du

√
q2 + 4 (AuR2

1 +AυR2
2)

2
, (41)

R
′′

2 + αR2

= −
4Aυ

(
AuR

2
1 +AυR

2
2

)
R2

(a2 + b2)Dυ

√
q2 + 4 (AuR2

1 +AυR2
2)

2
. (42)

In fact, Porter et al. used perturbation method and first
order averaging to discuss resonant and non-resonant modu-
lated amplitude waves for binary Bose-Einstein condensates
in optical lattices, see [31]. To achieve some analytical
understanding of the spatial resonances in two-color vector-
soliton in nematic liquid crystals, we use a perturbation
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method to average Eqs. (41) and (42). Defining Au ≡
√
εÃu,

Aυ ≡
√
εÃυ , then Eqs. (41) and (42) can be written as

R
′′

1 + αR1

= −
4εÃu

(
ÃuR

2
1 + ÃυR

2
2

)
R1

(a2 + b2)Du

√
q2 + 4ε

(
ÃuR2

1 + ÃυR2
2

)2 , (43)

R
′′

2 + αR2

= −
4εÃυ

(
ÃuR

2
1 + ÃυR

2
2

)
R2

(a2 + b2)Dυ

√
q2 + 4ε

(
ÃuR2

1 + ÃυR2
2

)2 . (44)

Assuming α > 0, we insert the ansatz

Rj =Aj(ξ) cos
(√
αξ
)

+Bj(ξ) sin
(√
αξ
)
, (45)

R
′

j =−
√
αAj(ξ) sin

(√
αξ
)

+
√
αBj(ξ) cos

(√
αξ
)
, j = 1, 2 (46)

into Eqs. (43) and (44). By differentiating Eq. (45) and
comparing it with Eq. (46), we obtain

A
′

j(ξ) cos
(√
αξ
)

+B
′

j(ξ) sin
(√
αξ
)

= 0, j = 1, 2.

Inserting the above three equations into Eqs. (43) and (44)
and doing Taylor series in ε at ε = 0 of the Eqs. (43) and
(44) generates a set of coupled differential equations for Aj
and Bj , whose right side comes from the contributions of
different harmonics [31]. Hence we obtain

A
′

1 =ε
4Ãu

(
ÃuR

2
1 + ÃυR

2
2

)
R1 sin (

√
αξ)

(a2 + b2)Duq
√
α

+O(ε2),

B
′

1 =− ε
4Ãu

(
ÃuR

2
1 + ÃυR

2
2

)
R1 cos (

√
αξ)

(a2 + b2)Duq
√
α

+O(ε2),

A
′

2 =ε
4Ãυ

(
ÃuR

2
1 + ÃυR

2
2

)
R2 sin (

√
αξ)

(a2 + b2)Dυq
√
α

+O(ε2),

B
′

2 =− ε
4Ãυ

(
ÃuR

2
1 + ÃυR

2
2

)
R2 cos (

√
αξ)

(a2 + b2)Dυq
√
α

+O(ε2),

(47)

where R1 ≡ R1 (A1, B1, ξ), R2 ≡ R2 (A2, B2, ξ). The
system (47) has the form

A
′

1 =εFA1
(A1, A2, B1, B2, ξ) +O(ε2),

B
′

1 =εFB1 (A1, A2, B1, B2, ξ) +O(ε2),

A
′

2 =εFA2 (A1, A2, B1, B2, ξ) +O(ε2),

B
′

2 =εFB2
(A1, A2, B1, B2, ξ) +O(ε2),

(48)

where

FA1
=

GA1

(a2 + b2)Duq
√
α
, FB1

=
GB1

(a2 + b2)Duq
√
α
,

FA2
=

GA2

(a2 + b2)Dυq
√
α
, FB2

=
GB2

(a2 + b2)Dυq
√
α
.

For convenience, we write Ãu and Ãυ as Au and Aυ . Since
the right side of the equation consists of different harmonics,
the functions FAj

and FBj
can be written as a sum of

harmonic contributions.

Through calculation, we obtain

GA1
(A1, B1, A2, B2, ξ)

=

[
A1A2B2AuAv +

B1AuAv
2

(
A2

2 + 3B2
2

)
+

3B1A
2
u

2

(
A2

1 +B2
1

)]
+
[
2A2B1B2AuAv +A1AuAv

(
A2

2 +B2
2

)
+A1A

2
u

(
A2

1 + 3B2
1

)]
sin
(
2
√
αx
)

+

[
−AvA2B1B2Au +

A1AuAv
2

(
A2

2 −B2
2

)
+
A1A

2
u

2

(
A2

1 − 3B2
1

)]
sin
(
4
√
αξ
)

+
[
−2B2

2B1AuAv − 2B3
1A

2
u

]
cos
(
2
√
αξ
)

+

[
−AvA1A2B2Au +

B1AuAv
2

(
B2

2 −A2
2

)
+
B1A

2
u

2

(
B2

1 − 3A2
1

)]
cos
(
4
√
αξ
)
,

GB1
(A1, B1, A2, B2, ξ)

=−
[
A2B1B2AuAv +

A1AuAv
2

(
3A2

2 +B2
2

)
+

3A1A
2
u

2

(
A2

1 +B2
1

)]
−
[
2A1A2B2AuAv +B1AuAv

(
A2

2 +B2
2

)
+B1A

2
u

(
3A2

1 +B2
1

)]
sin
(
2
√
αξ
)

−
[
A1A2B2AuAv +

B1AuAv
2

(
A2

2 −B2
2

)
+
B1A

2
u

2

(
3A2

1 −B2
1

)]
sin
(
4
√
αξ
)

−
[
2A2

2A1AuAv + 2A3
1A

2
u

]
cos
(
2
√
αξ
)

−
[
−AvA2B1B2Au +

A1AuAv
2

(
A2

2 −B2
2

)
+
A1A

2
u

2

(
A2

1 − 3B2
1

)]
cos
(
4
√
αx
)
,

GA2
(A1, B1, A2, B2, ξ)

=

[
A1A2B1AuAv +

B2AuAv
2

(
A2

1 + 3B2
1

)
+

3B2A
2
v

2

(
A2

2 +B2
2

)]
+
[
A2AuAv

(
A2

1 +B2
1

)
+ 2A1B1B2AuAv

+A2A
2
v

(
A2

2 + 3B2
2

)]
sin
(
2
√
αξ
)

+

[
−AuA1B2B1Av +

A2AuAv
2

(
A2

1 −B2
1

)
+
A2A

2
v

2

(
A2

2 − 3B2
2

)]
sin
(
4
√
αξ
)

+
[
−2B2

1B2AuAv − 2B3
2A

2
v

]
cos
(
2
√
αξ
)

+

[
−AuA1A2B1Av +

B2AuAv
2

(
B2

1 −A2
1

)
+
B2A

2
v

2

(
B2

2 − 3A2
2

)]
cos
(
4
√
αξ
)
,

GB2
(A1, B1, A2, B2, ξ)

=−
[
A1B1B2AuAv +

A2AuAv
2

(
3A2

1 +B2
1

)
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+
3A2A

2
v

2

(
A2

2 +B2
2

)]
−
[
2A1A2B1AuAv +B2AuAv

(
A2

1 +B2
1

)
+B2A

2
v

(
3A2

2 +B2
2

)]
sin
(
2
√
αξ
)

−
[
A1A2B1AuAv +

B2AuAv
2

(
A2

1 −B2
1

)
+
B2A

2
v

2

(
3A2

2 −B2
2

)]
sin
(
4
√
αξ
)

−
[
2A2

1A2AuAv + 2A3
2A

2
v

]
cos
(
2ξ
√
α
)

−
[
−A1B2B1AuAv +

A2AuAv
2

(
A2

1 −B2
1

)
+
A2A

2
v

2

(
A2

2 − 3B2
2

)]
cos
(
4
√
αξ
)
.

Next we consider the non-resonant case. First, in system
(48), we separate the parts of the functions Aj(ξ) and Bj(ξ)
which vary slowly in contrast with the fast oscillations of
cos(
√
αξ) and sin(

√
αξ) and to receive averaged equations

governing their slow evolution. Then we use a method
which is equivalent to first order averaging to compute
the equilibrium points of the averaged equations. All the
equilibrium points, except for the trivial equilibrium point,
correspond to spatially periodic traveling wave solutions of
the Eqs. (43) and (44). In the non-resonant, the averaged
equations governing the slow evolution are

A
′

1 =
ε

(a2 + b2)Duq
√
α

[
A1A2B2AuAv +

B1AuAv
2(

A2
2 + 3B2

2

)
+

3B1A
2
u

2

(
A2

1 +B2
1

)]
, (49)

A
′

2 =
ε

(a2 + b2)Dυq
√
α

[
A1A2B1AuAv +

B2AuAv
2(

A2
1 + 3B2

1

)
+

3B2A
2
v

2

(
A2

2 +B2
2

)]
, (50)

B
′

1 =
ε

(a2 + b2)Duq
√
α

[
−A2B1B2AuAv −

A1AuAv
2(

3A2
2 +B2

2

)
− 3A1A

2
u

2

(
A2

1 +B2
1

)]
, (51)

B
′

2 =
ε

(a2 + b2)Dυq
√
α

[
−A1B1B2AuAv −

A2AuAv
2(

3A2
1 +B2

1

)
− 3A2A

2
v

2

(
A2

2 +B2
2

)]
. (52)

When A
′

1 = A
′

2 = B
′

1 = B
′

2 = 0, the non-resonant
averaged equations (49), (50), (51) and (52) have three
types of equilibria, which are trivial equilibria, double mode
equilibria and quadruple mode equilibria. Double modes and
quadruple modes indicate that there are two and four nonzero
amplitudes Aj , Bj , respectively. Through calculation, we ob-
tain two types of double mode equilibria. They are “A1A2”
equilibria with A1, A2 6= 0 and B1 = B2 = 0 and “B1B2”
equilibria with B1, B2 6= 0 and A1 = A2 = 0.

When Au/Aυ < 0, double mode equilibria are

(A1, A2, B1, B2) =

(
A1,±

√
−Au
Aυ

A1, 0, 0

)
,

(A1, A2, B1, B2) =

(
0, 0, B1,±

√
−Au
Aυ

B1

)
,

respectively “A1A2” equilibria and “B1B2” equilibria,
where A1, B1 are arbitrary. In this case, the two components
have unequal amplitudes. Therefore, these types of equilibria
correspond to the asymmetric periodic traveling wave solu-
tions of Eqs. (43) and (44).

When Aυ = −3Au, two sets of quadruple mode equilibria
satisfy A1 = −A2, B1 = B2 and A1 = A2, B1 = −B2,
respectively. The form of quadruple mode equilibria are

(A1, A2, B1, B2) = (−A2, A2,±A2,±A2) ,

(A1, A2, B1, B2) = (±B2,±B2,−B2, B2) ,

with A2, B2 are arbitrary.
Except for the trivial equilibrium point, all equilibrium

points of Eqs. (49), (50), (51) and (52) correspond to spatially
periodic traveling wave solutions of Eqs. (43) and (44).
Therefore, each of the above four sets of equilibrium points
correspond to the spatially periodic traveling wave solutions
of Eqs. (43) and (44). Therefore, two color nematicon
equations exist spatially periodic traveling wave solutions.

V. CONCLUSION

In this paper, we discuss the interactions of two polarized,
coherent light beams of different wavelengths propagating
through a cell filled with nematic liquid crystals. In the
case of light of the same wavelengths and different wave-
length, traveling wave solutions and plane-wave solutions of
two-color nematicon equations are given, respectively. The
methods of perturbation and the first order averaging are
employed in this paper. By solving the average equation of
slowly varying parts in the non-resonant, the existence of
the space periodic solutions of two-color nematicon systems
are proved. These spatial periodic solutions correspond to
the modulated amplitude waves of two-color nematicon
equations in the spatially non-resonant state.
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