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Abstract—Formal verification has become very useful and
popular in last decade in area of embedded systems design
and in analysis of critical systems. It can reveal common
errors, check system invariants, but also verify more complex
properties defined by temporal logic formulas. To reduce the
time-to-market for embedded architectures and assist SystemC
designers in the complexity of verification process at design
time, we advocate a novel approach where (a) generic safety
properties are used for sub-architecture verification during
architecture prototyping, and (b) sub-architecture models are
built according to the presented (Behavior, Interactions, and
Priority) framework, in order to ensure that models verification
results still hold for subsequent architecture prototype candi-
dates. This approach best helps the designer at two levels. At
the prototype dimensioning level, it introduces a sets of pre-
defined properties for common sub-architecture classes. At the
verification level, it enables to check safety properties of a sub-
architecture without the need to redo the verification process
for next prototypes comprising it. We present the framework
and show its feasibility on several examples.

Index Terms—Modelling, Behavior Interaction Priority,
Safety, Embedded Architectures, Generic properties, Verifica-
tion

I. INTRODUCTION

THE verification of embedded sub-architectures plays

an important role in the design flow of embedded

architectures. The formal verification is a powerful technique

because it is based on mathematical proofs to describe the

absence or existence of errors, most of them demonstrated

by the counter-example method.

The SystemC language is a defacto-standard for embedded

systems design and became the basic language of most of

industrial production companies [1]. This allows research

works to focus on checking architectures specifications of

SystemC programs which are first translated to equivalent
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formal model such as timed automata models and then

checked using model checking tools such as SPIN [2],

SMV [3] and BIP [4].

We have successfully used the state-of-the-art automatic

formal verification methods. More particularly, we use the

model checking technique [5][6][7], which takes into account

all the possible behavior of the design. The essential prereq-

uisite of the model checking technique is formal specification

of specification properties. For this purpose, we use suit-

able temporal logics [8][9][10][11]. Strong expressiveness of

these logics allows us to express all the typical requirements

on a sub-architecture behavior. However, a nontrivial effort is

required to specify these formulas and to use model checking

tools to verify them for the different architecture prototypes

under verification. For this reason, model checking is not yet

the standard method of verification.

On the other hand, SystemC simulation suffers the draw-

back of being incomplete. SystemC-level formal verification

of implementations with respect to the specifications stated in

this paper brings designers another tool which can help them

to purify the code and to ensure its correctness. Furthermore,

unlike simulations, such a verification process can lead to

backward refinements of sub-architecture designs through

provided counter-examples, which is helpful to future reuse

of the designs.

There is another different way of using formal verification

in architecture design which consists in the creation of high-

level abstract models of the design instead of verifying

low-level SystemC programs. The problem of this approach

which is out of the scope of this paper is to ensure that

an abstract model is sound. Moreover using the advocated

SystemC-level way of verification has the advantage of being

cycle-accurate and thus it allows for checking standard fine

grain properties and also for compositional verification of

sub-architectures. These simple generic verifications are not

always possible with the high-level abstract verifications.

The structure of the paper is the following. Sections II

and III present the contributions and related works respec-

tively. Section IV presents the modeling approach and the

conversion method. Section V presents the operated sub-

architecture model transformations. In Section VI, we first

show the effect of sub-architecture model reductions on the

final architecture model size for a modulo four counter;

then we present the verification results for a CPU sub-

architecture comprising four other sub-architectures; after-

wards, we present the set of pre-defined properties and

verification results for a FIFO and an AMBA AHB sub-

architectures. Finally, Section VII concludes the paper.
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II. CONTRIBUTION

We present a framework that supports the methodology

depicted in figure 1. First of all, when the architecture

prototype has been set, simulation is used to find execution

errors and performance bottlenecks such as buses available

bandwidth, processor utilization and memory conflicts per-

formance. A new architecture prototype is to be selected

if performance analysis results are not satisfactory. The

identified bottlenecks helps the designer to consider more

alternatives for the new architecture dimensioning. Then, the

methodology consists of four phases:

• Designer Mapping,

• BIP model construction,

• Transformation and reduction,

• Verification

Architecture Prototype

Sub−ArchitectureProperties 

Interactions

Model

Sub−Architecture 1Properties Sub−Architecture nProperties 

BIP Model Construction

Interactions’

Model’

Verification

Simulation

Designer Mapping

Transformation

Sub−Architecture  verification

Architecture  dimensioning

Generic Properties

Fig. 1: Design methodology

a) Designer mapping.: This phase focuses on sub-

architectures specifications. Our methodology relies on sets

of generic safety properties pre-defined for each class of

similar sub-architectures. For instance generic sets of safety

properties are defined for synchronous FIFOs, asynchronous

FIFOS, AMBA buses, RISC CPUs, and SRAM memories.

Designer defined properties may also be added. In order to be

able to start the next phases of our verification methodology,

the designer has to write a list of pairs for each identified sub-

architecture. The list defines the mapping between the vari-

ables in the generic properties formulas of sub-architecture

class, and the names of the signals in that sub-architecture.

b) BIP model construction.: Details of the sub-

architecture SystemC Program are involved in this phase.

A Sub-architecture process behavior is modeled by a set

of states and transitions. Each state is followed by a list

of outgoing transitions with their corresponding guards and

data computation, which are C expressions and C statements

respectively. A new state is reached after the occurrence of

a transition. Finally, different types of processes synchro-

nization are modeled by the introduction of the concept of

interactions between transitions.

c) Transformation and reduction.: In this phase, the

transformation step adds additional interactions to the sub-

architecture model so that sub-architecture verification re-

sults still hold for other architecture prototypes. These new

interactions are incomplete ones which are added whenever a

process of the sub-architecture is binded to a communication

signal. with these incomplete interactions, the model takes

into account in the current design verification iteration the

possible occurrence of new communications, when consid-

ering different architecture prototypes involving this sub-

architecture in new design iterations of the global loop in

figure 1. The reduction step is an optimization step whose

objective is to increase the verification speed. It significantly

reduces the model size by replacing sequences of transitions

between stable states with meta-transitions whenever it is

possible.

d) Verification.: This phase checks the model against

the pre-defined generic properties associated with the

sub-architecture class. A new version of the sub-architecture

has to be coded when verification results reveal specification

errors. Then, after any change in the sub-architecture,

simulation of the global architecture prototype is run again

to check non regression w.r.t performance requirements

of the architecture. Finally, either the current architecture

prototype is kept and a new iteration is started for the

verification of the new version of the sub-architecture;

or a new architecture prototype meeting performance

requirements is selected (global loop in figure 1).

We propose in this paper the use of SystemC-level generic

verification of sub-architectures. To further assist designers

in the verification process, we specify pre-defined properties

for several classes of sub-architectures using PROMELA

language. More particularly, properties are encoded as

formula of LTL, i.e., Linear Temporal Logic [12]. These

pre-defined properties are taken from standard specifications

of sub-architectures behaviors.

The advantages of our verification approach are fourfold :

1) It has the advantage of being accurate because it is

performed at code-level which is cycle accurate and bus

accurate.

2) Our approach allows generic verifications of safety

properties for sub-architectures programs. Moreover

verifications are valid for all architecture prototype

candidates comprising them. This is achieved using the

signals-driven incomplete-interactions transformations

on the generated models.

3) Verification process is improved by using pre-defined

properties for each class of sub-architectures, i.e., those

having common behavior specifications;

4) Verification speed is improved by reducing sequences of

transitions in the models of sub-architectures processes

whenever it is possible. Such reductions cannot be
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applied in classical verification approaches that are not

aware of stable/unstable states.

III. RELATED WORK

Formal verification techniques and tools are used in vari-

ous domains in the literature [13][14][15][16]. Many related

works for SystemC-level verification exist for embedded

systems [17][18]. In this paper, the model we use for the con-

version of SystemC architectures is the one presented in [19].

The reasons why we made this choice are multiple. First,

this model separates the behavior layer from the interactions

layer. With this separation it will be easier to implement our

concepts of generic verifications in architecture prototyping

by only making some transformations on the interactions

layer of sub-architectures.

Second, unlike classical conversion methods in the liter-

ature which model the signals and the scheduler as normal

processes, this separation makes it possible for us to propose

a different method which does not use such processes. It

therefore allows us to easily reduce some sequences of

transitions into meta-transitions, something which become

complex to do in classical methods due to the processes

synchronizations with the automata of the scheduler.

Third, each signal is modeled with two variables and

transition guards associated to the processes using them,

and the variables are updated at the end of delta cycles if

needed. Similarly, the scheduler effects on processes exe-

cutions are included in the specification of the interaction

and priority layers of sub-architectures. Our method does

not need dedicated processes neither for the signals nor the

scheduler and, hence, it decreases by construction at the

beginning of the verification phase the product model size

of sub-architectures.

A lot of works are also done in the field of abstract-level

way of verification [7][20][21]; however these approaches

are not suitable for our framework, because some strong

abstracted models may be too different from low-level cy-

cle accurate models and may not allow the verification of

standard specifications properties. In addition to this loss

of accuracy, they make the use of generic properties more

difficult if not impossible.

Finally, the presented framework, is at our best knowledge,

the first reported one on the use of generic verification of

safety properties at cycle-accurate code-level in the context

of architectures prototyping.

IV. SUB-ARCHITECTURE BIP MODELLING

A. SystemC library

SystemC is a widely used C ++ library for the modeling of

software/hardware embedded systems. It includes low-level

descriptions of hardware such as RTL; and high level of

SystemC-TLM descriptions which are functional and timed

abstractions of hardware which require dedicated extension

to the basic SystemC library. SystemC-TLM is a new

level of description which is not present in other hardware

description languages like Verilog that only support bit and

signal types but no functional transaction data types.

The main constructs of the SystemC language are:

• Modules are the fundamental building block in a Sys-

temC program. Modules support multiple processes

inside them. Modules can also be used for describing

hierarchy: a module can contain sub-modules, which

allows to break complex systems into smaller more

manageable pieces. Modules and processes can have a

functional interface, and implementation details of IP

blocks.

• Processes are used to describe functionality. SystemC

provides three different processes to be used by hard-

ware and software designers: methods (asynchronous

blocks), threads (asynchronous processes) and clocked

threads (synchronous processes).

• Ports of a module are the interface passing information

to and from the module, and triggering actions within

the module. Ports can be single-direction or bidirec-

tional.

• Signals create connections between modules allowing

them to communicate. SystemC supports resolved and

unresolved signals. Resolved signals can have more than

one driver while unresolved signals can only have a

single driver.

Before presenting the general principle of the conversion

of sub-architectures programs to the BIP formal models, we

give below a summary of the various language constructs

in the form of an abstract syntax. The conversion is im-

plemented for a large subset of SystemC as shown in the

following abstract syntax :

Program := ( Module ) * , ( Decl ) * , ( I n i t ) * , ( Bind )*
Decl := S i g n a l | Clock | Event | Var
S i g n a l := S i g n a l t y p e , DataType , S i g n a l I d
Clock := CloclType , C lock Id
Event := EventType , E v e n t I d
Var := DataType , Var Id
I n i t := S i g n a l I d , S i g n a l V a l |

ClockId , ClockVal
Bind := ModuleId . p o r t I d , ModuleId . p o r t I d |

ModuleId . p o r t I d , ( S i g n a l I d | ClockId ) |
P o r t I d , ModuleId . p o r t |
P o r t I d , ( S i g n a l I d | ClockId )

Module := ModuleId , ( P o r t ) * , ( Decl ) * ,
( Proc , CSta t , Bind ) * ,
( ProcFunc ) * ,
( ModuleFunc )*

P o r t := Por tType , Da ta type , P o r t I d
Por tType := ScIn | ScOut | S c I n o u t
Proc := MethodProc | ThreadProc | CThreadProc
ProcFunc := ProcId , ( Var Id ) * , Stmt
ModuleFunc := FuncId , Stmt
Stmt := w a i t ( E v e n t I d ) | w a i t ( Even t Id , i n t , Un i t ) |

w a i t ( i n t , Un i t ) | S i g n a l I d . w a i t ( ) |
w a i t ( ) | E v e n t I d . n o t i f y ( ) |
E v e n t I d . n o t i f y ( i n t , Un i t ) |
VarId = P o r t I d . r e a d ( ) |
P o r t I d . w r i t e ( DataType d ) | P o r t I d . w a i t ( ) |
VarId = s i g n a l I d . r e a d ( ) |
s i g n a l I d . w r i t e ( DataType d ) | Cstmt

MethodProc := ProcId , ( S e n s i t i v i t y ) * ,
( I n i t i a l i z e | d o n t I n i t i a l i z e )

ThreadProc := ProcId , ( S e n s i t i v i t y ) * ,
( I n i t i a l i z e | d o n t I n i t i a l i z e )

CThreadProc := ( ProcId , ( P o r t I d . pos ( ) | P o r t I d . neg ( ) ) ) ,
( R e s e t S i g n a l | d o n t R e s e t S i g n a l )

R e s e t S i g n a l := ( S i g n a l I d | P o r t I d ) , ( t r u e | f a l s e )
S e n s i t i v i t y := E v e n t I d | S i g n a l I d | ClockId | P o r t I d
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B. Principle of the modelling method

Let us consider a process M, two input signals i1 and i2,

and one output signal o1. M sensitivity list contains the two

signals i1 and i2. M pseudo-code is the following:

Signal i1

Process M

Signal o1

Signal i2

while (true) {

// state s_wait

wait() ;

// state s_write

o1.write(x) ;

}

Fig. 2: Process pseudo-code.

Let us see its conversion to state-transition automaton

shown in the following figure.

ao1

s_wait s_write

ai1

s

ai2

Fig. 3: State transition automaton for Process M.

Hereafter a brief explanation is given for this example:

• There are two states, one for the first SystemC construct,

i.e. state s wait, and one for the second one, i.e. state

s write. The end state for the first construct is the start

state of the subsequent construct.

• Transition labeled by ai1, respectively ai2, will be

taken when event ei1, respectively ei2, of signal i1,

respectively signal i2, notifies that new data is written

on the signal. Notifications happen at the end of delta

cycles where corresponding writes are made. In other

words, in the product model, first transition is taken

along with interaction ei1 • ai1 and second transition is

taken along with ei2 • ai2. Both of them correspond to

the end of wait() statement.

• Transition labeled by action ao1 is an immediate transi-

tion. The corresponding interaction is composed only of

ao1 because signal write is not blocking. However the

written value is accessible after the end of delta cycle

only. In our conversion method, two variables ao1 next

and ao1 now are associated to the signal, then during

the transition, the value is stored on ao1 next, then it

is assigned to ao1 now at the end of delta cycle. The

read statement gets the value of ao1 now which is now

equal to the old value of ao1 next defined in previous

cycle.

• Self-loop transition labeled by S is taken when all avail-

able processes are waiting and corresponds to the end

of current delta-cycle. Thus, the interaction composed

of the set of processes S actions, must have a lower

priority than interactions ei1 • ai1 and ei2 • ai2, so

that it will occur only when all available processes are

waiting.

C. BIP Modeling for the statements

We model the behavior of processes as described in

previous Section. The modeling approach is centered around

the use of extended automata whose interactions may be

restricted if needed : either by simply removing unused ones,

or by keeping all interactions and using priorities to choose

some of them among the set of possible ones which depends

on the processes states (figure 4). For each statement in the

abstract syntax, we show how to obtain the corresponding

model in the form of extended automata.

An extended automaton is a tuple (L,X,Q,−→) where

L is the set of labels, X is the set of variables, Q is

the set of control states and −→ is a transition relation

−→∈ Q × (L,G, F ) ×Q such that G is the set of boolean

function on X and F is the set of functions on X . An

element q
l,g,f
−−−→ q′ of −→ is defined as follows where v is

the valuation function:

q
l,g,f
−−−→ q′ ∧ g(v(X)) = true ⇒

{

(q, v(X))
l

−→ (q′, v(X))
v(X) = f(v(X))

x á xy for x,y=interactions 

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

Fig. 4: BIP model example

While parsing a sub-architecture program, the following

rules are applied to incrementally construct processes mod-

els. For instance, when a wait node is recognized its model

is built and added on the fly to the current model. Like

processes, non-recursive functions are also modelled using

one automaton per function, then interactions are used to

model function calls and returns. The occurrence of an inter-

action denoted i1•. . .•ik means the simultaneous occurrence

of processes actions whose labels are i1 . . . in. Processes

interactions satisfy the following dominance property : ∀I =
i1 • . . . • ik ∀(j1, jk) 6= (1, k) such that 1 <= j1 <= k and

1 <= jk <= k we have ij1 • . . . • ijk <dom I and we say

that ij1 • . . .• ijk is dominated by I . We call that interactions

order <dom the dominance priority. Hereinafter, we present

the models of some usual process statements.

1) Sequences of processes statements: For each statement

on a set of variables we associate an automaton with initial

and final control states as depicted in figure 5a. For a

conditional statement if c then stmt1 else stmt2, the corre-

sponding automaton is obtained as shown in figure 5b. Loops

are modeled in a similar way as shown in figure 5c whereas

a function f(p){stmts} model is shown in figure 5d.

As will be explained later in Section V, it is worth noticing

that when appending statements of a process we reduce the

set of transitions between two waiting states into a single

meta-transition labeled with the union of their actions, when-

ever it is possible, i.e., when the reduction is neutral for the
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verification results. Processes run without interleavings with

other processes between the first and the second stable states.

Although these reductions are faithful to SystemC executions

semantics, they are not applied when inter-processes shared

variables are involved in these transitions in order not to miss

some interesting results of the verification.

2) Processes synchronization statements: A process may

wait for an event e. The wait(e) statement model is shown

in the figure 5e, one transition corresponds to the imme-

diate notification and the other to the delta cycle delayed

notification. An immediate event notification e.notify()
statement notifies all the processes Pi which are waiting on

that event. The e.notify() statement model is shown at the

top of figure 5f for a process P1. The connector depicts the

set of interactions P1.e • I such that I is any interaction

dominated by P1.e • P2.e • . . . • Pn.e.

The e.notify(sc zero time) model is shown at the mid-

dle of the figure where the variable e.active is set. It will

be deactivated at the end of current delta-cycle, i.e., at the

occurrence of the available processes S interaction along

which these delta-cycle notifications are handled by setting

the variables e.event. There is one variable e.event for each

process using e, and each of them is reset every time a

waiting state transition is passed by corresponding process.

Notice that, in the models of figure 5f, immediate notifica-

tions override pending delta-cycle and timed notifications.

Similarly, e.notify(t) model is presented at the bottom of

figure 5f. These timed notifications e.notify(t) are used to

emit delayed notifications at time t relative to current time.

Delay value is stored by corresponding time variable e.time
which is decremented at each occurrence of the available

processes tick interaction. When it reaches the value 0,

variables e.event are set for appropriate processes. In the

model, earlier notifications override ones scheduled to occur

later.

3) Time interaction: Simulation time is advanced when

the end of current cycle is reached with no more updates

to do or no available process is waiting for such updates,

and at least one process is waiting on time. In other words,

time variable clk tick is incremented when all available

processes are in a stable state, and either there are no active

events (e.active∧ time = 0) neither active signals to notify

(s.events), or no available process is waiting for them. In this

case, the dominant interaction P1.tick• . . .•Pn.tick is given

higher priority than the dominant interaction P1.S•. . .•Pn.S,

i.e., P1.S • . . . •Pn.S <S P1.tick • . . . •Pn.tick. It is given

lower priority otherwise, i.e., when new updates activate

some processes transitions guards. We call the interactions

order <S the delta-cycle priority.

4) Timeouts: A process may also wait for an event e with

a timeout t. If an immediate notification e or a delayed one

[e.event] is received before time t, the timer is reset along

with the notification. This reset is done by reseting the value

of the timer variable x. The wait(e, t) statement model is

shown in figure 5g.

5) Processes communication statements: A SystemC sig-

nal s is associated with a pair of variables s.next, s.now, and

a set of variables s.event which aure used to notify signal

value changes for the processes during their S interaction.

There is one variable s.event for each process using s, and

each of them is reset every time a waiting state transition is

passed by corresponding process. For a signal s.write(exp)
statement, if the value being written exp is different than the

current value s.now, the variables s.event are set during the

processes interaction. s.next will contain only the last exp
value written before the interaction. Thus, writing repeatedly

overwrites the previous values. The s.write(exp) statement

model is shown in figure 5h. The x = s.read() statement

model is shown in figure 5i.

A process overrides its events sensitivity by calling

next trigger(e). If done, the process will be triggered

by event e. In addition to events, a timeout may also be

used to specify a duration t after which the process will

be triggered. The model of next trigger(e, t) is presented

in figure 5k, where variables nt.active, e.ntactive, and

nt.time are set. nt.active is used as a guard in the sensitive
statement model transitions. When it is set, then sensitive
model follows the trigger sensitivity transitions which end

by reseting nt.active in order to get back to the default

sensitivity transitions for next execution. When it is reset

it only follows the default sensitivity transitions. Model of

next trigger() statement without arguments simply resets

ti.active. Model of sensitive << e, t with only one event

and a time value is given in figure 5m. Notice that for

processes of type ”thread”, the sensitivity statement is used

for the wait() statements model, whereas for processes of

type ”method” the sensitivity and next trigger statements

are used for the initial state transitions model.

Finally, the f(x) method call statement model is shown in

figure 5l for a process P1. connectors denote the interactions

between this model and the method body model, i.e. P1.bf
′•

P1body
.bf ′ and P1.ef •P1body

.ef with an assignment of x to

formal parameter p in first interaction.

D. Sub-architecture BIP Model

In this section we present the processes modelling com-

posed of their behaviors, their interactions and corresponding

updates, and the priorities over these interactions.

A process execution goes through a sequence of delta-

cycles. To express the semantics of the delta-cycles, we

distinguish for each process between stable states, i.e., states

corresponding to waiting statements, and transient states

corresponding to the beginning of all other statements. The

end of each delta-cycle requires a global synchronization

between all the processes (figure 6). This is represented by

the interaction over the processes S actions and involves

update of the new values for either the next delta-cycle or

the next tick-cycle. Any other interaction I which is not

accompanied by an advance of time has higher priority than

the former interaction, i.e, ∀ interaction I such that tick /∈ I
and S /∈ I P1.S • . . . • P2.S <δ I . We call the interactions

order <δ the delta-step priorities.

An occurrence of the S’s interaction means the end of the

current delta-cycle. Thus variables updates are executed with

this occurrence and new values are ready for the next delta-

cycle as follows.

For each pair of variables (e.active, e.time) such that

e.active = t ∧ e.time = 0 :

• For all the available processes using e.event :

e.event = t
• Cancel later notifications by variables reset : e.active =

f and e.time = 0
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X L

statementbegin end

(a) Statement

L2X2L1X1

begin1 end1

stmt1

L1UL2X1UX2UVar[c]

c

not c

begin2 end2

stmt2

begin1

stmt1

begin2

begin

stm
t2

end1=end2

(b) if

X L

L

cbegin end

not c

XUVar[c]

stmt

stmt

(c) while

L1X1

L= L1U{bf,ef}X=X1

bf

ef

begin=end

stmts

stmts

(d) f(p)

L={e,S,tick}

e

X={e.event}

e.event=f

[e.event]
e.event=ftick

S

(e) wait(e)

X={e.active} 

e.active=t

e e

e

e.time=te.active=t

e.time=t

e.active=f e.time=0

L={e} X={e.active,e.time} 

X={e.active,e.time} 

[e.active ∧ t< e.time]

[e.active]

(f) e.notify(), e.notify(0), e.notify(t)
x++

[x=t]

X={x,e.event} L={S,tick,e}

tick

S

e

[e.event]
e.event=f x=0

e.event=f x=0

e.event=f x=0

x=0

(g) wait(e,t)

X={s.next}

s.active=true

s.next=exp

(h) s.write(exp)

x=s.now

X={x,s.now}

(i) x=s.read()

X={nt.active}

nt.active=false

(j) next trigger()

nt.time=t
nt.active=true

X={nt.active,nt.time}

(k) next trigger(e,t)

ef’

ef’

ef

bf’

bf
p=x

X={x} L={bf’,ef’}

bf’

(l) f(x)

S

tick

X={nt.active,e.event,nt.time,. . .}

e.event=f e’.event=f s.event=f

e.event=f e’.event=f s.event=f

[nt.active] e

[nt.active ∧ nt.time>0]
nt.time–

[nt.active ∧ nt.time=0]

nt.active=f e.event=f
e’.event=f s.event=f

e.event=f e’.event=f s.event=f

e.event=f e’.event=f s.event=f

[nt.active ∧ e’.event]

[nt.active ∧ s.event]

[nt.active] e’

[nt.active ∧ e.event]

nt.active=f e.event=f
e’.event=f s.event=f

L={tick,S,e,e’}

(m) sensitivity << e << s with next trigger(e’,t)

Fig. 5: Part of statements models
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P1.S • P2.S • P3.S > P1.tick • P2.tick • P3.tick except when no updates or no active guards after updates

321

Process P3Process P1

1′ 2′ 3′

S S SS S S

Stable states

Process P2

∀ interaction I : P1.S • P2.S • P3.S < I

Next occurrence

123 1
′
23 1

′
2
′
3 1

′
2
′
3
′ 1

′′
2
′′
3
′′

Update

Evaluates and

P1.S • P2.S • P3.S

Example of delta-cycle occurrence

occurrences of delta-steps

Fig. 6: Sub-architecture delta-cycle example

For each pair of variables (s.now, s.next) such that s.now 6=
s.next :

• s.now = s.next
• For all the available processes using s.event :

s.event = t

An occurrence of the tick interaction means the end of the

current time cycle. Thus variables updates are executed with

this occurrence and new values are ready for the next time-

cycle as follows.

For each pair of variables (e.active, e.time) such that

e.active = t ∧ e.time > 0 : topsep=0pt

• e.time = e.time− 1

For each pair of variables (e.active, e.time) such that

e.active = t ∧ e.time = 0 : topsep=0pt

• For all the available processes using e.event :

e.event = t
• Reset notifications : e.active = f

Let the priority order < defined as the union of orders <δ,

<S , and <dom. The model of the restricted sub-architecture

product is (Q, I,→<) where Q is the set of states of

processes models product, I is the set of interactions, and

→< is the restricted transition relation defined as follows :

(q, i, q′) ∈→< iff (q, i, q′) ∈→ and ∀(q, j, q′′) ∈→
we do not have i < j

The priority order < ensures the correct occurrences of

delta-steps, delta-cycles and prohibits dominated interactions

in the sub-architecture model.

In order to validate the modelling approach by experi-

ments, we considered a benchmark of forty SystemC pro-

grams comprising the various SystemC primitives, and dif-

ferent scenarios of processess synchronizations. For each

program we then generated the corresponding model and

we successfully examined the conformity between models

and programs execution traces. For that, we instrumented the

programs in order to produce test traces. Then we checked

whether the behavior of the traces are valid behaviors of the

models.

V. SUB-ARCHITECTURE MODEL TRANSFORMATIONS

At the property-level the verification is generic, which

means that the pre-defined safety properties for each class

of sub-architectures are generic for all implementations in

this class. Each set of generic properties depends only on

the standard specifications of the associated sub-architectures

class.

At the prototyping level the verification may also

be generic at some conditions. Combining several sub-

architectures may result in large architectures which may be

time consuming to model check directly. To avoid this issue

using the presented BIP modeling approach, we ensured that

checked safety properties for a given sub-architecture are

true in any architecture prototype candidate containing it. To

do that we identified all the potential interactions between

the current sub-architecture and other ones, then we added

incomplete interactions to the model before starting the

verification. We assumed that sub-architectures may commu-

nicate using only signals, and thus we modelled incomplete

interactions for only sub-architecture elements calling signal

statements.

Notice that if we don’t make this transformation we can’t

guarantee that checked safety properties will still hold for

the next architecture prototype. Let us consider for instance

a sub-architecture composed of two buffers of size 1 and

2 respectively. If we make the hypothesis that these buffers

always perform an output when not empty, then the property

”maximal number of tokens stored in the sub-architecture

is 2” is true. The property, however, is not true anymore if

we consider an architecture prototype composed of a second

sub-architecture performing outputs to second buffer.

Let us now consider a sub-architecture model for a channel

composed of two one-data buffers A and B. For simplicity,

and since we are interested here in the set of interactions,

the shown product model in figure 7 is abstract, i.e., it does

not contain the signals protocol details nor the cycle accurate

behavioral details.

o2

i1

i1

o2 i2

o1

i2

o1

o1•i2

Fig. 7: Abstract model of the channel sub-architecture.

It is worth noticing that in the BIP model generation phase
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interactions i1, o1•i2 and o2 are produced which correspond

to inputs of A, outputs from A to B, and outputs of B. The

incomplete interactions which appear in the product model

of figure 7, i2 and o1, are added in the model transformation

phase.

The second model transformation is the transitions reduc-

tion. The objective is to reduce delta-step transitions into

one meta-transition at the extent possible, hence losing all

track of interleaving between processes on these transitions.

Processes communicate through signals and are supposed to

not use shared variables, so every sequence of transitions be-

tween two waiting states, with less than one output transition,

is reduced into one meta-transition.

q1
a1−→ q2 . . .

an−−→ qn

q1
a1|a2|...|an
−−−−−−−→ qn

Because the last output into a given signal determines

its stored value, we excluded the sequences with several

outputs in order to take into account the impact of processes

interleaving on outputs during the verification phase.

Finally, in this phase the sub-architecture model is also

reduced by removing incomplete interactions for a list of

signals given by the designer, and which specifies those

signals which are supposed to be useless for other sub-

architectures.

VI. EXPERIMENTS

We now present the different experiments we conducted on

a counter, a fifo, an AMBA AHB, SRAM and a RISC CPU

sub-architectures. Incomplete interactions which might be

useful for new architecture prototype candidates were added

in the sub-architectures models. LTL is a temporal logic

where a formula is composed of atomic propositions, logical

operators, and temporal operators. Currently we do not have

a GUI interface for visualization purposes. Nevertheless, LTL

properties associated to sub-architectures are inserted as LTL

formula in the Promela file and may be easily identified at

the top of the file following the syntax:

Ltl <Idf1> {<Subarch1_Formula1>}

Ltl <Idf2> {<Subarch1_Formula2>}

...

Ltl <IdfN> {<Subarch1_FormulaN>}

Other LTL properties as needed are inserted corresponding

to the specification to check for that sub-architecture. The

verification tool will then check them all one by one. To do

that, each formula is translated to generate a never claim

which is an automaton representing the negation of the

formula so that the tool will seek to find a counter-example

for it. At last, when a counter-example is found, it may be

use by designer to debug and/or modify the sub-architecture

behavior.

For the counter example, transitions corresponding to

internal signals are cut since the functionality of those signals

are not used by other sub-architectures.

0 |

4

|h-|out|

2

|in|h+|

6

|h-|out|in|h+|

1

|h.in|

5

|h-|out|h.in|

3

|in|h+|h.in|

7

|h-|out|in|h+|h.in|

|h-|

|

|h-|in|h+|

|in|h+|

|h-|h.in|

|h.in|

|h-|in|h+|h.in|

|in|h+|h.in|

|in|

|h-|out|in|

|

|h-|out|

|in|h.in|

|h-|out|in|h.in|

|h.in|

|h-|out|h.in|

|h-|in|

|in|

|h-|

|

|h-|in|h.in|

|in|h.in|

|h-|h.in|

|h.in|

|h.out| |

|h-|out|h.out| |h-|out|

|in|h+|h.out||in|h+|

|h-|out|in|h+|h.out| |h-|out|in|h+|

|h.out|h.in| |h.in|

|h-|out|h.out|h.in| |h-|out|h.in|

|in|h+|h.out|h.in||in|h+|h.in|

|h-|out|in|h+|h.out|h.in| |h-|out|in|h+|h.in|

|h-|h.out| |h-|

|h.out| |
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|in|h+|h.out| |in|h+|

|h-|h.out|h.in| |h-|h.in|

|h.out|h.in| |h.in|
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|in|h.out| |in|
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Fig. 8: Counter model before reduction

Figures 8 and 9 show that the cuttings operated on internal

signals of a modulo four counter results in a reduced product

model whose size is four times smaller than original one.

0 |

3

|in|h+|h.in||in|

2

|

6

|h-|out|h.out|

4

|h-|out|in|h.out|

7

|h-|in|h.out|

|h-|h.out| |

|in|

|in|

| |

|in|

|in|h+|h.in|

|

5

|h-|h.out|

|h-|in|h+|h.out|h.in|

|in|h+|h.in|

|

1

|

|in|h+|h.in|

|h-|out|in|h+|h.out|h.in|

|h-|out|h.out|

Fig. 9: Counter product model after reduction

The second example is an instruction set program for the

Synopsys RISC CPU architecture The instruction set is a

RISC one augmented with MMX-like instruction for DSP

programs. It includes about forty arithmetic, logical, branch

and SIMD MMX-like instructions. For this architecture, the

BIP model construction took 20 seconds on a Xeon 3GHz

2GB bi-proc SMP i686 GNU/Linux server.

For this example we only used local checks implemented

through assertions within the program. These C++ assertions

are conditions on the values of sub-architectures variables.

Each assertion is modelled by an error transition in the

model construction if it is violated, and it is ignored if the

corresponding condition holds. Assertions violations were

successfully checked and a summary of the results is given

in Table I.

The third example is a synchronous FIFO sub-architecture.

Data can be written continuously until the FIFO is full. Data

that was written first will be the first to be read. Subsequent

readings will return data that has been written successively

in time. The standard block scheme of a synchronous FIFO

is depicted in Figure 10.
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TABLE I: Depth-first verification results

Location Explored states Time (s) Speed (states/s) Error trace length

ICache 61 1 - 6

Bios 206356 1092 533 46678

Fetch 1 207841 1176 536 47017

Fetch 2 255201 1548 350 229614

TABLE II: Generic properties for synchronous FIFO

Property formula Description

AG (full =⇒ ¬ push) If the fifo is full, FIFO should not have a write request.

AG (empty =⇒ ¬ pop) If the fifo is empty, FIFO should not have a read request.

AG (wr idx < depth ∧ wr idx ≥ 0) There is a write overflow if the write pointer exceeds the max and the min of

the fifo.

AG (rd idx < depth ∧ rd idx ≥ 0) There is an overflow if the read pointer exceeds the max and the min of the fifo.

AG (rd idx 6= wr idx =⇒ ¬ full ∧¬ empty The fifo cannot be full or empty if the pointers are different.

AG ¬ (full ∧ empty) The fifo cannot be full and empty at the same time.

AG (pop =⇒ ¬ (tick h ∧ (wr idx=rd idx)) U
full)

If a read request causes the two pointers to become equal in the next clock edge,

then the fifo will be empty.

AG (push =⇒ ¬ (tick h ∧ (wr idx=rd idx)) U
empty)

If a write request causes the two pointers to become equal in the next clock

edge, then the fifo will be empty.

AG (¬ full ∧ push ∧ wr idx < depth =⇒
wrincr)

If the fifo is not full and there is a write request and the write pointer has not

yet reached the maximum fifo size then the write pointer is incremented.

AG (¬ empty ∧ push ∧ wr idx = depth =⇒
X(wr idx=0))

If the fifo is not full, and there is a write request, and the write pointer has

already reached the maximum size of the fifo then write pointer is reset to value

0.

AG (¬ empty ∧ pop ∧ rd idx < depth =⇒
rdincr)

If the fifo is not empty and there is a read re-quest and the read pointer has not

yet reached the maximum fifo size then the read pointer is incremented.

AG (¬ empty ∧ pop ∧ rd idx = depth =⇒
X(rd idx=0))

If the fifo is not empty, and there is a read re-quest, and the read pointer has

already reached the maximum size of the fifo then read pointer is reset to value

0.

AG (full ∧ push) =⇒ (¬ wrincr U pop) If the fifo is full and we have a write request; as long as we do not have a read

request, then the write pointer does not increment.

AG (empty ∧ pop) =⇒ (¬ rdincr U push) If the fifo is empty and we have a read request; as long as we do not have a

write request, then the read pointer does not increment.

AG (full ∧ pop) =⇒ (¬ wrincr U push) If the fifo is full and we have a read request; as long as we do not have a write

request, then the write pointer does not increment.

AG (empty ∧ push) =⇒ (¬ wrincr U pop) If the fifo is empty and we have a write request; as long as we do not have a

read request, then the read pointer does not increment.

fullwr_idx rd_idx

W
R

IT
IN

G

R
E

A
D

IN
GDIN DOUT

clk

rst

pop

push

empty

Fig. 10: Generic FIFO sub-architecture

FIFO sub-architectures include the following set of control

signals and registers :

• push is a request signal for inserting data into the FIFO.

• pop is a request signal for extracting data from the FIFO.

• full is a flag indicating that FIFO is at its maximum

capacity.

• empty is a flag indicating that FIFO has no valid data.

• wr idx is a counter indicating where data will be stored

in the FIFO. It is incremented through wrincr.

• rd idx is a counter indicating where data will be read

from the FIFO. It is incremented throug rdincr.

• The clk clock is the synchronous clock signal for the

FIFO for both the read and write transactions, active on

the positive edge of the clock.

FIFO specification states that, initially, rd idx and wr idx

are set to value 0. The empty signal is set to value 1 and full

remains at low state during this time, i.e. at value 0.

Read operations from the FIFO are not allowed when the

FIFO is empty. On a write operation, wr idx is incremented

and empty is set to 0. Pointers are managed in a cyclic

manner. When wr idx reachs depth-1, a subsequent write

operation will cause wr idx to get back to value 0.

The same condition defines the transitions to full and

empty states of the FIFO which is the equality between

wr idx and rd idx. It is necessary to distinguish between

the two transitions using the type of the operation. If a write

operation is the origin of the equality then the transition is

to the full state. Otherwise if a read operation is the origin

of the equality then the transition is to the empty state.

According to the specifications, we are able to define the

following set of generic properties that must be verified by

any synchronous FIFO sub-architecture as shown in Table II.

The fourth example is the AMBA AHB bus sub-

architecture. Several masters and slaves may connect to the

bus, but only one master is allowed access at a time. The

slave servicing the transfer depends on the address being

read or written. AHB supports pipelining of data and address

phases, slave waiting cycles, and the split and retry protocol.

Figure 11 depicts the standard AHB scheme.

AMBA AHB specifications are hardware and operating

system independent. Like the previous example, Table III

summarizes the sub-architecture pre-defined generic proper-

ties.

Finally, we provide in Table IV the verification results

for the SRAM memory component. Property P1 : AG
(sramenqueued =⇒¬ sramdone U sramdequeued) states that

a request cannot be done before it is dequeued. Property

P2 : AG (sramenqueuedaddr = sramcpuaddr ∧ sramdata =
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TABLE III: Generic properties for AMBA AHB

AG (HBUSREQ ∧ ¬ MASK =⇒ F HGRANT) If master m requests the bus and m is not masked by the arbiter then m is

eventually granted bus access.

AG (HBUSREQ =⇒ F HGRANT) If master m requests the bus by asserting the signal HBUSREQ then it is

eventually granted bus access by asserting the signal HGRANT.

AG (MASK =⇒ F HSPLIT) The master that has been split by a slave always eventually recovers from the

split.

AG ¬ MASK ∨ ¬ HSPLIT The master status cannot be marked as masked and recovered at the same time.

AG ¬ HGRANT1 ∨ ¬ HGRANT2 Only one master at a time is granted access to the bus.

AG ¬ MASK ∧ HBUSREQ ∧ IDLE =⇒
GRANT

The highest priority master requesting the bus is to be granted the bus, provided

the bus is idle and the master.

AG (GRANT ∧ READY =⇒ HMASTER) The granted master is to be given bus ownership when the last active slave has

signaled READY, which indicates transfer completion.

AG (SPLIT ∧ ¬ READY ∧ HMASTER =⇒
MASK)

The split master should be masked.

AG (READY ∧ HSPLIT =⇒ ¬ MASK) The split master should be unmasked if the slave, that signaled the split, signals

the end of that split using HSPLIT.

AG (BUSREQm =⇒ X(GRANTm) ∨
F (HSPLITm)

The highest priority master is either granted immediately (if it was not masked),

or is masked (which means it is waiting on a split transfer) and will be granted

when the split transfer it is waiting on is followed by an HSPLIT signal.

MASTER

HGRANT HBUSREQ   

HTRANS  

HADDR 

HWRITE 

HBURST  

HWDATA  HRDATA

HCLK

HRESET

HRESP

HREADY

AMBA AHB

Fig. 11: AMBA AHB interface

sramcpudata) states that data read and the memory address

referenced must be similar, and all the references are made

in order. Property P3 : AG (sramenqueuedaddr = sramaddr)

states that memory address enqueued is equal to the com-

mitted request address.

TABLE IV: Verification results for the SRAM component

Location automata states automata transitions Time

P1 5739 7 ∗ 10
6 24

P2 10267 3 ∗ 10
5 6

P3 5710 7 ∗ 10
6 60

These experiments show the feasibility of our ap-

proach, i.e., the ability to check safety properties for sub-

architectures, while achieving good performance results on

common architectures in term of automata size and verifica-

tion time.

VII. CONCLUSION

In this paper we proposed a novel cycle accurate code-

level verification approach to check safety properties of

sub-architectures. In this approach we not only separately

check correctness properties for identified sub-architecture

programs, but also guarantee that these properties still hold

in architecture prototype candidates comprising them. To do

that we extended sub-architecture models using interaction-

based transformations, which allow for generic verification

of safety properties.

To our knowledge this is the first work which presents

a prototyping framework that uses generic verifications of

sub-architectures. The presented framework enables to check

pre-defined generic safety properties for common classes of

sub-architectures once at design time, without the need for

additional time to redo the verification phase every time

sub-architectures are involved in new architectures prototype

candidates.

Furthermore, two reductions are operated on sub-

architecture models to improve verification speed. The first

one is the cutting of transitions corresponding to incomplete

interactions if they cannot be used by new architecture

prototypes according to designer point of view. The second

one is the reduction of some sequences of transitions into

single meta-transitions if such a reduction is neutral with

regards the verification step. Finally, we have successfully

applied the verification approach on four sub-architecture

examples.
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