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Abstract—Finite field arithmetic is commonly used in cryp-
tographic applications such as establishing secure connections
between systems. Recent standards have expanded the necessary
key lengths, potentially increasing the time connections might
take. This paper offers performance tests of highly efficient
optimization structure for modular exponentiation based on
parallelizing Montgomery exponentiation in GF

(
2k
)

. The paper
also describes the algorithms necessary for an implementation
of the optimization structure in question and performance
tests for a Diffie–Hellman Key Exchange system utilizing the
structure. The resulting efficiency improvements of nearly
45% over standard modular exponentiation can potentially be
applied to any algorithm that relies on such operations.

Index Terms—Cryptography; Diffie-Hellman Key Exchange;
Montgomery exponentiation

I. INTRODUCTION

MODULAR multiplication and exponentiation are fun-
damental arithmetic operations underlying most of the

currently deployed public-key cryptographic protocols [1].
The cryptographic security of such protocols is derived from
one-way functions - functions that is easy to compute (in
polynomial time) on a random input, but infeasible to invert
(only possible in non-polynomial time) given an image of a
random input. For instance, the Diffie–Hellman key exchange
is based on discrete exponentiation and reduction modulo p.
A modular exponent can be calculated in polynomial time,
but inverting it requires a solution to the discrete logarithm
problem.

The original implementation of the algorithm uses multi-
plicative groups of integers modulo p, where p is a prime.
However, contemporary implementations are defined over a
Galois field GF

(
2k
)

with an irreducible polynomial n(x).
Polynomial representations of the elements of this field are
particularly suitable for both software and hardware imple-
mentation, and arithmetic operations in GF

(
2k
)

are widely
applied in programming, computer algebra and cryptography.
Furthermore, finite field Diffie-Hellman is one of the two
types still in use as of transport layer security protocol
TLS 1.3 [2] (the other being Elliptic curve Diffie–Hellman
– ECDH), and operations in GF(2k) are implemented in
OpenSSL [3].

Multiplication in GF
(
2k
)

is multiplication modulo an
irreducible polynomial used to construct that finite field. The
irreducible polynomial can have several relevant properties.
For example, the polynomials that define Oakley groups
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1 and 2 [4] were chosen to be Sophie Germain primes
for maximum resistance against the square-root attack on
the discrete logarithm problem. The irreducible polynomials
to be used for the Diffie–Hellman Key Exchange (DHKE)
require rigorous testing to ensure they are sufficiently strong
and verify the discrete logarithm problem is indeed difficult.
It is considered a best practice to use pre-defined irreducible
polynomials provided by the Internet Engineering Task Force
(IETF) [4], [5], [6]

The Diffie–Hellman algorithm requires an implementation
of the exponentiation gE , where g is a fixed primitive element
of the field and E is an integer. This exponentiation operation
can be implemented using a series of squaring and multipli-
cation operations in GF

(
2k
)

using the binary method [7].
Lookup tables can be used to speed up multiplications at the
expense of memory, but they quickly become impractical
with larger orders k. With large values of k being desirable
for cryptographic operations, faster algorithms are essential.

One such algorithm is Montgomery exponentiation [8],
which in its standard implementation already shows a 20%
to 40% improvement with key lengths of over 1024 bits. A
parallelized implementation of the Montgomery exponentia-
tion algorithm [9], however, shows an even more significant
improvement of up to 50%. This optimization enables cryp-
tographic systems to use longer keys while utilizing the same
computational time, which improves system security.

This paper presents an implementation of the parallelized
Montgomery exponentiation algorithm along with compara-
tive performance testing. The Diffie–Hellman algorithm will
be focused on as a possible optimization target, but the
performance gains are applicable to any algorithm that relies
on modular exponentiation.

II. REGULATIONS AND ISSUES

Cryptography is subject to a wide array of regulations.
The United States severely limited the export of crypto-
graphic technology and devices until 2000, and export-grade
cryptography must have been no stronger than 40 bits. Due
to asymmetric cryptography requiring longer keys for the
equivalent level of security this meant export-grade Diffie–
Hellman could utilize keys no longer than 512 bits. These
limits have long been lifted, but parameters for export-grade
cryptography were still supported on nearly 10% of the
top 1 million domains as of 2015 [10]. 512-bit keys are
dangerously short, close to the 400-bit theoretical limit for
the discrete logarithm problem established in 1984 [11]. The
widespread support for these parameters led to attacks such
as Logjam [10], FREAK [12] and DROWN [13]. Logjam
was an attack on Diffie-Hellman exploiting both down-
grade attacks and novel methods of number sieve field pre-
computation. The pre-computation stage for 512-bit primes
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took less than a week, and the individual discrete logarithm
time was 70 seconds. Export-grade cryptography has largely
been deprecated, but active regulations still allow relatively
weak keys.

After the recent deprecation of TLS 1.0 and 1.1 implemen-
tations of the Diffie–Hellman key exchange protocol can use
parameters provided by TLS 1.2 onwards. TLS 1.2, however,
still allows the use of 768-bit keys derived with the first
OAKLEY group. The latest IETF recommendations suggest
never using these. Keys derived with this group can, quote,
“be broken within hours using cheap off-the-shelf hardware”
and “provide no security whatsoever” [14]. The smallest keys
recommended for finite field Diffie Hellman are at least
2048-bit [5]. TLS 1.3 has also made it a requirement to
use ephemeral keys, i.e., to generate new keys for each key
exchange.

With the latest developments and requirements in place the
speed of the key exchange becomes rather important. The
length of the minimal keys considered secure may grow two
to four times, and caching secret keys for several operations
is now forbidden. The optimization structure proposed in
this paper accelerates modular exponentiation, reducing the
overall duration of the key exchange.

Another option would be to use elliptic curve cryptogra-
phy, which provides the same level of security with shorter
keys. Elliptic Curve Diffie–Hellman is the second option
provided by TLS 1.3. Research on Montgomery-like repre-
sentations of elliptic curves has shown inspiring results [15],
and similar optimizations might be applicable there.

III. POLYNOMIAL REPRESENTATION

The polynomial representation of elements of the field
GF
(
2k
)

is especially suitable for software implementa-
tion [8]. The algorithms for Montgomery exponentiation in
this paper are based on this polynomial representation. An
element a of GF

(
2k
)

is represented as a polynomial of length
k, i.e., of a degree less than or equal to k − 1, written as

a (x) =
k−1∑
i=0

aix
i = ak−1x

k−1 + ak−2x
k−2 + . . .+ a1x+ a0

where the coefficients ai ∈ GF 2. These coefficients are also
referred to as the bits of a, and the element a is represented
as a = (ak−1, ak−2, . . . a1, a0). Specific bits can also be
addressed as ai.

Further explanations of exponentiation algorithms will
feature numerical examples with the 8-bit irreducible poly-
nomial 10001001(137). Both practical implementations and
further tests use polynomials thousands of bits long, but that
would be infeasible for demonstrational purposes.

The addition of two elements a and b in GF
(
2k
)

is per-
formed by adding the polynomials a(x) and b(x), where the
coefficients are added in the field GF(2). This is equivalent
to the bitwise XOR operation on the vectors a and b.

+
63 111111
42 101010
21 10101

Division by x represents a bitwise shift one bit to the right
with the trailing bit cut off. Unlike ordinary division, this is
a highly efficient operation. Simularly, multiplication by x
represents a bitwise left shift.

/
63 111111
x 1
31 11111

Multiplication is performed with respect to an irreducible
polynomial of degree k. Let n(x) be an irreducible polyno-
mial of degree k over the field GF

(
2k
)
. The product c = a ·b

in GF
(
2k
)

is then calculated as

c(x) = a(x) · b(x) (mod n(x))

where c(x) is a polynomial of length k, representing the ele-
ment c ∈ GF (2k). The bit-level algorithm for multiplication
is based on a modification of the peasant algorithm:

I n p u t : a(x) , b(x), n(x)
Outpu t : c(x) = a(x) · b(x) (mod n(x))
1 : c(x) = 0
2 : nmult(x) = n(x)− nk−1x

k−1

3 : f o r i =0 t o k−1
4 : c(x) = c(x) + b0a(x)
5 : b(x) = b(x)/x
6 : car = ak−1

7 : a(x) = a(x) · x
8 : i f car == 1 : a(x) = a(x)− nmult(x)

nmult(x) is the irreducible polynomial with the high term
eliminated. car represents the carry - the high term of a(x)
that gets eliminated in step 7. Conceptually, a(x) · x −
nmult(x) ≡ a(x) · x (mod n(x)) if the high term of a(x)
was 1.

× 63 111111
3 11

65 (mod 137) 1000001 (mod 10001001)

The standard left-to-right binary exponentiation algorithm
is as follows [16]:

I n p u t : m(x), e, n(x)
Outpu t : c(x) = m(x)e (mod n(x))
1 : c(x) = 1
2 : f o r i =k−1 downto 0
3 : c(x) = c(x) · c(x)
4 : i f ei == 1 : c(x) = m(x) · c(x)

ˆ 63 111111
2 10

15 (mod 137) 1111 (mod 10001001)

This algorithm is not the only option for binary exponenti-
ation, and alternatives were implemented for the tests in this
paper. They, however, all displayed similar results, so this
algorithm was chosen as the performance baseline.

IV. MONTGOMERY EXPONENTIATION

Montgomery representation allows efficient implementa-
tions of modular multiplications without explicitly carrying
out the classical modular reduction step.

Let n be a positive integer, and let r and a be integers
such that r > n, gcd (n, r) = 1 and 0 ≤ a < nR.

The Montgomery form of a is calculated as follows:

a = a · r (mod n)

The advantage of the Montgomery form is that most of
the arithmetic mod n is instead computed in mod r by
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using Montgomery multiplications. If r is selected to be a
factor of two, these operations will be computed much faster,
because a bitwise right shift will replace the costly division
and a bit mask — a modulo. Bit-level algorithms make the
implementational benefit even greater by only relying on two
operations – bitwise XOR and single-bit right shift, both
inherently fast operations – for a Montgomery multiplication.
Montgomery multiplication is also applicable to calculations
in GF(2k).

Bit-level algorithm for Montgomery multiplication
(MMM) [16]:

I n p u t : a(x) , b(x), n(x)
Outpu t : c(x) = c(x) · r(x) (mod n(x))
1 : c(x) = 0
2 : f o r i =0 t o k−1
3 : c(x) = c(x) + aib(x)
4 : c(x) = c(x) + c0n(x)
5 : c(x) = c(x)/x

Montgomery multiplications are performed on Mont-
gomery forms of polynomials:

c ≡ a·b·r−1 (mod n) ≡ a·r ·b·r ·r−1 (mod n) ≡ c·r
(mod n)

Therefore, we first have to convert both factors to the
Montgomery form, and re-convert them back after via a
Montgomery multiplication by 1 (which is effectively a
multiplication by r−1, removing r).

63 = 92, 3 = 27

MMM 63 1011100
27 11011

MMM 109 (mod 137) 1101101 (mod 10001001)
1 1

65 (mod 137) 1000001 (mod 10001001)

This adds a slight computational overhead on the con-
version to the Montgomery form and back. However, when
performing Montgomery multiplications in sequence, like
in the exponentiation operation, the speed advantage of the
Montgomery form outweighs it.

Bit-level algorithm for Montgomery exponentiation [8]:

I n p u t : m(x), e, n(x), R2 = r(x) · r(x) (mod n(x))
Outpu t : c(x) = m(x)e (mod n(x))
1 : m(x) = MMM(m(x), R2)
2 : c(x) = MMM(1, R2)
3 : f o r i =0 t o k−1
4 : i f ei == 1 : c(x) = MMM(m(x), c(x))
5 : m(x) = MMM(m(x),m(x))
6 : c(x) = MMM(c(x), 1)

ˆ 63 1011100
2 10

MMM 119 (mod 137) 1110111 (mod 10001001)
1 1

15 (mod 137) 1111 (mod 10001001)

Montgomery multiplications can be improved and acceler-
ated in several ways [1], and specialized hardware exists for
such purposes [13]. Montgomery exponentiation, however,
can be optimized further.

V. PARALLEL MONTGOMERY EXPONENTIATION

As explained in [9], during a Montgomery exponentia-
tion two calculations are performed upon encountering one
bits in the power: a modular multiplication and a modular
squaring. These two computations can be represented as:
MMM(m(x), c(x)) = m(x)c(x)r−1 (mod n(x))
MMM(m(x),m(x)) = m(x)m(x)r−1 (mod n(x))
It can be noted that m(x)r−1 is the common part of both
computations. Since there is no data dependency between
these steps, the common part can be computed simultane-
ously and the computations can proceed concurrently.

Returning to our example, let’s try both operations (squar-
ing and multiplication by three) concurrently. We can note
that 63 · r−1 = 63 (mod 137), therefore: 63 ·63 = 119
(mod 137) (squaring)
63 · 3 = 109 (mod 137) (multiplication) These Mont-
gomery forms are identical to the earlier results.

Bit-level algorithm for parallel Montgomery multiplication
and squaring (MMMS):

I n p u t : m(x), c(x), n(x)
Outpu t : M(x) = MMM(m(x), c(x)) ,

S(x) = MMM(m(x),m(x))
1 : t(x) = m(x)
2 : M(x) = 0, S(x) = 0
3 : f o r i = k−1 t o 0
4 : t(x) = (t(x) + t0n(x))/x
5 : M(x) = M(x) + t(x)ci,

S(x) = S(x) + t(x)mi

And the bit-level algorithm for parallel Montgomery ex-
ponentiation:

I n p u t :
m(x), e, n(x), R2 = r(x) · r(x) (mod n(x))

Outpu t : c(x) = m(x)e (mod n(x))
1 : m(x) = MMM(m(x), R2)
2 : c(x) = MMM(1, R2)
3 : f o r i = 0 t o k−1
4 : i f ei == 1 :

(c(x),m(x)) = MMMS(m(x), c(x))
5 : e l s e : m(x) = MMM(m(x),m(x))
6 : c(x) = MMM(c(x), 1)

The algorithm yields a speed increase on any ’1’ bits,
which should compose about a half of the exponent – the
”secret key” – if it is randomly generated.

The original paper [9] focused on parallelizing the ex-
ponentiation operation via specialized hardware based on
logic gates replicating cellular automata. This paper, how-
ever, proposes a software optimization based on an efficient
modification of the parallel multiplication and squaring algo-
rithm that can be adapted to popular cryptographic libraries.
Testing suggests a significant performance increase that can
be leveraged even on common consumer-grade hardware.

VI. IMPLEMENTATION AND PERFORMANCE

The implementation was written in Python 3.7 with no
external libraries for comparative performance testing of the
three algorithms. Python provides long arithmetic natively,
making the code much easier to understand for educational
purposes. The implementation along with the test results and
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further demonstrations is freely available at the following
URL: github.com/krikun98/montgomery.

Galois field arithmetic was implemented in accordance
with the algorithms shown earlier. Three methods of modular
exponentiation were implemented:

1) Left-to-right binary exponentiation [16]
2) Montgomery exponentiation [16]
3) Parallel Montgomery exponentiation [9]

Three sets of performance tests were conducted. The tests
were ran on an AMD Threadripper 3960X CPU. The
first set of tests utilized small irreducible polynomials –
2 < k < 32 [17]. This test measured the time per 10000
modular exponentiations. 10000 random numbers and the
power were randomly generated for each round.

M,E, i = 1 to 10000 : r(x)/x2 ≤ mi, E < r(x)/x

Then, exponents were computed for each number, and the
overall time was recorded for each method. Multiple rounds
were conducted for each polynomial to ensure the results are
statistically valid. The results are depicted on figure 1.
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Fig. 1. Performance comparison with small orders.

This set of tests shows even though standard exponentia-
tion is faster for polynomials of order k ≤ 6, Montgomery
exponentiation becomes quicker after that. This is due to
the computational overhead incurred by the transformation
to the Montgomery form and back from it. The number
where Montgomery exponentiation becomes quicker is not
precise and may depend on the implementation. While the
absolute differences per exponentiation are incredibly small
here, further tests demonstrate the proportional difference
persists.

The next two sets of tests utilized large irreducible poly-
nomials provided by the IETF that are currently in use.
Oakley groups 1 and 2 [4] are still in use as of RFC 7296
(2014), albeit not recommended since they are too short for

proper security [14]. They were included to provide more
data points. Groups 5 and 14 through 18 were taken from
RFC 3526 [5], and groups A.1 through A.5 were taken
from RFC (Request for Comments) 7919 [6]. These contain
polynomials of higher orders and some are recommended by
the Internet Engineering Task Force for current implementa-
tions. The second set measured the time per single modular
exponentiation. Random numbers were generated for each
round.

m,E : r(x)/x2 ≤ m,E < r(x)/x

Exponents were then computed and times were recorded
for each method. At least 150 rounds were done for each
polynomial to ensure statistical significance of the results.
The results are depicted on figure 2.
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Fig. 2. Performance comparison with RFC polynomials.

The figures demonstrate that the optimized method has
nearly the same performance with 4KB orders k as left-
to-right exponentiation with 3KB orders. This means the
method can offer a significant increase in key length, and,
therefore, security with little to no speed penalty. Com-
pared to Montgomery exponentiation, which is used in
OpenSSL [3], the gains are less significant, offering a 20
to 25% speed increase.

The third set of tests utilized the same irreducible polyno-
mials as the second, but included all the operations necessary
for a Diffie–Hellman key exchange, i.e., picking two random
numbers:

a, b : r(x)/x2 ≤ a, b < r(x)/x

And computing ga, gb, (ga)b, (gb)a. The generating element
g = 2 was taken from IETF recommendations. This test
offers a further potential speed benefit from keeping the finite
field characteristics k, r, r2 between calculations without
needing to re-initialize them.

The absolute times scaled similarly to the previous test
case, so the results here are shown in percentages of a
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standard (left-to-right) exponentiation. They are depicted on
figure 3.
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Fig. 3. Performance comparison with DHKE implementations.

These performance figures demonstrate the parallelized
Montgomery exponentiation algorithm can yield an up to
40% performance improvement over standard exponentiation
and up to a 25% improvement over the unmodified Mont-
gomery algorithm.

VII. CONCLUSIONS

This paper presented a description and an evaluation of
optimization structure that can yield significant performance
improvements in any modular exponentiation workload. An
open-source library for Galois field arithmetic containing an
implementation of said structure was created for testing and
educational purposes.

The optimization structure could potentially be applied
not only to Diffie–Hellman, but also to El–Gamal and any
other algorithms that rely on modular exponentiation. It
could also be applied in existing implementations, yielding
a speed increase of up to 25 to 40 percent. The parallelized
Montgomery exponentiation algorithm retains all the im-
plementational benefits of Montgomery exponentiation, as
well as security-specific advantages such as constant-time
execution.

With TLS 1.3 requiring ephemeral keys for the Diffie-
Hellman key exchange, as well as utilizing longer groups, the
speed of the algorithm comes into focus. The optimization
structure discussed here may yield either a significant speed
increase or a substantial lengthening of cryptographic keys
with little to no impact on performance, depending on the
existing implementation. It can provide a stopgap solution
before the transition to elliptic curve or post-quantum cryp-
tography.

A direction for further research would be a word-level
adaptation of this algorithm, or similar optimizations for
elliptic curve cryptography.
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