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Abstract—State estimation using a filter is one of the funda-
mental problems encountered in the study of control theory
and signal processing for noisy dynamics systems. In this
review paper, the finite memory structure (FMS) filter for
state estimation is expressed in a variety of forms, such as the
iterative form, matrix form, summation form, and smoothing
form, using diverse derivation methods for noisy discrete-
time state-space models. These diverse derivation methods and
expressions can provide a comprehensive understanding of
FMS filtering algorithms. Various aspects of FMS filters are
characterized. Through discussions, it is demonstrated that
the choice of window length can be considered a key design
parameter for optimizing the performance of the FMS filter.
Simulation results for a noisy discrete-time system indicate that
an FMS filter can be better than an infinite memory structure
filter for temporarily uncertain systems.

Index Terms—Finite memory structure filter, Infinite memory
structure filter, Iterative form, Matrix form, Sigma form,
Smoothing form.

I. INTRODUCTION

THE Kalman filter, used to estimate precise states in

dynamic systems, has been widely applied in time series

analysis in fields such as control theory, signal processing,

statistics, and econometrics[1]-[11]. However, given their

recursive formulation and infinite memory structure (IMS),

Kalman filters may exhibit performance degradation, and

even divergence, in severe cases of mismodeling and tem-

porary uncertainties[12]-[14].

Therefore, as an alternative to the Kalman filter, the finite

memory structure (FMS) filter has been designed for state

estimation. The FMS filter has been demonstrated to be

inherently more robust against temporary uncertainties[15]-

[26]. It has been applied successfully in various engineering

applications such as signal processing, mobile target tracking,

computer networks, electromagnetic systems, fault detection,

wireless sensor networks, automotive suspension systems,

and electric motor systems[27]-[34].

To provide a comprehensive understanding of FMS filter-

ing algorithms, this review paper provides several expres-

sions, such as the iterative form, matrix form, summation

form, and smoothing form, of the FMS filter by using diverse

derivation methods for the discrete-time state-space model in

white Gaussian noise environments. FMS filters are evaluated

in terms of a variety of aspects, such as handling of window

initial state, handling of noise covariance, processing manner,

delay tolerance, and inversion computation of system matrix.

It is shown that the window length can be considered as a

useful design parameter to optimize the filtering performance
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of the FMS filter. It is demonstrated via computer simula-

tions for a sinusoidal signal system and an electrical motor

system that the FMS filter can outperform the IMS filter for

temporarily uncertain systems.

This paper has the following structure. In Section II, the

discrete-time state-space model and IMS filter are described.

In Section III, diverse derivation ways and expressions of

the FMS filter are provided and compared from a variety of

views. In Section IV, how to choose the window length is

discussed. In Section V, computer simulations are performed.

Then, concluding remarks are given in Section VI.

II. INFINITE MEMORY STRUCTURE FILTER

A. Discrete-Time State-Space Model

The state-space approach is a generalized time domain

method for modeling, analyzing and designing a wide range

of dynamic systems and is particularly well suited to digital

computational technique. Discrete-time systems are either

inherently discrete (e.g. models of bank accounts, national

economy growth models, population growth models, dig-

ital words) or they are obtained as a result of sampling

(discretization) of continuous-time systems. Thus, various

discretized systems can be modeled by a following discrete-

time state-space form with noises as well as input terms:

xi+1 = Axi +Bui +Gwi,

zi = Cxi + vi, (1)

where xi ∈ ℜn is the unknown state, ui ∈ ℜp is the control

input, zi ∈ ℜq is the known measurement. At the initial time

i0 of system, the state xi0 is a random variable with a mean

x̄i0 and a covariance Σi0 . The system noise wi ∈ ℜp and the

measurement noise vi ∈ ℜq are zero-mean white Gaussian

and mutually uncorrelated. The covariances of wi and vi are

denoted by positive definite matrices Q and R, respectively.

B. IMS Filter : Kalman Filter

The infinite memory structure(IMS) filter such as the well-

known Kalman filter[1]-[11] provides a minimum variance

state estimate x̂i, called the one-step predicted estimate of

the system state xi for the discrete-time state space model

(1) as follow:

x̂i+1 = Ax̂i +
[

AΣiC
T (R + CΣiC

T )−1
]

(zi − Cx̂i)

+Bui

= A(I +ΣiC
TR−1C)−1(x̂i + ΣiC

TR−1zi)

+Bui, (2)

Σi+1 = AΣiA
T +GQGT

−AΣiC
T (R+ CΣiC

T )−1CΣiA
T

= A(I +ΣiC
TR−1C)−1ΣiA

T +GQGT , (3)
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where x̂i0 = x̄i0 and Σi is the error covariance of the

estimate x̂i with initial value Σi0 . The IMS filter such as

the Kalman filter has been a standard choice for the state

estimation and thus a beautiful reference for diverse engi-

neering areas for removing noise from a contaminated signal

to help reveal important signal features and components. The

IMS filter has the recursive formulation for computational

efficiency. However, since the IMS filter processes all past

measurements, it tends to accumulate estimation errors dur-

ing its implementation. Therefore, the IMS filter has been

known to show performance degradation and even divergence

phenomena for mismodeling and temporary uncertainties.

III. DIVERSE DERIVATION METHODS AND EXPRESSIONS

OF FINITE MEMORY STRUCTURE FILTER

To solve shortcomings of the IMS filter in some cases,

the finite memory structure (FMS) filter using finite measure-

ments on the most recent window [i−M(
△
= iM ), i] has been

developed[12]-[26]. The FMS filter has been known to have

inherent good properties such as unbiasedness, deadbeat, and

intrinsic robustness, etc., and thus applied successfully for

various applications[27]-[34]. The FMS filter is formulated

over a fixed window of length M whose size does not

increase with time. The window of past measurements moves

forward in time at each sampling time when a new measure-

ment is available. The FMS filter discards past measurements

outside the window [iM , i].

A. Iterative Form

The FMS filter can be represented by the iterative

form[15][16]. The iterative form of the FMS filter is obtained

by combining the information form of the Kalman filter with

the moving window formulation. The information form of

the Kalman filter, called simply the information filter or the

inverse-covariance filter, allows optimal, unbiased, recursive

state estimation without an initial state estimate in many of its

realizations[35]. The information form of the Kalman filter

on the most recent window [iM , i] can be represented by

x̂iM+j+1 = A(Σ−1
iM+j + CTR−1C)−1Σ−1

iM+j x̂iM+j

+A(Σ−1
iM+j + CTR−1C)−1CTR−1ziM+j

+BuiM+j , (4)

where the error covariance ΣiM+j is given by

Σ−1
iM+j+1 =

[

I +A−T (Σ−1
iM+j

+CTR−1C)A−1GQGT
]−1

A−T (Σ−1
iM+j + CTR−1C)A−1. (5)

The window initial state x̂iM in (4) is assumed to be unknown

and thus must have an infinite covariance ΣiM = ∞, which

means Σ−1
iM

= 0. Therefore, the error covariance ΣiM+j (5)

can be represented by the time-invariant equation as follows:

Σ−1
j+1 =

[

I +A−T (Σ−1
j + CTR−1C)A−1GQGT

]−1

A−T

(Σ−1
j + CTR−1C)A−1. (6)

Using following definitions

Ωj
△
= Σ−1

j , θ̂j
△
= Ωj x̂iM+j ,

the intermediate state estimate, denoted by θ̂j , is defined from

the information form (4) of the Kalman filter on the moving

measurement window [iM , i] as follows:

θ̂j+1 =
[

I +A−T (Ωj + CTR−1C)A−1GQGT
]−1

A−T

[

θ̂j + CTR−1ziM+j

+(Ωj + CTR−1C)A−1BuiM+j

]

,

θ̂0 = 0, 0 ≤ j ≤ M − 1, (7)

where the error covariance Ωj is obtained from (6) as

follows:

Ωj+1 =
[

I +A−T (Ωj + CTR−1C)A−1GQGT
]−1

A−T

(Ωj + CTR−1C)A−1, (8)

with Ω0 = 0. Then, the ultimate state estimate x̂i at the

current time i can be represented as follows[15]:

x̂i = Ω−1
M θ̂M . (9)

Since the iterative form of the FMS filter (9) is derived

from the well-known information form of the Kalman fil-

ter with the moving window formulation, general readers

might find it easy to understand the derivation of filtering

algorithms. However, the infinite covariance, ΣiM = ∞, of

the window initial state is sometimes awkward and seems to

have no physical meaning. So, the iterative form of the FMS

filter (9) might be so difficult to understand its optimality. In

addition, the system matrix A is required to be nonsingular

because the inverse of the system matrix appear in filtering

algorithms (7) and (8).

B. Matrix Form

The FMS filter can be represented by the matrix form by

solving optimization problems[17]-[23]. From the discrete-

time state space model (1), finite measurements Zi and inputs

Ui on the most recent window [iM , i] can be expressed by

the following regression form with the current state xi:

Zi − ΞUi = Γxi + ΛWi + Vi, (10)

where Zi and Ui are defined by

Zi
△
=










ziM
ziM+1

...

zi−2

zi−1










, Ui
△
=










uiM

uiM+1

...

ui−2

ui−1










, (11)

and Wi, Vi have the same form as (11) for wi, vi, respec-

tively. Matrices Γ, Ξ, and Λ are defined by

Γ
△
=










CA−M

CA−M+1

...

CA−2

CA−1










,

Ξ
△
= −








CA−1B CA−2B · · · CA−MB
0 CA−1B · · · CA−M+1B
...

... · · ·
...

0 0 · · · CA−1B







,
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Λ
△
= −








CA−1G CA−2G · · · CA−MG
0 CA−1G · · · CA−M+1G
...

... · · ·
...

0 0 · · · CA−1G







. (12)

The noise term ΛWi+Vi in (10) is zero-mean white Gaussian

with covariance Π given by

Π
△
= Λ

[

diag(

M
︷ ︸︸ ︷

Q Q · · · Q)
]

ΛT

+
[

diag(

M
︷ ︸︸ ︷

R R · · · R)

]

, (13)

where diag(Q Q · · · Q) and diag(R R · · · R) denote

block-diagonal matrices with M elements of Q and R,

respectively.

Based on different estimation approaches, three kinds of

matrix forms for the FMS filter have been developed as

follows.

1) Best Linear Unbiased Estimation: The first matrix

form is developed from best linear unbiased estimation

approach in [35]. The matrix form of the FMS filter x̂i is

assumed to be obtained from

x̂i
△
= H

(

Zi − ΞUi

)

, (14)

where H is the gain matrix. Taking the expectation both sides

of (14), the following relation is obtained:

E
[
x̂i

]
= E

[

H
(

Zi − ΞUi

)]

= HΓE
[
xi

]
.

Then, with the following constraint:

HΓ = I, (15)

x̂i is unbiased, i.e., E
[
x̂i

]
= E

[
xi

]
. Thus, the constraint

(15) can be called the unbiasedness constraint for the matrix

form of the FMS filter x̂i.

The objective is now to obtain the gain matrix H∗, subject

to the unbiasedness constraint (15), in such a way that the

error of x̂i has a minimum variance as follows:

H∗ = argmin
H

E

[

(xi − x̂i)
T (xi − x̂i)

]

. (16)

Using the approach of best linear unbiased estimation in

[35], the matrix form of the FMS filter x̂i is obtained by

the solution of (16) as follows[12][17][18]:

x̂i = H
(

Zi − ΞUi

)

, (17)

where

H =
(
ΓTΠ−1Γ

)−1
ΓTΠ−1.

2) Maximum Likelihood Estimation: The second matrix

form is developed from maximum likelihood estimation ap-

proach in [35]. A maximum likelihood estimation approach is

introduced to obtain the noise suppressed state estimate x̂i of

the current state xi. The connotation of maximum likelihood

is a setting in which nothing is known a priori about the

unknown state, but there is a priori information on the

measurement process itself. The noise term ΛWi+Vi in (10)

has the following multivariate Gaussian density function:

f
(

ΛWi + Vi

)

=

1
√

(2π)M |Π|
e

[
− 1

2

(
ΛWi+Vi

)
T

Π
−1

(
ΛWi+Vi

)]

.

It is noted that linear transformation on, and linear combina-

tions of, Gaussian random processes are themselves Gaussian

random processes. For this reason, it is clear from the

equation (10) that when ΛWi+Vi is Gaussian, Zi−ΞUi is as

well. The multivariate Gaussian density function of Zi−ΞUi

is derived from a shifted version of f
(

ΛWi+Vi

)

as follows:

f
({

Zi − ΞUi

}
|xi

)

= f
(

Zi − ΞUi − Γxi

)

=
1

√

(2π)M |Π|
e

[
−

1

2

(
Zi−ΞUi−Γxi

)
T

Π
(
Zi−ΞUi−Γxi

)]

,

called the likelihood function. The maximum likelihood filter

is obtained from the maximizing of this likelihood function

with respect to xi. To maximize f
({

Zi − ΞUi

}
|xi

)
with

respect to xi is equivalent to the minimization problem of

the following cost function:

J =
1

2

(

Zi − ΞUi − Γxi

)T

Π
(

Zi − ΞUi − Γxi

)

. (18)

Differentiating both sides of (18) gives the following maxi-

mum likelihood criterion:

∂J

∂xi

= ΓTΠ−1
(

Zi − ΞUi − Γxi

)

= 0, (19)

called the likelihood equation. Assume that {A,C} is ob-

servable and M ≥ n, the matrix form of the FMS filter x̂i

is then given by the solution of the likelihood equation (19)

as follows [19][20]:

x̂i =
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

Zi − ΞUi

)

. (20)

This matrix form (20) is equivalent to (17).

3) Bayesian Estimation: The third matrix form is devel-

oped from Bayesian estimation approach in [35]. As shown

in Bayesian estimation filtering[21][22], the FMS filter can

be interested in the Gaussian probability density function that

is conditional on finite measurements Zi and inputs Ui on the

most recent window [iM , i]. The most recent window [iM , i]
becomes the averaging window of M points. To develop an

alternative matrix form of the FMS filter, the conditional

density of current state xi given finite measurements Zi and

inputs Ui is derived. On the most recent window [iM , i],
Zi − ΞUi (10) can be expressed by

Γxi = Zi − ΞUi −
(

ΛWi + Vi

)

, (21)

with the noise term ΛWi + Vi. Then, multiplying both sides

of (21) by
(

ΓTΠ−1Γ
)−1

ΓT
i Π

−1 leads to

xi =
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
[

Zi − ΞUi −
(

ΛWi + Vi

)]

=
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

Zi − ΞUi

)

−
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

ΛWi + Vi

)

. (22)
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Hence, for given finite measurements Zi and inputs Ui, the

equation (22) clearly means that the current state xi is a

multi-variate Gaussian with its mean

x̂i = E
[
xi

]
=

(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

Zi − ΞUi

)

,

and covariance

Σ =
[(

ΓTΠ−1Γ
)−1

ΓTΠ−1
]

Πi

[

Π−1Γ
(

ΓTΠ−1Γ
)−1]

=
(

ΓTΠ−1Γ
)−1(

ΓTΠ−1Γ
)(

ΓTΠ−1Γ
)−1

=
(

ΓTΠ−1Γ
)−1

.

Therefore, from the linearity described in (10), the condi-

tional density of current state xi given finite measurements

Zi and inputs Ui has the following expression:

p
(

xi|Zi − ΞUi

)

= N
(

xi; x̂i,Σ
)

. (23)

The mean value x̂i from the conditional density (23) of

current state xi is adopted as the FMS filter and thus the

following matrix form

x̂i =
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

Zi − ΞUi

)

(24)

provides the state estimate x̂i conditional on finite measure-

ments Zi and inputs Ui. This matrix form (24) is equivalent

to (17) and (20).

4) Forgetting Factor Least Square Estimation: The fourth

matrix form is developed from least squares estimation using

a forgetting factor when there is no a priori information

about noise covariances Q and R[23]. Given given finite

measurements Zi and inputs Ui on the window [iM , i], the

FMS filter x̂i is obtained from the following forgetting factor

least squares criterion:

x̂i = argmin
xi

[

Zi − ΞUi − Γxi

]T

Π̃
[

Zi − ΞUi − Γxi

]

, (25)

where Π̃ is a diagonal matrix as follows:

Π̃
△
= diag[π̃M−1I π̃M−2I · · · π̃0I], 0 < π̃ < 1,

where π̃ is called the forgetting factor. Note that a main

role of the forgetting factor π̃ is to account for the fact

that the discrete-time state-space model (1) is not perfect to

globally model the observed phenomenon, thus is to make

the model that is locally well modeling the observations by

concentrating on observations on the most recent window

[iM , i]. Then, when {A,C} is observable and M ≥ n, the

solution of (25) is given by

x̂i = (ΓT Π̃
T

2 Π̃
1

2Γ)−1ΓT Π̃
T

2 Π̃
1

2

(
Zi − ΞUi

)

= AM (Γ̃T Γ̃)−1Γ̃T
(
Z̃i − Ξ̃Ũi

)

= AM Γ̌Γ̃T
(
Z̃i − Ξ̃Ũi

)
(26)

where

Γ̌ = (Γ̃T Γ̃)−1,

Γ̃ = Π̃
1

2 Γ̄ =

[

Γ̃∗

CAM−1

]

=

[

π̃
M−1

2 C

Γ̃∗A

]

,

Z̃i = Π̃
1

2Zi =

[
Z̃U
i

zi−1

]

=

[

π̃
M−1

2 ziM
Z̃L
i

]

,

where Γ̃∗ is upper M − 1 rows of Γ̃, and Z̃U
i−1 and Z̃L

i−1

are upper M − 1 rows and lower M − 1 rows of Z̃i−1,

respectively. Note that the gain matrix AM Γ̌Γ̃T requires

computation only on the interval [0,M ] once and is time-

invariant for all windows. This means that the FMS filter is

time-invariant.

C. Sigma Form

The FMS filter can be represented by the sigma form(also

known as the summation form), which might be similar to

the finite impulse response (FIR) form used widely in digital

signal processing areas[24]. The standard Kalman filter (2)

and (3) can be modified by x̂iM+j on the window [iM , i] as

follows:

x̂iM+j+1 = A(I +ΣiM+jC
TR−1C)−1(x̂iM+j

+ΣiM+jC
TR−1ziM+j) +BuiM+j,(27)

where the error covariance ΣiM+j is given by

ΣiM+j+1 = A(I +ΣiM+jC
TR−1C)−1ΣiM+jA

T

+GQGT , (28)

and 0 ≤ j ≤ M − 1. It is noted in (27) that x̂iM+j for

iM + j < i is an intermediate variable to compute x̂i. That

is, only x̂i is used as the ultimate estimate of xi and can

be represented by the sigma form with the window initial

condition as well as the control input as follows:

x̂i = ΦM x̂iM +

M−1∑

j=0

ΦM−jΣiM+jC
TR−1ziM+j

+
M−1∑

j=0

ΦM−jBuiM+j , (29)

where the transition matrix Φj is given by

Φj+1 = ΦjA
[
I +ΣiM+M−j−1C

TR−1C
]−1

, Φ0 = I.

At this point, a posteriori knowledge about the window ini-

tial condition {x̂iM ,ΣiM } on the window [iM , i] is required

for (28) and (29).

With the window initial state xiM , finite measurements

Zi and inputs Ui on the most recent window [iM , i] can be

expressed by the following regression form

Zi − Ξ̄Ui = Γ̄xiM + Λ̄Wi + Vi, (30)

where matrices Γ̄, Ξ̄ and Λ̄ are defined by

Γ̄
△
=










C
CA

...

CAM−2

CAM−1










,

Ξ̄
△
=










0 0 · · · 0 0
CB 0 · · · 0 0

...
...

...
...

...

CAM−3B CAM−4B · · · 0 0
CAM−2B CAM−3B · · · CB 0










,
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Λ̄
△
=










0 0 · · · 0 0
CG 0 · · · 0 0

...
...

...
...

...

CAM−3G CAM−4G · · · 0 0
CAM−2G CAM−3G · · · CG 0










. (31)

The noise term Λ̄Wi+V̄i in (30) is zero-mean white Gaussian

with covariance Π̄ given by

Π̄
△
= Λ̄

[

diag(

M
︷ ︸︸ ︷

Q Q · · · Q)
]

Λ̄T +
[

diag(

M
︷ ︸︸ ︷

R R · · · R)

]

.

Then, using the approach of best linear unbiased estima-

tion in [35], the window initial condition x̂iM is obtained

by

x̂iM = H̄
(

Zi − ΞUi

)

= H̄Zi + B̄Ui, (32)

where

H̄
△
=

[
H̄0 H̄1 · · · H̄M−1

]

=
(
Γ̄T Π̄−1Γ̄

)−1
Γ̄T Π̄−1, (33)

B̄
△
=

[
B̄0 B̄1 · · · B̄M−1

]

= −H̄Ξ̄ = −
(
Γ̄T Π̄−1Γ̄

)−1
Γ̄T Π̄−1Ξ̄. (34)

In addition, the window initial condition ΣiM is obtained by

the error covariance of x̂iM as follows:

ΣiM = E
[(
xiM − x̄iM

)(
xiM − x̄iM

)T ]

= E
[(
xiM − H̄Zi − B̄Ui

)(
xiM − H̄Zi − B̄Ui

)T ]

=
(
Γ̄T Π̄−1Γ̄

)−1
. (35)

Therefore, a posteriori knowledge about the window initial

condition {x̂iM ,ΣiM } in (32) and (35) on the window [iM , i]
is given for (28) and (29) in the unbiasedness sense. As

shown in (35), the window initial condition ΣiM is constant

value. Thus, the error covariance ΣiM+j (28) defined on the

window [iM , i] can be rewritten as follows:

Σj+1 = A(I +ΣjC
TR−1C)−1ΣjA

T +GQGT ,

0 ≤ j ≤ M − 1, (36)

with the window initial condition Σ0 = ΣiM =
(Γ̄T Π̄−1Γ̄)−1.

Using (11), (33), (34), (36), the FMS filter (29) with the

window initial condition x̂iM = H̄Zi+ B̄Ui can be rewritten

by

x̂i = ΦM x̂iM +
M−1∑

j=0

ΦM−jΣjC
TR−1ziM+j

+

M−1∑

j=0

ΦM−jBuiM+j

= ΦM

(

H̄Zi + B̄Ui

)

+

M−1∑

j=0

ΦM−jΣjC
TR−1ziM+j

+
M−1∑

j=0

ΦM−jBuiM+j , (37)

where the transition matrix Φj is given by

Φj+1 = ΦjA
[
I +ΣM−j−1C

TR−1C
]−1

, Φ0 = I.(38)

Therefore, the sigma form of the FMS filter (37) is given as

follow:

x̂i =
M−1∑

j=0

(

ΦM H̄j +ΦM−jΣjC
TR−1

)

ziM+j

+

M−1∑

j=0

(

ΦM B̄j +ΦM−jB
)

uiM+j . (39)

In the sigma form of the FMS filter (39), the system matrix

A is not required to be nonsingular unlike both iterative and

matrix forms of the FMS filter because the inverse of the

system matrix disappears in filtering algorithms (31), (36),

and (38).

D. Smoothing Form

Meanwhile, because the FMS filter is a causal filter pro-

viding estimates for states at given times based only on the

relative past, the estimates exhibit a delay. Hence, the FMS

smoothing filter has been developed for estimation problems

where there is a fixed delay between a measurement and the

availability of its estimate[13][25][26]. This fixed delay is

associated only with the availability of the estimate - not

with an error in the actual estimates, as is the case with the

FMS filter. Although FMS smoothing filters in [13][25][26]

have their own unique features, they have the following

common advantages. The smoothing filter generally utilizes

more measurement information than the filter to provide

state estimates, which can give more accurate estimation

performance than the filter. In addition, since the smoothing

filter provides state estimates at the delayed time using mea-

surement information up to the current time, measurement

information can be reflected in advance in the presence of

the state change, which can give more fast convergence than

the filter.

The FMS smoothing filter to estimate the state xi−d at the

lagged time i−d is developed under a weighted least square

criterion using only finite measurements as well as inputs on

the most recent window [i − M, i]. The lagged time i − d
means there is a fixed delay between the measurement and

the availability of its estimate. The positive integer d is the

delay length satisfying 0 ≤ d < M and equal to the number

of discrete time steps between the lagged time i−d at which

the state is to be estimated and the current time i of the last

measurement used in estimating it.

From the discrete-time state-space model (1), the state

xi−d at the lagged time i− d is represented by

xi−d = AM−dxiM + Ξ̃Ui + Λ̃Wi, (40)

where

Ξ̃
△
=

[

AM−d−1B · · · AB B

d
︷ ︸︸ ︷

0 0 · · · 0

]

,

Λ̃
△
=

[

AM−d−1G · · · AG G

d
︷ ︸︸ ︷

0 0 · · · 0

]

. (41)
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Therefore, with applying (40) to (30), the following regres-

sion form can be expressed in terms with xi−d at the lagged

time i− d as follows:

Zi − ΞsUi = Γsxi−d + ΛsWi + Vi, (42)

where

Γs
△
= Γ̄A−(M−d), Λs

△
= Λ̄− Γ̄A−(M−d)Λ̃,

Ξs
△
= Ξ̄− Γ̄A−(M−d)Ξ̃. (43)

The noise term ΛsWi + Vi in (42) is zero-mean white

Gaussian with covariance Π given by

Πs
△
= Λs

[

diag(

M
︷ ︸︸ ︷

Q Q · · · Q)
]

ΛT
s

+
[

diag(

M
︷ ︸︸ ︷

R R · · · R)
]

. (44)

Now, to get the FMS smoothing filter x̂i−d given finite

measurements Zi and inputs Ui on the most recent window

[iM , i], the following weighted least square cost function

must be minimized:

{(

Zi − ΞsUi

)

− Γsxi−d

}T

Π−1
s

{(

Zi − ΞsUi

)

− Γsxi−d

}

. (45)

Taking a derivation of (45) with respect to xi−d and setting

it to zero, the FMS smoother x̂i−d is given by following

simple matrix form:

x̂i−d =
(

ΓT
s Π

−1Γs

)−1

ΓT
s Π

−1
(

Zi − ΞsUi

)

. (46)

When there is no delay, that is d = 0, the FMS smoothing

filter is shown to be equivalent to the FMS filter. With d = 0,

matrices of (41) become

Ξ̃ =

[

AM−1B AM−2B · · · AB B

]

,

Λ̃ =

[

AM−1G AM−2G · · · AG G

]

. (47)

Thus, matrices Γs, Λs, Ξs and Πs of (43) and (44) become

the same as matrices Γ, Λ, Ξ and Π of (12) and (13) as

follows:

Γs = Γ̄A−M =










CA−M

CA−M+1

...

CA−2

CA−1










= Γ,

Λs = Λ̄− Γ̄A−M Λ̃

= −










CA−1G CA−2G · · · CA−MG
0 CA−1G · · · CA−M+1G
...

... · · ·
...

0 0 · · · CA−2G
0 0 · · · CA−1G










= Λ,

Ξs = Ξ̄− Γ̄A−M Ξ̃

= −










CA−1B CA−2B · · · CA−MB
0 CA−1B · · · CA−M+1B
...

... · · ·
...

0 0 · · · CA−2B
0 0 · · · CA−1B










= Ξ,

Πs = Λ
[

diag(

M
︷ ︸︸ ︷

Q Q · · · Q)
]

ΛT +
[

diag(

M
︷ ︸︸ ︷

R R · · · R)
]

= Π. (48)

Then, the FMS smoothing filter (46) with d = 0 can be

represented by

x̂i =
(

ΓTΠ−1Γ
)−1

ΓTΠ−1
(

Zi − ΞUi

)

, (49)

with matrices (48). Therefore, the FMS smoothing filter (46)

with d = 0 is equivalent to the existing FMS filter.

IV. DISCUSSION ABOUT WINDOW LENGTH

The window length M can be a useful design parameter

for the FMS filter. Thus, the important issue here is how

to choose an appropriate window length M that makes the

FMS filter’s performance as good as possible. The noise

suppression of the FMS filter might be closely related to the

window length M , and it can have greater noise suppression

as the window length M increases, which improves the FMS

filter’s performance. That is, choosing a larger M generally

results in better performance, since more measurements are

taken into account. However, at the same time, a larger M
increases the convergence time of an FMS filtered estimate.

Therefore, there might be FMS filter’s compromise between

noise suppression and tracking ability.

In addition, the window length may be related to the real-

time computational complexity. Since the gain matrix for

the FMS filter requires computation only on the interval

[0,M ] once and is time-invariant for all windows, the on-line

computation requires only filter updates. Thus, quite a large

M can be chosen without worrying about computational

burden. However, although the computational complexity

of the FMS filter is O(M) and thus linear in the size of

the window length M , the online computational complexity

becomes larger as the window length increases.

Therefore, from an engineering perspective, there is trade-

off that regulates the choice of the size of the window M .

Since window length M is an integer, fine adjustment of

the properties with M is difficult. Moreover, it is difficult

to determine the window length systematically. In applica-

tions, one method of determining the window length is to

take the appropriate value that can provide sufficient noise

suppression. Therefore, it can be stated from the above

discussions that the window length M can be considered

a useful parameter to make the residual performance of the

FMS filter as good as possible.

A heuristic would be to start the standard Kalman filtering

estimation (2) by using all available measurements zi, and

determine M on-the-fly based on the error covariance ΣM

in (3). When ΣM falls below a certain threshold, M is set

and the FMS filter with moving window of measurements

Zi is started. Since the error covariance generally decreases
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TABLE I: Comparison of FMS filters

Iterative form
Matrix form

Sigma form Smoothing form
Best linear
unbaised

Maximum
likelihood

Bayesian
Least

squares

Handling of window initial
state

Infinite
covariance

Not
required

Not
required

Not
required

Not
required

Estimated Not required

Handling of noise covariance Required Required Required Required
Not

required
Required Required

Processing manner
Iterative

processing
Batch

processing
Batch

processing
Batch

processing
Batch

processing
Batch

processing
Batch

processing

Delay tolerance No No No No No No Yes

Inversion computation of
system matrix

Required Required Required Required Required
Not

required
Required

over time, this heuristic allows us to choose of M in terms

of the Kalman filtering error. An alternative heuristic would

be to determine window length M in advance based on the

error covariance Ωj in (8) or Σj in (36). When the L2 norm

of error covariance matrix Ω−1
M or ΣM falls below a certain

threshold, M in the vicinity is set the window length M .

Since the error covariance generally decreases over time, this

heuristic allows to choose of M in terms of the L2 norm of

the error covariance. This heuristic will be verified through

an application example in the next section.

V. APPLICATION EXAMPLES WITH COMPUTER

SIMULATIONS

To illustrate the validity of the FMS filter and to com-

pare with the recursive IMS filter, computer simulations

are performed. Even if various dynamic systems and signal

systems are represented in state-space model accurately on

a long time scale, it may undergo unpredictable changes,

such as jumps in frequency, phase, and velocity. Because

these effects typically occur over a short time horizon, they

are called temporary uncertainties[12]-[14]. As representative

temporary uncertainties, there are a model uncertainty, an

unknown input, and incomplete measurement information,

etc. The state estimation filter for dynamic systems should

be robust to diminish the effects of these temporary un-

certainties. As representative temporary uncertainties, there

are a model uncertainty, an unknown input, and incomplete

measurement information, etc. The state estimation filter for

dynamic systems should be robust to diminish the effects of

these temporary uncertainties.

To deal with a temporary uncertainty, a couple of noisy

discrete-time systems, sinusoidal signal system and electrical

motor system, are assumed to have an uncertain model

parameter. The state-space approach is commonly used when

real physical systems and processes can be approximated

with a reasonable number of states. The approximation

implies model uncertainty that may cause an estimator to

be biased and/or diverge. That is, due to concerns for model

misspecification, there can be model uncertainty. From (1),

the discrete-time state space model with the model uncer-

tainty can be represented by

xi+1 =
(
A+∆A

)
xi +Bui +Gwi,

zi =
(
C +∆C

)
xi + vi. (50)

Although FMS and IMS filters are designed by the nominal

discrete-time state-space model (1), actual measured outputs

for the estimation filtering are obtained from the uncertain

system (50).

A. Sinusoidal Signal System

The noisy sinusoidal signal system is considered by

A =

[
cos(π/32) sin(π/32)
−sin(π/32) cos(π/32)

]

,

G =

[
1
1

]

, C =
[
1 0

]
,

where its model uncertainty is assumed by

∆A =

[
δi 0
0 δi

]

, ∆C =
[
0.2δi 0.2δi

]
,

with the uncertain model parameter δi as follows:

δi =

{

0.08 if 100 ≤ i ≤ 150,

0 otherwise.

System and measurement noise covariances are taken by Q =
0.052 and R = 0.052, respectively.

In previous section, a heuristic to determine window length

M was mentioned briefly. Before actual simulations, the L2
norm of error covariance matrix Ω−1

M or ΣM is computed

from the error covariance equation (8) or (36) in order to

determine the optimal window length M that can provide

enough noise suppression. The L2 norm of error covariance

matrix Ω−1
M or ΣM is obtained from the Matlab function

norm(X). This function returns the 2-norm or maximum

singular value of matrix X , which can be also implemented

approximately using another Matlab function max(svd(X)).
The L2 norm of error covariance matrix Ω−1

M or ΣM is

plotted according to increasing window lengths in Fig. 1.

It can be seen that the L2 norm of error covariance matrix

reduces as the window length grows and converges when

the window length is around M = 15. Of course, the L2
norm of error covariance matrix can be more reduced when

M > 15. However, in this case, the real-time application is

somewhat difficult due to the computational load. Thus, the

optimal window length can be taken by M = 15.

B. DC Motor System

The discretized direct current (DC) motor system is con-

sidered. The DC motor is the most commonly used electrical

motor in the control systems due to their features such cost-

efficiency, ease of use, high performance, longevity and quiet

operation. The discretized DC motor system is modeled by

A =

[
0.8178 −0.0011
0.0563 0.3678

]

, B =

[
0.1813
0.0069

]

,

G =

[
0.0006 0

0 0.0057

]

, C =
[
1 0

]
,
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Fig. 1: L2 norms of error covariance matrix according to

window length for sinusoid signal system.

where its model uncertainty is assumed by

∆A =

[
δi 0
0 δi

]

, C =
[
0.2δi 0.2δi

]
,

with the uncertain model parameter δi as follows:

δi =

{

0.1 if 150 ≤ i ≤ 300,

0 otherwise.

System and measurement noise covariances are taken by Q =
0.022 and R = 0.032, respectively. Before actual simulations,

in the same way as in the sinusoidal signal example, the L2
norm of error covariance matrix Ω−1

M or ΣM is computed in

order to determine the optimal window length M . It can be

seen from Fig. 2 that the L2 norm of error covariance matrix

reduces as the window length grows and converges when the

window length is around M = 20. Of course, the L2 norm of

error covariance matrix can be more reduced when M > 20.

Thus, the optimal window length can be taken by M = 20.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Window length M

L2
 n

or
m

 o
f e

rr
or

 c
ov

ar
ia

nc
e

Fig. 2: L2 norms of error covariance matrix according to

window length for DC motor system.

C. Simulations Results

The FMS filter and the recursive IMS filter are compared

for the temporarily uncertain system. For consider diverse

situations, three kinds of window lengths are set by M = 10,

M = 15, and M = 20 for sinusoidal signal system and

set by M = 15, M = 20, and M = 25 for DC motor

system. Fig. 3 and 4 show simulation results according to

diverse window lengths for two discrete-time systems. Left

plots of figures show root-mean-square (RMS) estimation

errors for 20 simulations. In addition, right plots of figures

also show estimation errors for one of 20 simulations. The

estimation error of the FMS filter is smaller than that of

the recursive IMS filter on the interval where modeling

uncertainty exist for all cases. In addition, the convergence

time of estimation error is much shorter than that of the

recursive IMS filter after temporary modeling uncertainty

disappears. In addition, the FMS filter can be comparable

to the recursive IMS filter after the effect of temporary

modeling uncertainty completely disappears. Therefore, the

FMS filter can be more robust than the recursive IMS filter

when applied to temporarily uncertain systems, although the

FMS filter is designed with no consideration for robustness.

Moreover, it can be known that the larger window length

may yield the longer convergence time of the estimation

error, which can degrade the performance of the FMS filter.

Therefore, it can be stated that the window length can be used

as an effective design parameter to make the best possible

performance of the FMS filter.

VI. CONCLUSION

This review paper has provided various expressions for

an FMS filter, such as the iterative form, matrix form, sum-

mation form, and smoothing form, using various derivation

methods for a noisy discrete-time state-space model. These

diverse derivation methods and expressions can provide a

comprehensive understanding of FMS filtering algorithms.

Various factors that affect FMS filters have been evaluated.

Through discussions about the choice of window length, it

has been demonstrated that the window length can be consid-

ered a useful design parameter to improve the performance of

the FMS filter as much as possible. Simulation results for the

noisy sinusoidal signal model and the DC motor model have

proven that the FMS filter is more suitable for temporarily

uncertain systems than the IMS filter.
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