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Abstract—This paper is concerned with numerical solution of
coupled Burgers’ equation by the combination of finite differ-
ence and sinc collocation method. Firstly, we derive the semi-
discrete scheme by approximating the first order derivative of
time with θ-weighted scheme. Different schemes can be obtained
by selecting different values of θ. After that, a fully discrete
scheme is constructed through the use of sinc collocation and
finite difference method to approximate the first and second
order derivatives of space. The stability of the fully discrete
scheme is analyzed by representing the proposed scheme in
matrix form. For Burgers’ equation, the similar results could
be obtained. At last, some numerical examples are presented to
illustrate the efficiency and superiority of present method for
solving Burgers’ and coupled Burgers’ equation.

Index Terms—Burgers’ equation, Coupled Burgers’ equation,
Finite difference method, Sinc collocation method

I. INTRODUCTION

MANY physical phenomena, such as hydrodynamics
[1, 2], nonlinear acoustics [3], gas dynamics [4] and

traffic flow dynamics [5] can be described by Burgers’
equation. It was first introduced by Bateman [6] in 1915 and
later treated by Burgers [7]. Burgers’ equation can also be
considered as a simplified form of Navier-Stokes equation.
There are both non-linear convection and diffusion terms in
Burgers’ equation, which is considered as the most primitive
tool to describe convection and diffusion problems. Burgers’
equation with the initial and boundary conditions has the
following form [8]:

ut + uux = εuxx, 0 < x < L, 0 < t ≤ T,

u(x, 0) = φ(x), 0 < x < L,

u(0, t) = 0, u(L, t) = 0, 0 < t ≤ T,

(1)

where ε > 0 is the coefficient of kinematic viscosity. Coupled
Burgers equation plays an important role in physics [9, 10].

In this paper, we study coupled Burgers’ equation with
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initial and boundary conditions [11, 12]:

ut + δuxx + ηuux + α(uv)x = 0, 0 < x < L, 0 < t ≤ T,

vt + µvxx + ξvvx + β(uv)x = 0, 0 < x < L, 0 < t ≤ T,

u(x, 0) = f(x), v(x, 0) = g(x), 0 < x < L,

u(0, t) = 0, u(L, t) = 0,

v(0, t) = 0, v(L, t) = 0, 0 < t ≤ T,
(2)

where f , g are known functions, δ, µ, η and ξ are real
constants, α and β are arbitrary constants depending on the
system parameters.

So far, many powerful techniques have been applied to
obtain numerical solutions of Burgers’ and coupled Burgers’
equation. Deng and Pan [13] made use of a fourth-order
singly diagonally implicit Runge-Kutta method for solving
Burgers’ equation. Sari et al. [14] obtained the numerical so-
lution through sixth-order compact finite difference method.
In addition, Kutluay [15] solved coupled Burgers’ equation
by Galerkin quadratic B-spline finite element method. Sri-
vastava et al. [16] applied a fully implicit finite-difference
method to study coupled Burgers’ equation. Apart from these
methods, there are other methods to solve Burgers’ and
coupled Burgers’ equation numerically, such as Chebyshev
wavelet method [17], interval finite-difference method [18],
high-order exponential time differening method [19].

Stenger [20] originally introduced Sinc collocation
method. In the process of using sinc collocation method, we
need to obtain Whittaker cardinal expansion based on sinc
function. As mentioned in [21], there are many advantages
to investigate numerical solutions by using approximations
based on sinc collocation method. It is widely used for
solving integral equation [22] and differential equation [23].
Though finite difference method is an easy-to-implement
method, it is not flexible enough and cannot be applied
directly to solve some complex problems. To overcome its
deficiency, many mixed methods have been proposed to solve
complex problems by combining other methods with finite
difference method [24–26].

Motivated by the idea from [25, 27], we will suggest
a mixed method to simulate numerical solution for cou-
pled Burgers’ equation by using finite difference and sinc
collocation method. Specifically, the semi-discrete scheme
is presented by approximating temporal derivative with θ-
weighted scheme. After that, we derive a fully discrete
scheme of coupled Burgers’ equation by the use of sinc
collocation and finite difference method to approximate the
first and second order derivatives of space. It is noted that the
mixed method is also valid for solving Burgers’ equation.
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The rest of the paper is organized as follows. In Section II,
we give the discrete scheme of coupled Burgers’ equation. In
Section III, we discuss the stability of the discrete scheme
based upon the knowledge of matrix analysis. Section IV
present some numerical examples. Section V concludes.

II. DISCRETE SCHEME OF COUPLED BURGERS’
EQUATION

In this section, some basic knowledge of sinc function is
reviewed.

On the whole real line, the sinc function is defined by
[21, 28, 29]

sinc(x) =


sin(πx)

πx
, x ̸= 0,

0, x = 0,

(3)

and the j-th translate of the sinc function is defined by

S(j, h)(x) = sinc(
x− jh

h
), (4)

where j is an integer and h is a positive number. It is not
difficult to obtain the following property

S(j, h)(kh) = δkj =

 1, k = j,

0, k ̸= j,
(5)

where k is an integer.
The Whittaker cardinal expansion of u defined on the

whole real line is

C(u, h)(x) =
∝∑

j=−∝
u(jh)S(j, h)(x), (6)

whenever this series converges.

A. The semi-discrete scheme

Take two positive integers M and N . Let h = L/M ,
τ = T/N ; xi = ih, 0 ≤ i ≤ M ; tk = kτ , 0 ≤ k ≤ N .
By approximating the first-order derivative of time with
θ-weighted scheme, the semi-discrete scheme of coupled
Burgers’ equation can be derived

uk+1 − uk

τ
+ θ(δuk+1

xx + ηuk+1uk+1
x + αuk+1vk+1

x + αvk+1

× uk+1
x ) + (1− θ)(δuk

xx + ηukuk
x + αukvkx + αvkuk

x) = 0,

vk+1 − vk

τ
+ θ(µvk+1

xx + ξvk+1vk+1
x + βuk+1vk+1

x + βvk+1

× uk+1
x ) + (1− θ)(µvkxx + ξvkvkx + βukvkx + βvkuk

x) = 0,
(7)

where x ∈ (0, L), θ ∈ [0, 1], uk+1 denotes u(x, tk+1). For
the special case of θ = 0, semi-discrete scheme (7) can be
considered as explicit scheme. When θ = 1, scheme (7) can
be regarded as implicit scheme and when θ = 1

2 , scheme (7)
is just Crank-Nicholson scheme.

Next, we use Taylor expansion to deal with the nonlinear
terms in (7). According to Taylor expansion, we have

u(x, tk+1) = u(x, tk) + τut(x, tk) +O(τ2),

ux(x, tk+1) = ux(x, tk) + τuxt(x, tk) +O(τ2),

v(x, tk+1) = v(x, tk) + τvt(x, tk) +O(τ2),

vx(x, tk+1) = vx(x, tk) + τvxt(x, tk) +O(τ2).

Thus, we have

uk+1uk+1
x

= ukuk
x + τux(x, tk)ut(x, tk) + τu(x, tk)uxt(x, tk) +O(τ2)

= ukuk
x + τuk

x(
uk+1 − uk

τ
) + τuk(

uk+1
x − uk

x

τ
) +O(τ2)

= uk+1uk
x + ukuk+1

x − ukuk
x +O(τ2).

The similar results can be obtained

vk+1uk+1
x = uk+1

x vk + vk+1uk
x − vkuk

x +O(τ2),

uk+1vk+1
x = vk+1

x uk + uk+1vkx − ukvkx +O(τ2).

Dropping the second order small quantities with respect to
τ2 and substituting them into (7), we get the semi-discrete
scheme of coupled Burgers’ equation

uk+1 + θτδuk+1
xx + θτηuk+1uk

x + θτηukuk+1
x + θταuk+1

x vk

+ θταvk+1uk
x + θταuk+1vkx + θταvk+1

x uk =

uk + (θ − 1)τδuk
xx + (2θ − 1)τηukuk

x + (2θ − 1)ταuk
xv

k

+ (2θ − 1)ταvkxu
k,

vk+1 + θτµvk+1
xx + θτξvk+1vkx + θτξvkvk+1

x + θτβuk+1
x vk

+ θτβvk+1uk
x + θτβuk+1vkx + θτβvk+1

x uk =

vk + (θ − 1)τµvkxx + (2θ − 1)τξvkvkx + (2θ − 1)τβuk
xv

k

+ (2θ − 1)τβvkxu
k, x ∈ (0, L).

(8)

Remark 1. Similarly, Burgers’ equation has the semi-discrete
scheme read as

uk+1 + θτ(uk+1uk
x + ukuk+1

x − εuk+1
xx )

= uk + (2θ − 1)τukuk
x + (1− θ)τεuk

xx, x ∈ (0, L).
(9)

B. The fully discrete scheme

We use central difference formulas [30] to approximate
the first and second order spatial derivatives as follows

ux(xi, tk) ≈
uk
i+1 − uk

i−1

2h
,

uxx(xi, tk) ≈
uk
i+1 − 2uk

i + uk
i−1

h2
,

(10)

where uk
i denotes u(xi, tk).

On the other hand, by (3)-(5), we get

S
′
(j, h)(xi) =


(−1)i−j

(i− j)h
, i ̸= j,

0, i = j.

(11)

For convenience, we denote S = (Sij) = S
′
(j, h)(xi). By

using the boundary conditions of coupled Burgers’ equation
(2) together with (6), we have

ux(xi, tk) =
M−1∑
j=1

Siju
k
j . (12)

Just like [25], we rewrite (12) in the following form

ux = Suk,

where

uk = (uk
1 , u

k
2 , · · · , uk

M−1)
T ,

ux = (ux(x1, tk), ux(x2, tk), · · · , ux(xM−1,tk))
T .
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Substituting (10), (12) into (8), the fully discrete scheme of
coupled Burgers’ equation yields

uk+1
i + θτδ

uk+1
i+1 − 2uk+1

i + uk+1
i−1

h2
+ θτηuk+1

i

M−1∑
j=1

Siju
k
j

+ θτηuk
i

uk+1
i+1 − uk+1

i−1

2h
+ θταvki

uk+1
i+1 − uk+1

i−1

2h
+ θταvk+1

i ×
M−1∑
j=1

Siju
k
j + θταuk+1

i

M−1∑
j=1

Sijv
k
j + θταuk

i

vk+1
i+1 − vk+1

i−1

2h
=

uk
i + (2θ − 1)τηuk

i

M−1∑
j=1

Siju
k
j + (2θ − 1)ταvki

M−1∑
j=1

Siju
k
j

+ (2θ − 1)ταuk
i

M−1∑
j=1

Sijv
k
j + (θ − 1)τδ

uk
i+1 − 2uk

i + uk
i−1

h2
,

vk+1
i + θτµ

vk+1
i+1 − 2vk+1

i + vk+1
i−1

h2
+ θτξvk+1

i

M−1∑
j=1

Sijv
k
j

+ θτξvki
vk+1
i+1 − vk+1

i−1

2h
+ θτβvki

uk+1
i+1 − uk+1

i−1

2h
+ θτβvk+1

i ×
M−1∑
j=1

Siju
k
j + θτβuk+1

i

M−1∑
j=1

Sijv
k
j + θτβuk

i

vk+1
i+1 − vk+1

i−1

2h
=

vki + (2θ − 1)τξvki

M−1∑
j=1

Sijv
k
j + (2θ − 1)τβvki

M−1∑
j=1

Siju
k
j

+ (2θ − 1)τβuk
i

M−1∑
j=1

Sijv
k
j + (θ − 1)τµ

vki+1 − 2vki + vki−1

h2
,

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.
(13)

Remark 2. Substituting (10), (12) into (9), the fully discrete
scheme of Burgers’ equation can be expressed as follows

uk+1
i + θτ(uk+1

i

M−1∑
j=1

Siju
k
j + uk

i

uk+1
i+1 − uk+1

i−1

2h
−

ε
uk+1
i+1 − 2uk+1

i + uk+1
i−1

h2
) = uk

i + (2θ − 1)τuk
i

M−1∑
j=1

Siju
k
j

+ (1− θ)τε
uk
i+1 − 2uk

i + uk
i−1

h2
,

1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.
(14)

III. STABILITY ANSLYSIS

A. The iterative format

We can rewrite Eq. (13) in the matrix form as

AYk+1 = BYk, (15)

where Yk = (uk
1 , u

k
2 , · · · , uk

M−1, v
k
1 , v

k
2 , · · · , vkM−1)

T ,

A =

(
A1 A2

A3 A4

)
,

B =

(
B1 B2

B3 B4

)
,

A1 = I+ θτδE+ θτηC1 + θτηD1 + θταD2 + θταC2,

A2 = θταC1 + θταD1,

A3 = θτβC2 + θτβD2,

A4 = I+ θτµE+ θτξC2 + θτξD2 + θτβD1 + θτβC1,

B1 = I+ (θ − 1)τδE+ (2θ − 1)τηC1 + (2θ − 1)ταC2,

B2 = (2θ − 1)ταC1,

B3 = (2θ − 1)τβC2,

B4 = I+ (θ − 1)τµE+ (2θ − 1)τξC2 + (2θ − 1)τβC1,
(16)

here I is the unit matrix and

C1 =

 ux(x1,tk)
ux(x2,tk)

. . .
ux(xM−1,tk)


(M−1)×(M−1)

,

C2 =

 vx(x1,tk)
vx(x2,tk)

. . .
vx(xM−1,tk)


(M−1)×(M−1)

,

D1 =
1

2h


0 uk

1

−uk
2 0 uk

2

−uk
3 0 uk

3

. . . . . . . . .
−uk

M−2 0 uk
M−2

−uk
M−1 0


(M−1)×(M−1)

,

D2 =
1

2h


0 vk

1

−vk
2 0 vk

2

−vk
3 0 vk

3

. . . . . . . . .
−vk

M−2 0 vk
M−2

−vk
M−1 0


(M−1)×(M−1)

,

E =
1

h2


−2 1
1 −2 1

1 −2 1

. . . . . . . . .
1 −2 1

1 −2


(M−1)×(M−1)

.

Remark 3. Simultaneously, scheme (14) can be rewritten as

Tuk+1 = Puk, (17)

where T = I+θτ(C1+D1−vE), P = I+(2θ−1)τC1+
(1− θ)τεE, uk = (uk

1 , u
k
2 , · · · , uk

M−1)
T .

B. Stability

Let H = A−1B. The necessary condition for the stability
of (15) is ρ(H) ≤ 1+ cτ , where c is a positive number [31].
Next, we will compute the spectral radius for a concrete
example by numerical calculation.

We take f(x) = sinx, g(x) = sinx in initial conditions
and δ = −1, µ = −1, η = −2, ξ = −2, α = 1, β = 1, L =
T = 2π. By selecting N = M = 5 and θ = 1, the iterative
matrix H in the first iteration is

H =


0.169 0.536 0.168 0.007 0.263 −0.388 −0.118 0.009
0.072 0.628 0.201 0.024 0.076 −0.146 −0.038 0.026
0.024 0.201 0.628 0.072 0.026 −0.038 −0.146 0.076
0.007 0.168 0.536 0.169 0.009 −0.118 −0.388 0.263
0.263 −0.388 −0.118 0.009 0.169 0.536 0.168 0.007
0.076 −0.146 −0.038 0.026 0.072 0.628 0.201 0.024
0.026 −0.038 −0.146 0.076 0.024 0.201 0.628 0.072
0.009 −0.118 −0.388 0.2626 0.007 0.1681 0.536 0.169
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It is noted that ρ(H) = 1.0066 > 1, so the scheme is not
stable. Similarly, when we choose θ = 0, the spectral radius
of iterative matrix is ρ(H) = 3.6646 > 1. This means the
numerical scheme is not stable. While θ = 1

2 is taken, the
values of ρ(H) are 0.7361, 0.7954, 0.9095, 0.9537, 0.9677
in the first five steps, which ensured the stability of the
iterations.

Remark 4. Let G = T−1P, denote λ1, λ2, λ3, λ4 as the
eigenvalues of I,C1,D1,E, respectively. It is obvious that
λ1 = 1 and λ2 is a real number. Let λR

3 = Re(λ3), λ
I
3 =

Im(λ3), λR
4 = Re(λ4), λ

I
4 = Im(λ4). To ensure the stability

of (17) , the following conditions must be met∣∣∣1 + (2θ − 1)τλ2 + (1− θ)τελR
4 + i(1− θ)τελI

4

1 + θτλ2 + θτλR
3 − θτελR

4 + i(θτλI
3 − θτελI

4)

∣∣∣ ≤ 1,

which means

(3θ − 1)(θ − 1)τ2λ2
2 + (1− 2θ)τ2ε2|λ4|2 − θ2τ2|λ3|2

≤ 2θ2τ2(λ2λ
R
3 − ελR

3 λ
R
4 − ελI

3λ
I
4)− (2θ − 2)τλ2

− 2θτ(ελR
4 − λR

3 ) + (2θ2 − 6θ + 2)τ2ελ2λ
R
4 ,

(18)

where |λ3| and |λ4| represent the modulus of λ3 and λ4.
Through the above analysis, if (17) is stable, the eigenval-

ues must satisfy (18). In the case of θ = 0, the scheme is sta-
ble under the condition on time step τ ≤ 2λ2

λ2
2+ε2|λ4|2−2ελ2λR

4
.

IV. NUMERICAL EXAMPLES

In this section, we conduct some numerical examples to
illustrate the effectiveness of the proposed method. The nu-
merical solutions and maximum absolute errors are obtained.
In particular, we will compare the results with those obtained
by other methods. In the following, u and U are denoted the
exact and the numerical solution. The maximum absolute
error is defined as

e = max
0≤i≤M,0≤k≤N

|u(xi, tk)− U(xi, tk)|.

Example 1. In the first example, we consider following
Burgers’ equation [8]:

ut + uux = εuxx, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) =
2vπsin(πx)

2 + cos(πx)
,

u(0, t) = 0, u(1, t) = 0,

which has the exact solution u(x, t) = 2επe−π2εtsin(πx)

2+e−π2εtcos(πx)
.

Following the numerical scheme described in Section II,
we take M = 80, θ = 1

2 , h = 1/M , τ = h2. Fig. 1 and 2 plot
the numerical solution and the absolute error. The maximum
absolute errors for different M and θ are shown in Table I.
Moreover, we compare the numerical results with those of
[8] at u(x, 0.001).

Example 2. In this example, we consider the following
Burgers’ equation [8, 32–34]:

ut + uux = uxx, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = φ(x),

u(0, t) = 0, u(1, t) = 0.

The initial value φ(x) have two cases: φ(x) = sin(πx) and
φ(x) = 4x(1 − x). We choose the step size h = 0.0125

TABLE I
MAXIMUM ABSOLUTE ERRORS WITH v = 0.01, h = 1/M , τ = h2

M θ = 0 θ = 1
2

θ = 1

10 4.1310× 10−4 3.0734× 10−4 2.2844× 10−4

20 7.9113× 10−5 6.9289× 10−5 5.9420× 10−5

40 1.7494× 10−5 1.5789× 10−5 1.4986× 10−5

80 4.0220× 10−6 3.8340× 10−6 3.7569× 10−6

160 9.6329× 10−7 9.4059× 10−7 9.3960× 10−7

Fig. 1. Numerical solution when M = 80, θ = 1
2

Fig. 2. Absolute error when M = 80, θ = 1
2

and τ = 0.00001. The numerical results are demonstrated
in Table III and IV. Besides, the numerical solutions are
illustrated in Fig. 3 and 4 when t takes different values.

Example 3. We discuss coupled Burgers’ equation [35]:

ut − uxx − 2uux + (uv)x = 0, 0 < x < 2π, 0 < t ≤ T,

vt − vxx − 2vvx + (uv)x = 0, 0 < x < 2π, 0 < t ≤ T,

u(x, 0) = sin(x− π), v(x, 0) = sin(x− π),

u(0, t) = 0, u(2π, t) = 0,

v(0, t) = 0, v(2π, t) = 0.

The exact solution is u(x, t) = v(x, t) = e−tsin(x − π).
The maximum absolute errors are compared with those of
[35] in Table V for N = 1000 and θ = 1

2 . We plot the
numerical results in Fig. 5 and 6. Besides, TableVI shows
the maximum absolute errors for different θ.
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TABLE II
SOLUTIONS WITH v = 1, h = 1/40, L = 1, T = 0.001, θ = 1/2 AT POINT (x, 0.001) FOR EXAMPLE 1

x τ = 0.0001 τ = 0.00005 τ = 0.000025

[8] Present method [8] Present method [8] Present method Exact solution

0.1 0.653589 0.6535551453 0.653553 0.6535551422 0.653545 0.6535551418 0.6535444868
0.2 1.305611 1.3055327866 1.305550 1.3055327876 1.305534 1.3055327887 1.3055335298
0.3 1.949485 1.9493471176 1.949389 1.9493471225 1.949365 1.9493471250 1.9493635654
0.4 2.566103 2.5658880089 2.565964 2.5658880184 2.565930 2.5658880227 2.5659249142
0.5 3.110992 3.1106788779 3.110803 3.1106788951 3.110756 3.1106789026 3.1107388846
0.6 3.493222 3.4927929863 3.492978 3.4927930217 3.492917 3.4927930367 3.4928657149
0.7 3.550079 3.5495549472 3.549794 3.5495550209 3.549723 3.5495550499 3.5495951291
0.8 3.050702 3.0501943654 3.050432 3.0501944772 3.050365 3.0501945156 3.0501344786
0.9 1.817077 1.8167470798 1.816924 1.8167471802 1.816886 1.8167472066 1.8166603703

TABLE III
EXACT SOLUTIONS AND NUMERICAL SOLUTIONS WHEN φ(x) = sin(πx)

x t Present method HC[32] RHC [32] RPA[33] Exact solution

θ = 0 θ = 1
2

θ = 1

0.25 0.1 0.253650 0.253665 0.253679 0.252942 0.264126 0.252875 0.253637
0.25 0.15 0.156616 0.156628 0.156640 0.156059 0.165683 0.155447 0.156601
0.25 0.2 0.096455 0.096465 0.096475 0.095889 0.101617 0.094289 0.096440
0.25 0.25 0.059229 0.059236 0.059243 0.056174 0.059113 0.055674 0.059217
0.5 0.1 0.371605 0.371625 0.371644 0.376474 0.393354 0.373085 0.371579
0.5 0.15 0.226850 0.226867 0.226884 0.235875 0.251788 0.228940 0.226825
0.5 0.2 0.138495 0.138509 0.138523 0.153645 0.163931 0.142127 0.138473
0.5 0.25 0.084554 0.084565 0.084575 0.112810 0.120967 0.091944 0.084537
0.75 0.1 0.272610 0.272623 0.272635 0.271517 0.285579 0.272368 0.272580
0.75 0.15 0.164392 0.164404 0.164416 0.162739 0.176957 0.163628 0.164369
0.75 0.2 0.099452 0.099462 0.099472 0.098431 0.111020 0.098656 0.099434
0.75 0.25 0.060359 0.060367 0.060375 0.057394 0.068569 0.059343 0.060346

TABLE IV
EXACT SOLUTIONS AND NUMERICAL SOLUTIONS WHEN φ(x) = 4x(1− x)

x t Present method [8] EFDM[34] EEFDM[34] Exact solution

θ = 0 θ = 1
2

θ = 1

0.25 0.01 0.66007 0.66008 0.66009 0.66008 0.65915 0.66007 0.66006
0.25 0.05 0.42629 0.42631 0.42632 0.42631 0.42582 0.42629 0.42629
0.25 0.10 0.26149 0.26151 0.26152 0.26151 0.26121 0.26149 0.26148
0.25 0.15 0.16149 0.16150 0.16152 0.16148 0.16132 0.16148 0.16148
0.25 0.25 0.06110 0.06111 0.06111 0.06111 0.06103 0.06109 0.06109
0.5 0.01 0.91972 0.91972 0.91972 0.91973 0.91890 0.91972 0.91972
0.5 0.05 0.62811 0.62812 0.62814 0.62812 0.62745 0.62809 0.62808
0.5 0.10 0.38345 0.38347 0.38349 0.38347 0.38304 0.38343 0.38342
0.5 0.15 0.23408 0.23410 0.23412 0.23410 0.23382 0.23406 0.23406
0.5 0.25 0.08725 0.08726 0.08727 0.08726 0.08715 0.08724 0.08723
0.75 0.01 0.68365 0.68365 0.68366 0.68667 0.68304 0.68364 0.68364
0.75 0.05 0.46528 0.46529 0.46530 0.46529 0.46481 0.46526 0.46525
0.75 0.10 0.28160 0.28161 0.28163 0.28162 0.28129 0.28158 0.28157
0.75 0.15 0.16976 0.16977 0.16979 0.16977 0.16957 0.16974 0.16974
0.75 0.25 0.06230 0.06231 0.06232 0.06231 0.06223 0.06229 0.06229

TABLE V
THE MAXIMUM ABSOLUTE ERROR

M t = 0.1 t = 0.5

[35] Present method [35] Present method

32 2.9104× 10−4 2.9038× 10−4 9.7478× 10−4 9.7384× 10−4

64 7.2704× 10−5 7.2655× 10−5 2.4361× 10−4 2.4354× 10−4

128 1.8178× 10−5 1.8168× 10−5 6.0896× 10−5 6.0887× 10−5

256 4.5497× 10−5 4.5421× 10−6 1.5223× 10−5 1.5217× 10−5

512 1.1430× 10−6 1.1355× 10−6 3.8052× 10−5 3.7996× 10−6

V. CONCLUSIONS

This paper propose a mixed numerical method to solve
Burgers’ and coupled Burgers’ equation by combining finite

difference method with sinc collocation method. Detailed
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Fig. 3. Numerical solution when φ(x) = sin(πx), θ = 1
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Fig. 4. Numerical solution when φ(x) = 4x(1− x), θ = 1
2

Fig. 5. Numerical solution of u and v

TABLE VI
MAXIMUM ABSOLUTE ERRORS OF u AND v

t θ = 0 θ = 1
2

θ = 1

0.5 3.1948× 10−5 1.5629× 10−5 6.3114× 10−5

1 6.0779× 10−5 2.9734× 10−5 1.2008× 10−4

1.5 8.6720× 10−5 4.2427× 10−5 1.7134× 10−4

2 1.0999× 10−4 5.3810× 10−5 2.1731× 10−4

stability analysis is given for the fully discrete scheme. The
results show the stability of the schemes is related to matrix
eigenvalues, weight parameter θ and time step size τ . All of

Fig. 6. Absolute error of u and v

the given examples reveal that the proposed method can be
used to obtain numerical solution of Burgers’ and coupled
Burgers’ equation.
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