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Numerical Solution of Coupled Burgers’ Equation

Using Finite Difference and Sinc Collocation
Method

Linjun Wang, Honglei Li, Yiping Meng

Abstract—This paper is concerned with numerical solution of
coupled Burgers’ equation by the combination of finite differ-
ence and sinc collocation method. Firstly, we derive the semi-
discrete scheme by approximating the first order derivative of
time with 6-weighted scheme. Different schemes can be obtained
by selecting different values of 0. After that, a fully discrete
scheme is constructed through the use of sinc collocation and
finite difference method to approximate the first and second
order derivatives of space. The stability of the fully discrete
scheme is analyzed by representing the proposed scheme in
matrix form. For Burgers’ equation, the similar results could
be obtained. At last, some numerical examples are presented to
illustrate the efficiency and superiority of present method for
solving Burgers’ and coupled Burgers’ equation.

Index Terms—Burgers’ equation, Coupled Burgers’ equation,
Finite difference method, Sinc collocation method

I. INTRODUCTION

ANY physical phenomena, such as hydrodynamics

[1, 2], nonlinear acoustics [3], gas dynamics [4] and
traffic flow dynamics [5] can be described by Burgers’
equation. It was first introduced by Bateman [6] in 1915 and
later treated by Burgers [7]. Burgers’ equation can also be
considered as a simplified form of Navier-Stokes equation.
There are both non-linear convection and diffusion terms in
Burgers’ equation, which is considered as the most primitive
tool to describe convection and diffusion problems. Burgers’
equation with the initial and boundary conditions has the
following form [8]:

Ut + Uy = EUgy, 0< < L, 0<t < T,
u(z,0) = p(z), 0 <z <L, (1)
u(0,t) =0, uw(L,t) =0, 0<t<T,

where € > 0 is the coefficient of kinematic viscosity. Coupled
Burgers equation plays an important role in physics [9, 10].
In this paper, we study coupled Burgers’ equation with
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initial and boundary conditions [11, 12]:

Ut + OUgy + Nuug + a(uw), =0, 0 <z < L, 0<t < T,
Vg + WUy + v, + B(uv), =0, 0 <z < L, 0 <t <T,
ul,0) = F(x),v(z,0) = g(x), 0 <z < L,
u(0,t) =0, u(L,t) =0,
v(0,t) =0, v(L,t) =0, 0 <t <T,

2

where f, g are known functions, §, p, n and £ are real
constants, o and [ are arbitrary constants depending on the
system parameters.

So far, many powerful techniques have been applied to
obtain numerical solutions of Burgers’ and coupled Burgers’
equation. Deng and Pan [13] made use of a fourth-order
singly diagonally implicit Runge-Kutta method for solving
Burgers’ equation. Sari et al. [14] obtained the numerical so-
lution through sixth-order compact finite difference method.
In addition, Kutluay [15] solved coupled Burgers’ equation
by Galerkin quadratic B-spline finite element method. Sri-
vastava et al. [16] applied a fully implicit finite-difference
method to study coupled Burgers’ equation. Apart from these
methods, there are other methods to solve Burgers’ and
coupled Burgers’ equation numerically, such as Chebyshev
wavelet method [17], interval finite-difference method [18],
high-order exponential time differening method [19].

Stenger [20] originally introduced Sinc collocation
method. In the process of using sinc collocation method, we
need to obtain Whittaker cardinal expansion based on sinc
function. As mentioned in [21], there are many advantages
to investigate numerical solutions by using approximations
based on sinc collocation method. It is widely used for
solving integral equation [22] and differential equation [23].
Though finite difference method is an easy-to-implement
method, it is not flexible enough and cannot be applied
directly to solve some complex problems. To overcome its
deficiency, many mixed methods have been proposed to solve
complex problems by combining other methods with finite
difference method [24-26].

Motivated by the idea from [25, 27], we will suggest
a mixed method to simulate numerical solution for cou-
pled Burgers’ equation by using finite difference and sinc
collocation method. Specifically, the semi-discrete scheme
is presented by approximating temporal derivative with 6-
weighted scheme. After that, we derive a fully discrete
scheme of coupled Burgers’ equation by the use of sinc
collocation and finite difference method to approximate the
first and second order derivatives of space. It is noted that the
mixed method is also valid for solving Burgers’ equation.
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The rest of the paper is organized as follows. In Section II,
we give the discrete scheme of coupled Burgers’ equation. In
Section III, we discuss the stability of the discrete scheme
based upon the knowledge of matrix analysis. Section IV
present some numerical examples. Section V concludes.

II. DISCRETE SCHEME OF COUPLED BURGERS’
EQUATION

In this section, some basic knowledge of sinc function is
reviewed.

On the whole real line, the sinc function is defined by
[21, 28, 29]

sm(ww)’ £ 40,
sinc(x) = T 3)
0, z =0,
and the j-th translate of the sinc function is defined by
. . x—jh
S, ) (@) = sine(=—2), )

where j is an integer and A is a positive number. It is not
difficult to obtain the following property

1, k=yjy,
S5, h)(kh) = b5 = (5)

0, k#j,
where k is an integer.
The Whittaker cardinal expansion of u defined on the

whole real line is
xX

> ulih)S (i, h)(z),

j=—o

Clu, h)(z) = (6)

whenever this series converges.

A. The semi-discrete scheme

Take two positive integers M and N. Let h = L/M,
T=T/N;x; =ih, 0 <i < M;t, =kr, 0 <k < N.
By approximating the first-order derivative of time with
f-weighted scheme, the semi-discrete scheme of coupled
Burgers’ equation can be derived

WF — ok

+9(5 k+1 +nuk+1uk+l +auk+lvk+1 —|—04’Uk+1

x uf ) 4 (1 = 0)(sub, + nuFub + aufof + avtuf) =0,
R _ ok

v O(pktl 4 goF Lt gy tlyhtl | gy ke
+ (1= 0)(uvg, + ooy vy + Bvtuz) =0,
)
where z € (0,L), 6 € 0,1 denotes wu(x,tr41). For
the special case of # = 0, semi-discrete scheme (7) can be
considered as explicit scheme. When 6 = 1, scheme (7) can
be regarded as implicit scheme and when 6 = 3, scheme (7)
is just Crank-Nicholson scheme.
Next, we use Taylor expansion to deal with the nonlinear
terms in (7). According to Taylor expansion, we have

u(z, ter1) = u(w, t) + Tug(x, ty) + O(72),
U (T, Ly 1) = Ug (T, 1) 4 TUug (2, 1) + O(T2),
v(x, tpy1) = v, ty) + Ty (2, 1) + O(T2),
Ve (2, thy1) = va (2, ) + Toge (2, t1) + O(T2).

:
)

X + Bu”

]’ uktl

Thus, we have
uk+1u§+1

= uFul + Tug (z, te)u (, tr) + T, t)ug (z, t) + O(72)

uFHL ok k+1 k

u — U

:ukuk—&—Tul;(iT )+ Tuf (= )+ O(7?)
wF Lk +uk I;+1 —ukuﬁ +O(7’2).

The similar results can be obtained
Uk+1u§+1 k+1 ko gkt k ,Ukuk L O(r )
uk+lvlg§+1 k+1 uF 4 Rty k ok kg O(T ).

Dropping the second order small quantities with respect to

72 and substituting them into (7), we get the semi-discrete

scheme of coupled Burgers’ equation

uF Y 4+ 076ub Y+ OrnuFt ik 4 OrnuFultt + Orauk ok
+ 0o Tk + raut Tk 4 oravkTiub =

uf + (0 — 1)16uk 4 (20 — 1)T77u uf + (20 — Draufo®
+ (20 — 1)Tavku®,

AR 9TM?)k+1 + 9751}’”1 ky 9751}’“ kL QTBuf,Hvk
+OrAvR LUk 4 0 But ok 1 Or Bkt iy =
S (e (20 — 1)revkvl 4 (20 —
+ (20 — 1)7pvru* € (0,1).

D7k, + 1)7Bubv”

®)

Remark 1. Similarly, Burgers’ equation has the semi-discrete
scheme read as

uk+1+97’( k+1 k+uk l;-i—l k+1)

—ceunrt
—O)reut , x € (0,L).

T

€))

=uf 4 (20 — D)ruFuk + (1

B. The fully discrete scheme
We use central difference formulas [30] to approximate
the first and second order spatial derivatives as follows

k k
U 1 — U
Ug (24, i) & Zidl -1

2h ’
, , (10)
ko ouk 4k
Umr(xia tk) ~ uH—l ;;QZ * i 5
where uf denotes u(x;, ).
On the other hand, by (3)-(5), we get
D=7,
» G—gn T
S (j: h) (@) = (1D
0, i = .

For convenience, we denote S = (Sj;) = S'(j, h)(x;). By
using the boundary conditions of coupled Burgers’ equation
(2) together with (6), we have

M—-1

Z S”u

Just like [25], we rewrite (12) in the following form

xzytk: (12)

u, = Suk,
where
u® = (ullcvugv 7uIJ€\/[—1)T7
Uy = (uI(mlatk)aum(x27tk)7“' )ua:(fol,tk:))T-
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Substituting (10), (12) into (8), the fully discrete scheme of
coupled Burgers’ equation yields

T M—1
k+1 + 076 Yit1 ];2 Ut S GTUU?H Z S’ijuf
j=1
uk+ gkl ukHL gkl
9 uk i+1 i—1 9 Oz’l}k 141 1—1 9 O[’Uk+1><
o o on T
M—1 M—1 oFFL kL
Z S”u +97‘auk+1 Z SU’UJ +97‘auk7’+1 o 2 S
j=1 j=1
M—1 M—1
+ (20 — 1)mnu; Z S”u + (20 — 1)Tawk Z Sijug?
=1 j=1

k k k
U; —2u? 4+ u;
5 41 7 7—1

M—
+ (20 — D)rauk ZSZU—F -1) 2 ,
j=1

k+1 k+1 M—-1

— 2t 4y

k+1 1,+1 [ i—1 k+1 k
v, T+ 0Tt e +07&vy; ; Sijv;
PRl kel KLkl
+ Oreoplil —TioL o+ 0T Rlon —fiol A
M-1 DR kL
k+1 EYit1 i—1
Z Sijuf + 07 Bul Z Sigvf + 07 fuf ==t =
M—1 M—1
+ (20 — 1)TE0F Z S”vj + (20 — 1)7BoF Z S”u
j=1 Jj=1
M—1 k k| ok
Vit — 207 vy
+ (20 — 1)7Buk Z Syl P+ (0= 1D)Tu 2 ,

1<i<M-10<k<N-1.
(13)

Remark 2. Substituting (10), (12) into (9), the fully discrete
scheme of Burgers’ equation can be expressed as follows

M~—1 uk+11 _ uk+11
k+1 k+1 i+ i
+ 07 (u Z Sl]u +u T
7j=1
k41 k+1 k+1 M—1
u; s — 2u + u;
it h2 Ly — b (20 - 1)rut Z Sijus
j=1
k k k
ur, 1 — 2u; +ul
+(1—-60)re il h; i 1,
1<i<M-1,0<k<N-1.
(14)
III. STABILITY ANSLYSIS
A. The iterative format
We can rewrite Eq. (13) in the matrix form as
AY ! = BY*, (15)
where Y* = (uf,ub, - uk, [ oF ok oo ok DT,
A A,
A= ( Aj Ay )’
_ B, B,
B = ( Bs By )’

A1 =1+ 076E + 6mnCq + 07nD1 + 07aDs + 07aCay,
A =07aCy + 07aD1,

Az =078C2 + 6758Dg,

Ay =1+ 01pE 4+ 076Co + 07ED4 + 078D + 075C4,
By =1+ (0—-1710E+ (20 — 1)mnCq1 + (20 — 1)7aCa,
B2 = (20 — 1)7aCy,

B; = (20 — 1)75Ca,

By=1I+(0—-1)7uE+ (20 — 1)7(Ca + (20 — 1)75C1,

(16)
here I is the unit matrix and
Ug (T1,t8)
Ug (T2,tr)
C]_: . )
Uz (Tpr—1,tk) (M—-1)x(M~-1)
Vg (T1,tk)
vz (T2,tk)
Ce = ) ;
vo(@ar—15t1) /(M —1)x (M —1)
0 ulf
7u§ 0 u;“
1 —ug 0 uj
Dy =—
2h A -
_“]fufz 0 uﬁ1—2
—up-1 O (M—1)x(M—1)
0 vlf
—1)5 0 vy
1 —v5 0wy
Dy = —
2h . ..'
*Ux172 0 ”?u 2
k
“vv-1 O S (M- x(M-1)
-2 1
1 -2 1
1 1 —2 1
B=i .
1 -2 1

1 =2/ (M—-1)x(M-1)

Remark 3. Simultaneously, scheme (14) can be rewritten as

Tu**t! = Pu*, (17)
where T =1+607(Cy+D1 —vE), P =1+(20—-1)7Cy +
(1—0)7eE, u* = (uf,ub,--- Juk, )HT.

B. Stability

Let H = A~!'B. The necessary condition for the stability
of (15) is p(H) < 1+ c7, where ¢ is a positive number [31].
Next, we will compute the spectral radius for a concrete
example by numerical calculation.

We take f(x) = sinx,g(x) = sinx in initial conditions
and 6 = —1l,p=-1,n=-2{=-2,a=1,=1,L =
T = 2m. By selecting N = M =5 and 0 = 1, the iterative
matrix H in the first iteration is

0.169 0.536 0.168 0.007
0.072 0.628 0.201 0.024
0.024 0.201 0.628 0.072
0.007 0.168 0.536 0.169
0.263 —0.388 —0.118 0.009
0.076 —0.146 —0.038 0.026 0.072 0.628 0.201 0.024
0.026 —0.038 —0.146 0.076 0.024 0.201 0.628 0.072
0.009 —0.118 —0.388 0.2626 0.007 0.1681 0.536 0.169

0.263 —0.388 —0.118 0.009
0.076 —0.146 —0.038 0.026
0.026 —0.038 —0.146 0.076
0.009 —0.118 —0.388 0.263
0.169 0.536 0.168 0.007
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It is noted that p(H) = 1.0066 > 1, so the scheme is not
stable. Similarly, when we choose 6 = 0, the spectral radius
of iterative matrix is p(H) = 3.6646 > 1. This means the
numerical scheme is not stable. While 6 = % is taken, the
values of p(H) are 0.7361,0.7954,0.9095,0.9537,0.9677
in the first five steps, which ensured the stability of the
iterations.

Remark 4. Let G = TP, denote A;, A2, A3, A4 as the
eigenvalues of I, C1, D, E, respectively. It is obvious that
A1 = 1 and ), is a real number. Let A¥ = Re()\3),\] =
Im(X3), At = Re(M\y), Al = Im()\4). To ensure the stability
of (17) , the following conditions must be met

1+ (20 = D)7Ae + (1 — 0)1edE (1 — 0)rerd <1

L+ 07Xy + 07ALR — O1eAB +0(07AL — Orenl) | — 77
which means

(30 —1)(0 — 1)7273 4 (1 — 20)72%| M4 |* — 6%7%|\3)?

< 20772 (MM — eAEAR — cAIND) — (20 — 2)7 )

— 207 (eA = M) + (207 — 60 + 2)T2e M\,

(18)

where |\s| and |\4| represent the modulus of A3 and A4.
Through the above analysis, if (17) is stable, the eigenval-
ues must satisfy (18). In the case of § = 0, the scheme is sta-

.. . 2)\2
ble under the condition on time step 7 < N 2o

IV. NUMERICAL EXAMPLES

In this section, we conduct some numerical examples to
illustrate the effectiveness of the proposed method. The nu-
merical solutions and maximum absolute errors are obtained.
In particular, we will compare the results with those obtained
by other methods. In the following, v and U are denoted the
exact and the numerical solution. The maximum absolute
error is defined as

e= |w(zi, tr) — U(xs, tr)]|.

max
0<i<M,0<k<N

Example 1. In the first example, we consider following
Burgers’ equation [8]:

Ut + Uy = EULz, 0< 2z <1, 0<t< 1,

2umsin(mx)
2 + cos(mx)’
u(0,t) = 0,u(1,t) =0,

u(z,0) =

—n2et
which has the exact solution u(z,t) = 227¢_,_sin(re)
2+e~""ctcos(mx)

Following the numerical scheme described in Section II,
we take M = 80,0 = 1,h = 1/M, 7 = h®. Fig. 1 and 2 plot
the numerical solution and the absolute error. The maximum
absolute errors for different M and 6 are shown in Table I.
Moreover, we compare the numerical results with those of
[8] at u(z,0.001).

Example 2. In this example, we consider the following
Burgers’ equation [8, 32-34]:

sin(mwz)

Ut + Uy = Uzr, 0 <z <1, 0<t <,
u(x70) = (,D(.’L‘),
u(0,t) = 0,u(1,t) = 0.

The initial value ¢(x) have two cases: p(z) = sin(wz) and
o(x) = 4x(1 — ). We choose the step size h = 0.0125

TABLE I
MAXIMUM ABSOLUTE ERRORS WITH v = 0.01,h = 1/M, 7 = h?

M 0=0 =13 0=1

10 41310 x10~% 3.0734 x 10~% 2.2844 x 104
20 79113 x 1075 6.9280 x 107°  5.9420 x 10~°
40  1.7494 x 1075  1.5789 x 10~°  1.4986 x 10~5
80  4.0220 x 1076  3.8340 x 10-%  3.7569 x 106
160 9.6329 x 107 9.4059 x 10~7  9.3960 x 107

Numerical solution

Absolute error

Fig. 2. Absolute error when M = 80,0 = %

and 7 = 0.00001. The numerical results are demonstrated
in Table III and IV. Besides, the numerical solutions are
illustrated in Fig. 3 and 4 when ¢ takes different values.

Example 3. We discuss coupled Burgers’ equation [35]:

Up — Ugy — 20ty + (u0), =0, 0 <z <2m, 0<t<T,
Vg — Uy — 200, + (u0), =0, 0 <z <27, 0<t<T,
u(z,0) = sin(z — ),
u(0,t) =0, u(2m,t)
v(0,t) =0, v(2m,1t)

v(z,0) = sin(x — m),
0,
0.

The exact solution is u(x,t) = v(x,t) = e"tsin(z — 7).
The maximum absolute errors are compared with those of
[35] in Table V for N = 1000 and 6 = % We plot the
numerical results in Fig. 5 and 6. Besides, TableVI shows
the maximum absolute errors for different 6.
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TABLE 11
SOLUTIONS WITHv = 1, h = 1/40, L = 1, T = 0.001, @ = 1/2 AT POINT (x, 0.001) FOR EXAMPLE 1

T 7 = 0.0001 7 = 0.00005 7 = 0.000025
[8] Present method [8] Present method [8] Present method Exact solution
0.1 0.653589 0.6535551453 0.653553 0.6535551422 0.653545 0.6535551418 0.6535444868
0.2 1.305611 1.3055327866 1.305550 1.3055327876 1.305534 1.3055327887 1.3055335298
0.3 1.949485 1.9493471176 1.949389 1.9493471225 1.949365 1.9493471250 1.9493635654
0.4 2.566103 2.5658880089 2.565964 2.5658880184 2.565930 2.5658880227 2.5659249142
0.5 3.110992 3.1106788779 3.110803 3.1106788951 3.110756 3.1106789026 3.1107388846
0.6 3.493222 3.4927929863 3.492978 3.4927930217 3.492917 3.4927930367 3.4928657149
0.7 3.550079 3.5495549472 3.549794 3.5495550209 3.549723 3.5495550499 3.5495951291
0.8 3.050702 3.0501943654 3.050432 3.0501944772 3.050365 3.0501945156 3.0501344786
0.9 1.817077 1.8167470798 1.816924 1.8167471802 1.816886 1.8167472066 1.8166603703
TABLE IIT
EXACT SOLUTIONS AND NUMERICAL SOLUTIONS WHEN ¢(z) = sin(mx)
T t Present method HCJ[32] RHC [32] RPA[33] Exact solution
_ _1 _
=0 0=735 0=1
0.25 0.1 0.253650 0.253665 0.253679 0.252942 0.264126 0.252875 0.253637
0.25 0.15 0.156616 0.156628 0.156640 0.156059 0.165683 0.155447 0.156601
0.25 0.2 0.096455 0.096465 0.096475 0.095889 0.101617 0.094289 0.096440
0.25 0.25 0.059229 0.059236 0.059243 0.056174 0.059113 0.055674 0.059217
0.5 0.1 0.371605 0.371625 0.371644 0.376474 0.393354 0.373085 0.371579
0.5 0.15 0.226850 0.226867 0.226884 0.235875 0.251788 0.228940 0.226825
0.5 0.2 0.138495 0.138509 0.138523 0.153645 0.163931 0.142127 0.138473
0.5 0.25 0.084554 0.084565 0.084575 0.112810 0.120967 0.091944 0.084537
0.75 0.1 0.272610 0.272623 0.272635 0.271517 0.285579 0.272368 0.272580
0.75 0.15 0.164392 0.164404 0.164416 0.162739 0.176957 0.163628 0.164369
0.75 0.2 0.099452 0.099462 0.099472 0.098431 0.111020 0.098656 0.099434
0.75 0.25 0.060359 0.060367 0.060375 0.057394 0.068569 0.059343 0.060346
TABLE IV
EXACT SOLUTIONS AND NUMERICAL SOLUTIONS WHEN ¢(z) = 4z(1 — )
T t Present method [8] EFDM|[34] EEFDM][34] Exact solution
_ _1 _
6=0 6= 5 6=1
0.25 0.01 0.66007 0.66008 0.66009 0.66008 0.65915 0.66007 0.66006
0.25 0.05 0.42629 0.42631 0.42632 0.42631 0.42582 0.42629 0.42629
0.25 0.10 0.26149 0.26151 0.26152 0.26151 0.26121 0.26149 0.26148
0.25 0.15 0.16149 0.16150 0.16152 0.16148 0.16132 0.16148 0.16148
0.25 0.25 0.06110 0.06111 0.06111 0.06111 0.06103 0.06109 0.06109
0.5 0.01 0.91972 0.91972 0.91972 0.91973 0.91890 0.91972 0.91972
0.5 0.05 0.62811 0.62812 0.62814 0.62812 0.62745 0.62809 0.62808
0.5 0.10 0.38345 0.38347 0.38349 0.38347 0.38304 0.38343 0.38342
0.5 0.15 0.23408 0.23410 0.23412 0.23410 0.23382 0.23406 0.23406
0.5 0.25 0.08725 0.08726 0.08727 0.08726 0.08715 0.08724 0.08723
0.75 0.01 0.68365 0.68365 0.68366 0.68667 0.68304 0.68364 0.68364
0.75 0.05 0.46528 0.46529 0.46530 0.46529 0.46481 0.46526 0.46525
0.75 0.10 0.28160 0.28161 0.28163 0.28162 0.28129 0.28158 0.28157
0.75 0.15 0.16976 0.16977 0.16979 0.16977 0.16957 0.16974 0.16974
0.75 0.25 0.06230 0.06231 0.06232 0.06231 0.06223 0.06229 0.06229
TABLE V
THE MAXIMUM ABSOLUTE ERROR
M t=0.1 t=0.5
[35] Present method [35] Present method
32 2.9104 x 10~4 2.9038 x 10~4 9.7478 x 10~4 9.7384 x 1074
64 7.2704 x 1072 7.2655 x 107° 2.4361 x 1074 2.4354 x 10~*
128 1.8178 x 10~° 1.8168 x 1075 6.0896 x 10~5 6.0887 x 105
256 4.5497 x 1075 4.5421 x 1076 1.5223 x 1075 1.5217 x 1075
512 1.1430 x 10~¢ 1.1355 x 10~¢ 3.8052 x 1075 3.7996 x 1076

V. CONCLUSIONS

This paper propose a mixed numerical method to solve
Burgers’ and coupled Burgers’ equation by combining finite
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Fig. 5. Numerical solution of » and v

TABLE VI
MAXIMUM ABSOLUTE ERRORS OF u AND v

t 0:0 0: 9:1

L
2

05 31948 x107°  1.5629 x 1075  6.3114 x 1075
1 6.0779x 1075 29734 x 1075 1.2008 x 10~*
15 86720x107°  4.2427x 1075 17134 x 1074
2 1.0999 x 10~% 53810 x 1075 2.1731x 1074

stability analysis is given for the fully discrete scheme. The
results show the stability of the schemes is related to matrix

eigenvalues, weight parameter 6 and time step size 7. All of

Absolute error

Fig. 6. Absolute error of u and v

the given examples reveal that the proposed method can be
used to obtain numerical solution of Burgers’ and coupled
Burgers’ equation.
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