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Abstract—Lightweight materials are currently being more
used in mechanical components due to their mechanical be-
haviour and lighter weight. To prevent failures on the service
life is necessary to predict its fatigue life. To perform the
life evaluation, the durability assessment is used to establish
the damage applied by fatigue loads and the number of load
cycles or spectrum repetitions versus material fatigue properties
using its S-N curves to calculate the accumulated damage. This
information is evaluated using a fatigue damage hypothesis.
An artificial neural network (ANN) is proposed to predict the
fatigue life based on material ultimate tensile strength (UTS).
This is the first part of research to develop aluminum alloy
through ANN based on the expected fatigue strength. The
evaluation performed with results in literature with different
types of aluminum: 5056, 2198-T851, 2024-T3 and 7050-T7451
has been proved that ANN can predict the fatigue life-improving
its accuracy over traditional and modified damage rules.

Index Terms—Lightweight; Aluminum; S-N curves; Artificial
Neural Network; Durability.

I. INTRODUCTION

ORIGINAL equipment manufacturers have been work-
ing on weight reduction. To achieve this target, the

integration of lightweight materials has been applied to use
alternative materials. The common lightweight materials used
in body cars are Ultra High Strength Steels, Magnesium,
Aluminum, and composites. The integration depends on
its mechanical performance for crashworthiness and fatigue
strength [1]. Fatigue improvements can be performed us-
ing thermal and mechanical treatment processes [2], [3].
Composite materials can be introduced to substitute metallic
parts to reduce the body structure weight as well as manage
impact load [4]. To improve its mechanical performance,
static failure criteria have been proposed, and models for
fatigue loading [5], [6].

One of the most used lightweight materials is aluminum,
which, after iron, is the most used material in construction.
This material can be customized through additive elements,
like Mg and Mn, to improve mechanical strength and Cu
and Zn to improve its machinability. Diverse alloys can be
designed depending on the required characteristics[7], [8]. In
a car’s body, aluminum can be used to hang-on parts mainly
of AlMgMn and AlMgSi alloys; it can also be applied to
elements to manage crash energy as bumpers crash boxes
[9], [10]. One of the limitations of introducing lightweight
materials like aluminum is the high cost to characterize
its mechanical performance. This work proposes an ANN
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to predict the fatigue life based on estimate S − N curve
parameters and UTS. It is introduced the ANNs in fatigue
life prediction in section II, in this section is also generated
the training parameters. In section III are reviewed the results
for different alloys and are evaluated their performances.
Also, the durability assessment using S-N curves is included
with a scanning electron microscopy analysis to evaluate the
alloying elements’ contribution.

II. ARTIFICIAL NEURAL NETWORKS

An ANN is a computational model that emulates a hu-
man brain [11] with diverse properties such as high par-
allelism, robustness, real-time adaptability, among others,
making them suitable to been applied to different fields of
engineering. Besides, there are many different topologies of
ANNs, which reflects on how the neurons are connected;
also, the selected topology will be a determining factor in
the ANN function and learning [12]. By modifying the ANN
topology, it can adapt to the complexity of highly specialized
engineering problems, being mechanical engineering, not an
exception [13]. This tool can be used as a design element
to develop new concepts and analyze mechanical responses,
as it can predict the damage evolution resulting from the
manufacturing process,i.e., in forge [14].

As mentioned before, ANN in mechanical engineering had
gain popularity in recent years, i.e. aluminum alloys have
low weldability using traditional fusion processes; therefore,
Shojaeefard et al.[15] proposed a friction process using ANN
join cast and wrought aluminum alloys [16], which has the
advantage to customize using data from experimental or
physical processes. Although a mathematical model can be
proposed, most of the times, physical behaviour includes a
nonlinear response. In these cases, ANN improves its capa-
bility based on fine-tuning during the training process due
to interconnected nodes updated through weights, generating
dynamic feedback among the neurons [17], [18].

Orbanić and Fajdiga [19] proposed an ANN to describe
fretting fatigue. ANN had been used previously to estimate
fatigue damage [20], [21], [22] and fault diagnosis [23]. Varol
et al. [24] analyzed the mechanical behaviour of composites
using ANN; depending on their expected predictions and
input parameters [25]. Freitag et al.[26] have evaluated the
lifetime of materials using ANNs, where the relationships
in materials for chemical composition and their results in
mechanical properties are nonlinear and depend on the mi-
crostructure of alloying elements in the processing variables
[27], being ANNs a suitable solution for their modelling.
Dini et al. [28] applied ANN to define the mechanical
response of material inducing plasticity in Steel for TRIP
and TWIP, and Sabhani and Mazahery analyzed mechanical
properties through parameters as temperature gradient in
cooling rate with ANNs to predict quasistatic response [29].
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Even though ANNs have a certain level of complexity
according to the problem they are addressing, in most of
the previously mentioned cases, the authors report for their
implementation normally three steps:

• Preparation of the information used as a database.
• Choosing of the ANN topology.
• Training and validations of the ANN.
During a supervised training process, the ANN weights

are adjusted according to the presented data, and the desired
output [30]. This is performed through an iterative process
analyzing different weights. During the training process, it
is important to prevent overfitting the ANN, which translate
into a ANN that performs well with the training data but
perform poor with new data. Different techniques can be
applied to prevent overfitting; most of them rely on the
number of samples employed for the training and validation
process [31].

A. Artificial Neural Network to Predict the Fatigue Life of
Aluminum Alloys

The specific parameters and topology of the ANN pro-
posed to predict the fatigue life of aluminum alloys are
addressed in this section; for the ANN training, synthetic data
was used to predict the Wöhler S-N curve. The topology of
the ANN employed is shown in Figure 1. A commonly used
method for the training of ANNs is the Backpropagation
(BP) algorithm, but this algorithm tries to overfit the data
set rather than generalizing. Consequently, its performance
decreases in the presence of noise in the input.

To avoid this problem, the Bayesian Regularization eq.
(12) adds an additional term to the classical BP algorithm
F = ED. To obtain the objective regularization function [32]

F = βED + αEw, Ew =
N∑
i=1

w2
i (1)

where Ew is the sum of square errors of the ANN weights
and α, and β are objective function parameters, N is the
number of inputs employed as the training set, and w are
the weights. It is important to remark that in the Bayesian
Regularization, if β >> α overfitting occurs, but if α >>
β, training emphasizes weight reduction but tolerates higher
errors.

Here the weights are considered random variables, and
according to Baye’s rules, they can be represented as

P (w|D,α, β,M) =
P (D,w, β,M)P (w|α,M)

P (D,α, β,M)
(2)

where w represents the vector of the network weights that
will evolve due to learning of the input data, P (w|α,M) is
the ANNs weights before the data set is given, the probability
that the data will occur given the weights of the ANN is
P (D|w, β,M)), and P (D|α, β,M)) is the evidence of the
model given the hyperparameters and determined by eq. (3)

P (D|α, β,M) =

∫
P (D|w, β,M)P (w|α,M)dw (3)

[32] assume the noise is Gaussian in the training data set.
Therefore, the previous distributions of their weights are also
Gaussian.

P (D|w, β,M) =
1

ZD(β)
exp(−βED) (4)

P (w,α,M) =
1

Zw(α)
exp(−αEw) (5)

Here ZD(β) = (πβ )
n
2 and Zw(α) = (piα )

N
2 . By replacing

them in eq. (2)

P (w|D,α, β,M) =
1

ZF (α, β)
exp(−F (w)) (6)

Once again by applying eq. (4) and substituting it in eq.
(6), the following are obtained

P (D|α, β,M) =

1
ZD(β) exp(−βED)

1
ZW (α) exp(−αEw)

1
ZF (α,β) exp(−F (w))

(7)

P (D|α, β,M) =
ZF (α, β)

ZD(β)Zw(α)
(8)

We evaluate ZF (α, β) using Taylor series expansion, and
obtain the normalization constant by

ZF = (2π)
N
2 (det((HMP )−1))

1
2 exp(−F (wMP )) (9)

where the Hessian matrix of the objective function is
represented by H . To optimize the regularization parameters
α and β, it is necessary to solve H at the minimum point
wMP obtaining

αMP =
γ

2Ew(wMP )
(10)

βMP =
n− γ

2ED(wMP )
(11)

Here γ = N − 2αMP tr(HMP )−1 represent the numbers
of parameters in the ANN.

The activation function influences the training process,
which is the transfer function between the parameters. The
most commonly used activation functions are linear, thresh-
old, gaussian, sigmoid and hyperbolic tangent sigmoid. A
sigmoidal activation function was employed, as it combines
different behaviours as linear, curvilinear and near-constant,
as expressed in eq. 12.

f (x) =
1

1 + e−x
(12)

Where x is the weighted sum of input.
The data were split into random subsets: 70% for the

training, 15% for the correlation and 15% for the test, and
the convergence was achieved in 1000 iterations. The weights
were obtained from the toolkit of MATLAB as a result of
the supervised learning process. A two-layer feed-forward
network was used, and the number of hidden neurons were 40
and 44 using the fitnet tool. The training was performed using
Bayesian Regularization (trainbr). It has performed using one
pass through training set (1 epoch), the weights and biases of
the network are assumed to be random variables. The novelty
of this paper deals with the introduction of parameters to
estimate S-N curve as input.
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Fig. 1. Topology of the proposed ANN

TABLE I
CHEMICAL COMPOSITION IN %.

Al Cr Cu Fe Li Mg Mn Si Ag Ti Zn Zr

5026 93.80 0.12 0.10 0.40 0.00 5.05 0.12 0.30 0.00 0.00 0.10 0.00

2198-T851 93.83 0.05 3.20 0.10 0.95 0.52 0.50 0.08 0.30 0.00 0.35 0.11

2024-T3 92.05 0.10 4.35 0.50 0.00 1.50 0.60 0.50 0.00 0.15 0.25 0.00

Fig. 2. Fatigue life prediction methodology

The inputs used are the chemical composition shown in
table I, mechanical properties, estimated S-N curves and
correction factor. Although [31], proposed normalization of
the parameters, the process has been designed to use the raw
data in the inputs as well as the forecast output.

The last parameter used is the relationship between the
UTS represented as Su and the applied load expressed as:

KANN =
Su
Si

(13)

Where Si is the amplitude at the ith load level.
The fatigue life prediction methodology is shown in Figure

2. Statistical analysis is necessary to train the network to
know the scatter (slog). The formula for standard deviation
is given as:

slog =

√√√√ 1

N − 1

N∑
i=1

(xi − µ)2 (14)

where µ is the mean value at ith load level, xi is the
sample and N is the sample number.

B. Estimated S-N Curve Parameters for Aluminum
The relationship to estimate the S-N curve will be used to

generate parameters for evaluating aluminium and train the

ANN. The endurance limit Sbe is evaluated for 5x108 cycles
[33] and is described in eq. 15 for UTS below 336 MPa,
otherwise Sbe=130 MPa:

Sbe = 0.4× Su (15)

During fatigue assessment, it is necessary to consider
different factors that reduce the endurance limit. For a
probability of failure of 50% with a surface finish polished,
the relationship is expressed in eq. 16.

Se,R = Sbe × CL × CD (16)

Where CL is the load factor and CD is the size factor.
The size coefficient is defined by eq. 17:

CD = 1.189× d−0.097 (17)

The fatigue strength at 103 cycles (S1000) depends on the
type of loading, for a reliability of 50% is defined to estimate
(S1000−2) as shown in eq. 18:

S1000−2 = Su −
1

2
Su × ln

1

K
(18)

Where K is the factor that depends on the type of loading
for torsion K=0.63, for bending is K=0.9, and for axial load
K=0.75.

The first results are shown in figure 3 and have been
reported by Kikuchi et al. [34]. The UTS (Su) is 310 MPa,
the yield strength (Y s)= 152MPa and the specimen has a
radius of 27 mm (CD=0.807), load is bending CL=1; with
eq. 4 and 5, Se,R=100.12 MPa is obtained. Using eq. 7,
(S1000−2)=293.67 MPa.

The next results are for 2198-T851 and 2014-T3 reported
by Alexopoulos et al. [35] with an UTS of 484 MPa and
500 MPa respectively, yield stress = 432 and 391MPa re-
spectively. The specimens have a radius of 130mm, obtaining
CD=0.693. For its UTS Sbe =130 MPa for both cases, the
load is axial (CL=0.7) and modifying it by the coefficient
factors, using equation 4 is obtained Se,R= 63.09 MPa. With
equation 6, we have (S1000−2)=414.38 MPa for 2198-T851
and (S1000−2)=428.07 MPa for 2024-T3. The results are
shown in figure 4.
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Fig. 3. Fatigue aluminum 5056 adapted from [34]

Fig. 4. Results adapted from [35]

III. RESULTS AND DISCUSSION

In this work, different topologies were analyzed to reduce
the error; also, diverse training information was taken into
account. In the first neural networks, the chemical composi-
tion, hardness, Youngs’ modulus, yield stress, and UTS were
used as an input, and the term (S1000−2), SeR, the factors
CD and CL, the amplitude of load and a relationship between
the UTS and the load (eq.13) have been used to describe the
fatigue strength. To evaluate the capability of prediction, the
percentage error e is analyzed:

e = ABS

(
100− ANNi×100

µi

)
(19)

where ANNi is the fatigue life prediction and µi is the
mean experimental value at ith load level.

With all the input parameters and using eq.8, the ANN1
has an average error of 22.11% using 40 hidden neurons.
Some alloying elements are not present among the alloys
analyzed, and it was registered as a null per cent. In the
second network ANN2, the next elements were eliminated:
Li, Ti, Ag and Zr, improving the prediction reaching an aver-
age error of 15.26%. To evaluate the chemical composition
and tic strength influence on the forecasting of the ANN,
the next elements were eliminated: chemical composition,
Youngs’ modulus, hardness and yield stress, only are take

TABLE II
EXPERIMENTAL RESULTS AND FATIGUE LIFE PREDICTION.

Amplitude Mean N2 N2ANN

Material (MPa) Cycles Cycles % Cycles %

5056 220 69,600 33,865 48.65 69,595 99.99

2198 270 196,750 19,815 10.07 187,050 95.07
-T851 255 295,000 29,517 10.01 307,537 104.25

250 923,333 33,887 3.68 361,446 39.15

2024- 350 45,500 3,975 8.74 44,771 98.40
-T3 300 142,500 11,433 8.02 145,947 102.42

250 590,000 39,888 6.76 584,315 99.04

Fig. 5. Normalized prediction

into account the parameters that represent the fatigue strength
of the material, reducing the error to 10.72% using 44 hidden
neurons (ANN3). Eliminating the parameter that relates the
UTS with the applied load (S), the average error reaches a
value of 37.98% (ANN4). The best architecture and input
parameters are at ANN3.

To compare the prediction of load level, the normalized
prediction was evaluated using equation 20, which is shown
in figure 5:

normalized prediction =

∑n
i=1 xi

ni ×ANNi
(20)

where xi are the cycles and ni the samples at the ith load
level. ANNi is the fatigue life prediction at the ith load
level.

It can be expected that the best prediction is around 1;
on the other hand, the dispersion is taken into account as
shown in figure 5, completing the average value as well as
the normalized prediction. The best architecture and input
parameters are at ANN3. The prediction value per alloy
and the prediction with damage rule (N2) are summarized in
Table II.

After validating the proposal, fatigue life prediction has
been performed to aluminum alloy 7050-T7451 [36], and
aluminum alloy with UTS=179.24MPa only with ANN. Ex-
perimental results are shown in figure 6 and 7, respectively.

The results for torsional as well as axial test are shown in
table III, it has an average error of 1.683 %.

The last set of results are summarized in table IV, it has
an average error of 5.66 %.

To evaluate if this proposal can be applied to other
aluminum alloys, Scanning Electron Microscopy (SEM) was
used to evaluate if the crack is on a specific component.
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Fig. 6. Results adapted from [36]

Fig. 7. Experimental results

TABLE III
FATIGUE LIFE PREDICTION 7050-T7451.

Amplitude Mean N2ANN e

Load (MPa) cycles cycles %

Torsion 173.2 57,067 57,064 0.004

Torsion 118.4 368,000 367,947 0.014

Torsion 108.6 895,000 894,972 0.003

Torsion 86.6 2,622,500 2,925,957 11.571

Torsion 67.7 6,936,667 6,936,724 0.000

Axial 205 61,900 61,900 0.000

Axial 180 77,340 77,340 0.000

Axial 146 179,000 172,630 3.558

Axial 129 223,500 223,500 1.918

TABLE IV
FATIGUE LIFE PREDICTION WITH ANN.

Amplitude Mean N2ANN e

(MPa) cycles cycles %

110.0 109,056 109,056 0.0
94.0 322,703 322,703 0.0
87.0 442,667 442,667 0.0
78.7 470,574 577,148 22.647

Figure 8 shows the crack, and in figure 9 is shown the

Fig. 8. SEM analysis

Fig. 9. Composition analysis

composition.
The inclusion is of alumina (Fig.9). The crack is not

nucleated on other components of the alloy. Based on this
analysis, to predict fatigue life using ANN, it is unnecessary
to include the chemical composition in the ANN structure.

IV. CONCLUSION

For the aluminum 5056 the prediction has been improved
51.34% using ANN. The prediction for results of [35] in
2024-T3 has been improved 71.57% for the three load levels,
and for 2198-T851 the prediction has been improved in an
average of 92.11% for the three load levels. Based on these
results, it is believed that the relationship (eq. 6) can be used
to estimate parameters for aluminum as an input of ANN.
The average prediction using ANNs for the three aluminum
alloys is 89.28%.

It is possible to predict the fatigue life of a set of samples
foretelling its mean value as in experimental fatigue life
analysis; however, depending on the test conditions and
material parameters, it is necessary to evaluate the ANNs
results under supervised training.

The topology of the network depends on the nature of
the investigated problem. As well as in the inputs, it was
necessary to adjust it to get the best correlation. Due to the
minor number of training inputs in the last networks, it was
necessary to increase the hidden neurons to generate through
the ANNs internal parameters correlation.
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