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A Black-Litterman Portfolio Selection Model
with Investor Opinions Generating from
Machine Learning Algorithms
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Abstract—Generation error is one of the shortcomings of
the classical mean-variance portfolio selection model which
would result in unstable performance in out-of-sample data
sets. Machine learning provides several potential solutions
for reducing the generalization error, such as adding penalty
terms and random sampling. Due to some significant advan-
tages of machine learning algorithms, we implement Black-
Litterman (BL for short) series portfolio models integrated
with quantitative opinions generating from machine learning
algorithms in this paper. And, the fundamental factors in the
Fama-French model form the basis of quantitative opinions.
Considering the non-linearity among fundamental factors, we
construct high-order terms and cross terms of basic features
by the approach of dimension-increasing transformation. A
multi-period portfolio strategy is designed in our work for the
timeliness of quantitative opinions, the experimental results
reveal that the optimal BL model with investor opinion
generating from Random Forest gained over 20% average
annual return and a Sharpe Ratio of 1.25. By comparison,
S&P 500 index gained about 14.94% annual return and a
Sharpe Ratio of 1.00, the 1/N strategy gained about 15.92%
annual return and the Sharpe Ratio of 0.99. Moreover, the
BL series models are more diversified and robust, about 30%
to 60% of assets are selected to construct the portfolio. Even
when the transaction cost is taken into account, our proposed
models still obtained higher cumulative returns than S&P 500
if the transaction cost is lower than 30% %.

Index Terms—Portfolio selection, Machine learning, Black-
Litterman, Factor model, Non-linearity.

I. INTRODUCTION

HE parameters in the mean-variance model proposed

by Markowitz (1952) [1], it for expected return and
for risk, are estimated from historical data, and the port-
folio weights can be calculated by the convex quadratic
programming problem with the two parameters. This sem-
inal theoretical model marked the inception of modern
portfolio theory. However, scholars have found that several
obvious shortcomings exist in the mean-variance model,
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such as high sensitivity for inputted parameters and un-
stable performance in out-of-sample data sets [2], [3], [4].
An enormous amount of researches have been done to
overcome these drawbacks. Goldfarb & Iyengar (2003)
[5] built the robust portfolio selection model considering
the worst case of estimated parameters. The proposed
worst-case model can be reformulated into a second-
order cone programming (SOCP) for solutions. And, the
worst-case portfolio model provides hard guarantees on
the performance. Based on Goldfarb & Iyengar’s model,
Zhu & Fukushiama (2009) further proposed the worst-case
CVaR robust portfolio selection model [6] dealing with
the uncertainty of the probability distributions. However,
the issue of conservatism influences the performance of
robust portfolio models in numerical tests, especially in the
scenario of high noisy data. From the point of Bayesian
analysis, Black & Litterman (1990, 1992) proposed a
portfolio selection model incorporating subjective views
[7], [8], which overcomes the problems of the sensitivity of
parameters, highly-concentrated portfolio, and estimation
error maximization to some extent [9], [10]. The main
contribution of the Black and Litterman model is that
predictive opinions are integrated into the classical mean-
variance framework. Practically, the performance of the
BL model depends on the accuracy and predictability
of quantitative opinions considering the complexity and
dynamic nature of the financial market.

According to the review of related literature, a variety of
intelligent forecasting methodologies have been employed
for generating investor views. Didenko & Demicheva
(2013) used ensemble learning algorithms to generate
investor opinions in the Meucci portfolio model[11]. In
their work, the random forest ensemble learning algorithm
is the only predictor for producing investor views, which
may be not comprehensive enough. Asad (2015) [12]
devised an ensemble system for stock prediction, support
vector machine (SVM), relevance vector machines, ran-
dom forest, and k-nearest neighbor are employed in their
framework. Although rather logical and comprehensive
the ensemble system is, the binary classification of labels
can not provide enough descriptions for the financial
market. With the development of computing power and
artificial intelligence, several hybrid models are developed
and employed in financial forecasting. Kim et al (2018)
[13] devised a hybrid model, integrating Long short-term
memory networks (LSTM) with GARCH-type models for
volatility forecasting. The empirical analysis illustrated
that their hybrid model enhances the prediction perfor-
mance in stock market volatility. Krisjanpoller & Minutolo
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(2018) [14] designed a hybrid model integrating GARCH,
ANN, and PCA for volatility forecasting in the market of
cryptocurrencies. Numerical tests on the price of bitcoin
revealed the feasibility of this hybrid model. Kara et al
(2019) constructed a BL portfolio model with investor
views generating from a hybrid model [15]. In their model,
the investor views are given by e—SVM with inputted
indicators predicted by GARCH. However, the significant
advantages of ensemble models are not exerted in their
portfolio selection model.

In this paper, for the purpose of overcoming the con-
servatism in the robust portfolio model as well as the
drawbacks mentioned above in the mean-variance model,
we are committed to proposing a Black-Litterman port-
folio selection model with investor opinions generating
from multiple machine learning algorithms. First of all,
the factors developed by Fama & French (1993, 2012)
[16], [17] are the fundamental predictors, which proved
to be able to explain more than 90% of the market
return rate. That is different from similar work used
technical indicators [18]. According to the conclusions of
Gu et al (2018) [19], the non-linearity of factors and the
interaction between predictors should not be neglected,
hence we construct high-order terms and cross terms at
the stage of preprocessing. Secondly, several machine
learning algorithms including Logistic Regression (LR),
SVM, Random Forest (RF), XGBoost (XG), and Multi-
layer perceptron (MLP) are utilized for generating investor
opinions. Considering the issue of overfitting in machine
learning algorithms, we apply some techniques such as L
regularization (Lasso), Lo regularization (Ridge), elastic
nets, and principle components analysis (PCA), et al for
curbing overfitting. Finally, we construct a multi-period
Black-Litterman portfolio selection model with regularly
updated investor opinions. For comparison, market index
(S&P 500 index) and benchmark portfolios including 1/N
strategy [20], mean-variance (MV) portfolio, and worst-
case robust portfolio are tested in the same data set.
Moreover, to further simulate the real trading conditions,
the transaction cost is considered.

The main contribution of our work is threefold and
could be concluded as follows:

1) Slightly different from the classical Black-Litterman
portfolio model, investor views derived from multi-
ple machine learning algorithms are integrated into
the portfolio framework. It can be found in a volu-
minous literature that learning algorithms, as well as
shallow neural networks, are feasible on forecasting
future directions of the various types of assets [21],
(22], [111, [23], [24], [25], [26], [13], [14], [27],
[28], [29], [30], which provides the empirical basis
for our work.

2) A dynamic portfolio scheme is designed in virtue
of the validity and timeliness of investor opinions.
The data set containing 30 industry from Kenneth
R. French is used for evaluating our model by
comparing with other portfolio frameworks such as
naive diversification (1/N) strategy, mean-variance
portfolio, and worst-case robust model. Moreover,
multiple risk-adjusted indicators are exhibited for

further analysis.

3) We further consider the diversification of the pro-
posed model, the results of weight analysis are
presented in section 4.E. Also, we investigate the
diversification of portfolios from two angles: the
number of assets selected in a portfolio and the
maximum weight allocated in a portfolio. Also, the
transaction cost is taken into account as well to sim-
ulate the real trading conditions. The corresponding
results of sensitivity analysis are revealed in section
4.F.

The paper is organized as follows: Section 2 introduces
the Black-Litterman portfolio selection model and the
worst-case robust portfolio selection model. Section 3
reveals the machine learning algorithms and the mecha-
nism of forming and applying for investor views in BL
series models. The numerical tests and analysis of results
are presented in Section 4. Finally, the conclusions and
discussions are in Section 5.

II. PORTFOLIO SELECTION MODELS

In this section, we introduce the classical Black-
Litterman model and the worst-case robust model.
Both portfolio models overcome the drawbacks of the
Markowitz model to some extent.

A. Black-Litterman portfolio model

Assuming that there are N risky assets could be invested
in the market, the NV x 1 vector r represents the return rate
of assets following a multivariate normal distribution: r ~
N(p,X). In the condition of market equilibrium, every
investor holds the market equilibrium portfolio weg, if the
risk aversion coefficient is A, then the market equilibrium
return rate' I = AXw,,. The expected return rate of assets
w1 could be split into two parts, the first part is IT mentioned
above, and the second part is residual €, ~ N(0,7Y),
T represents the uncertainty of the estimation X from
samples. According to the property of Gaussian normal
distribution, we have g ~ N (I, 7X).

If experts have K investor opinions about N assets in
the market, then the dimension of the opinions matrix P
is K x N, where PT = [py,po,...,px]. And Q is a K x
1 vector that represents the expected return rates, where
QT = [q1,q2, - - - qx]. The relationship between vector P
and Q satisfies Pu = Q + €,, where €, ~ N(0,9Q) is
the measure of the investor opinions uncertainty. Under
the condition of i.i.d, the matrix  is a K x K diagonal.
Also, we could derive the statistical property based on
Gaussian distribution as follows:

Pu~N(Q,9Q)

In order to solve the BL model in the Bayesian framework,
we assume that the residual €, and €, satisfy the condition
of independent distribution as follows:

€ 5 0
E ) ~NL{ 0,
€ 0o Q
Tn the condition of market equilibrium, each investor has the identical

optimization problem max w”TI — AwT Tw, the optimized IT* could be
reached through the first-order condition.
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Fig. 1. The flow chart of Black-Litterman model

The posterior distribution of returns is derived according
to the Bayesian formula:

[(Q,p)  f(Qu)f(p)

FQ)  [F(QIw)f(k)dp

where the second equation could be interpreted from
the perspective of machine learning: f(w) is the prior
distribution of return-on-assets, f(Q|u) is the likelihood
estimation, and | f(Q|pg)f(p)dp is the normalized term.
We can infer the relationship among variables according
to the analysis above:

p—II=¢, ~N(0,7X)
Pu—Q=¢ ~N(0,Q)
Overall, the formula of posterior distribution about ( is as

follows, and the flow chart of Black-Litterman model is
shown in Fig. 1.

BIQ ~ N((8) " + PTOIP) () M + PTRIQ),
[(rZ)~ '+ PTQ 'P] )

f(uQ) =

)]
In the Black-Litterman framework, subjective opinions
are integrated the into portfolio model, which would affect
the parameters f and 3 in the classical mean-variance
model. It can be found that the actual performance of the
Black-Litterman model depends on the accuracy and unbi-
asedness of investor opinions. However, subjective views
derived from human-beings may hard to be absolutely
objective and fair. That is the main reason for substituting
subjective views with opinions generating from machine
learning algorithms.

B. Worst case robust portfolio model

On the basis of robust optimization [31], [32] and factor
model [33], [16], Goldfarb et al constructed the robust
portfolio model. The relationship between return rates and
factors can be built up with a linear equation: r = p +
VTf + €, where p € R™ is the vector representing the
mean values; V. € R™*" is the factor loading matrix;
f € R™ is the returns vector of market-driving factors;
€ ~ N(0,Q) is the vector of residuals and the variance-
covariance matrix > 0.

The factor model assumes that the residual vector
€ and the factor return vector f are independent, the

variance-covariance matrix of factors is symmetric and
positive semi-definitive, that is, F > 0. Accordingly,
r ~ N(u, VIFV +Q), where VIFV +Q is the approxi-
mation of the variance-covariance matrix ¥ estimated from
sample data. In the robust portfolio model, the uncertainty
structure of parameters is set as follows:

Sl, = {VZV:V()+W, |||W7,||g Sp“’L: 1,27...,n}
S ={R:Q =diag(w),w; € [w,;,w;],i=1,2,...,n}
SM:{”M:”O+§5|§Z| S’Yi,i: 1,2,...,77/}

Let ® represents the vector of portfolio weights and

consider the worst-case parameters, we can construct the
Min-Max portfolio model as follows:

min max ||V‘I>||2f +o70d
VeS, !

2

min pu7® > o
nES,

17¢ =1

s.t.

where ||x|; = VxTFx, « is the lower bound of target
return.

Assuming that the set of parameters in the worst-
case model is finite, then portfolio model (2) is convex
quadratic programming, which can be reformulated into
second-order cone programming (SOCP) by introducing
some auxiliary variables, refer to [5] for more details.

Due to the only worst case is taken into account,
the robust portfolio model is quite conservative. How to
overcome the conservatism in a robust portfolio model has
become an academic and industrial issue. For the purpose
of illustrating the advantages of the proposed portfolio
model, we employ the worst-case robust portfolio model
as one of the benchmarks.

III. MACHINE LEARNING ALGORITHMS AND INVESTOR
OPINIONS INCORPORATING

In this section, several machine learning algorithms
and the mechanism for the synthesis of investor opinions
generating from these artificial intelligence algorithms are
introduced.

Generally, the quantitative view from investors is in a
form of a numerical interval with a certain confidence. In
order to build the relationship between predictive views
and market tendency, a method of label discretization
[34] is employed at the stage of preprocessing. Also, the
confidence level of investor opinions is calibrated by a
variance-covariance matrix 2.

A. Logistic Regression

Logistic Regression is developed for predictive anal-
ysis, which is used to describe data and to explain the
relationship between one dependent binary variable and
several nominal, ordinal, or interval variables. More than
binary classification, multi-class classification can be done
through the one-vs-rest scheme or cross-entropy loss func-
tion.

Sigmoid is the function which could map the result of
linear regression § = 87x to (0,1), define the probability
of label y is as follows:

1 60Tx

T l4e0Tx  14e07x

P(y) =g(j) = g(0"x)
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Assuming that the range of label y is {1,2,..., N}, the
equation of multi-classification could be derived by the
one-vs-one scheme as follows:

P(y = nl0,x) =
P(y = N|0,x) =

Estimation of parameters in Logistic Regression could be
solved resort to Maximum Likelihood Estimation (MLE),
in which the logarithmic likelihood function could be ef-
ficiently solved by newton method, quasi-newton method,
or gradient descent method.

B. Support Vector Machine

Support Vector Machine (SVM) is a kind of supervised
learning algorithm [35] originating from statistical learn-
ing theory (SLT). In SLT, due to the scarcity of samples,
the rule of Expected Risk Minimization is substituted with
Empirical Risk Minimization (ERM). Nonetheless, if the
complexity of the model is high while the number of
samples is limited, the learning model would be overfitting
under the rule of ERM [36]. To avoid such a dilemma,
Structure Risk Minimization (SRM) is chosen as the
objective function in SVM that means approaching the
true risk by empirical risk and confidence interval. In the
condition of a limited number of samples, SVM would
learn the model with appropriate complexity[37], [38].

The principle could be illustrated through a binary
classification demo. Assuming that the train set is
{(zs,9:)},4 = 1,2,....,m and x; € R" y; € {0,1}, the
objective of SVM is to optimize the following constrained
equation with regularizer:

mm f||wH2 + CZET

1=1

" yi(wlz; +b) +& >1
s.t.
& >0

Kernel function ®(-) is introduced in the case of nonlinear
separated data. The primal problem could be converted
into the dual form with kernel function as follows:

mln E EalaJylyJ (x4, 25) gat

i =0
s.t. L;ay
OSO&Z‘SC

where the dual problem is convex quadratic programming
if ®(-) is the positive definite kernel (such as Gaussian,
Polynomial, and Sigmoid) by Mercer theorem.

C. Random Forest

Random Forest (RF) [39] is an ensemble algorithm
for classification or regression, by constructing N base
estimators then synthesizing the outputs in a manner of
bagging. Assuming that there are M features, each base

estimator would randomly sample at most k ~ /M fea-
tures for decision. Define information gain as the criterion
for tree node splitting as follows:

Gain(D, k;) = Entropy(D) — 21: %Entropy(Di)
where the parent node is D, the children nodes after
splitting are D;, k; represents the features to be split. In
general, we select the decision tree as the base estimator
and split tree nodes according to the rule of the largest
information gain about which feature could bring. When
the leaves reach the threshold of impurity, Random Forest
then vote on the results calculated by /N decision trees, the
final output, R(x), for classification satisfies the equation
as follows:

R(x) = argmax Z I(r;(z) = R(x))

where r;(x) is the result of base estimator ¢ and I(-) is
the indicator function.

In Random Forest, the pruning method is used to
overcome the issue that a single classification model (e.g.
decision tree) is inclined to overfitting. To improve the
generalization and reduce the conservatism of the Black-
Litterman portfolio model, it is reasonable to adopt the
opinions generating from Random Forest.

D. XGBoost

XGBoost (Extreme Gradient Boosting) [40] is another
ensemble learning algorithm. Different from bagging in
Random Forest, boosting [41] is used in XGBoost for
synthesizing outputs. In XGBoost, base estimators do not
make the decision independently and parallelly but try
to minimize objective loss function L(#) by the scheme
of greedy. Similar to SVM, the two objectives of the
precision of the model (bias), and the stability of the model
(variance) are taken into account together.

m K
= 1w 9i) + Y 2U)
i=1 k=1

the structure of Q(fx) can be illustrated in the following
equation with I.; and Lo regularizers:

Q(fr)

where the [(y;, 9;) is the deviation of predictive results,
Q(fr) represent the complexity of ky, tree and T is
the number of leaves. Due to the Classification and
Regression Trees (CART) [42] is the base estimator of
XGBoost, the complexity could be defined through two
hyper-parameters: v and 7. Take the second-order form
of Taylor expansion to approximate the objective function
in the Kth iteration. Define g; and h; as the first-order
gradient statistics and the second-order one, we could get
the form of objective function without any constant term
in iterations as follows:

1 1
=T+ §a|wj| + 5)\Hw||§

m

LK) ~ 21 [g: frc (2:) + 2hi f2 (22)] + QU fre)
ol (1 (K D

gi = (g (K i) )
62l( K 4 ~ (K — 1))

hi = a(ZSKy )
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E. Multi-layer Perceptron Neural Network

Multi-layer perceptron (MLP) is a class of feed-forward
neural networks with hidden layers. In MLP, the calcula-
tion results of layer ¢+ would be forward propagated to layer
1+ 1 by the full connection between layers. The nonlinear
activation function used in a neuron is o(+), and the weight
matrix is W, and the bias is b, the number of total layers
is I, the input vector is x, we could get the output of layer
¢+ 1 as follows:

yi+1 — O,(ZiJrl) — O,(Wi+1yi +bi+1)

Define the loss function between true label y and predict
label y! is L(W,b). The loss is propagated backward to
each layer according to the back-propagation algorithm,
as well as update the weight matrix W and the bias b
based on the layer’s contribution, 83+%, to the loss function,
L(W,b), and the learning rate is 1.

1
LW.5) = L’ )3
5§t — (Wi+1)T5j,i+1 oy} (297

Wi=wi_ nzdj,i(yj,iq)T
j=1

=0l —nd 5
j=1

Several techniques are integrated into MLP neural net-
works for reducing generalization error, such as learning
rate, batch, and early-stopping. Throughout the present
research, neural networks have been widely used in many
academic fields[43], [44], [45], among which the shallow
neural network with about three hidden layers is suitable
for fitting financial data with a low Signal Noise Ratio
(SNR) [19].

F. Mechanism of incorporating investor opinions

The generation error of model, E(f; D), is defined as
follows:

E(f; D) = bias*(x) + var(x) €
——  N——
Bias Variance
where bias?(x) measures the difference between the pre-
dicted values and the true values of the model, which
represents the precision of the model. var(x) measures the
difference between each predicted value and the average
of predicted values, which represents the stability of
the model. €? is the idiosyncratic term that can not be
interpreted by bias and variance.

Generally, the bias would be decreasing and the variance
would be increasing as the complexity of the model
increasing; the bias would be increasing and the variance
would be decreasing as the complexity of the model de-
creasing. According to the VC theory [46], the complexity
of the model is highly related to the number of features,
and therefore we should select the features of higher
explanatory for modeling.

In order to reduce the generalization error in the clas-
sical mean-variance model, these investor opinions gener-
ating from machine learning algorithms are incorporated

Algorithm 1 Logic of BL series modeling

Input: The variance-covariance matrix X of sample data;
The coefficient of uncertainty for sample data moments
7; The uncertainty matrix of opinions (2; One of ma-
chine learning algorithm M;

QOutput: The optimal portfolio weights w;

Training machine learning models by M and Setting
rules for predicting;

Generating opinions for assets, pick matrix P and
predicting return rate vector @Q);

Calculating the posterior moments /i and ) by equation
(2.1);

Making objective function with corresponding con-
straints;

Solve objective function, get portfolio weights w;
return w;

Algorithm 2 Logic of back testing
Input: The data frame of industry D; The length of
training window 7'r; The length of testing window T'e;
Output: The cumulative return curve R;
In training window, get portfolio weights w from algo-
rithm 1;
In testing window, calculating the cumulative returns by
portfolio weights w;
Rolling forward along the time axis;
return R;

into the Black-Litterman model through the matrix of
opinions P and the vector of the expected returns (.
As a comparison, we also examine the performance of
benchmark portfolios widely used in academic and indus-
trial. The pseudo-code of BL series models is revealed
in Algorithm 1 and the pseudo-code of backtesting is
revealed in Algorithm 2.

According to related theories in economics and finance
[47] [16] [17], the nature of the excess return is to bearing
the extra risk that can not be interpreted by common
factors. From the perspective of risk sources, the risk
could be classified as market risk, size risk, book-to-
market ratio risk, profitability risk, and reinvestment risk.
We select Fama French five factors (see TABLE 1) as the
basic features because more than 90% of the return rate
could be explained from the point of the five fundamental
factors. Scholars like Gu et al (2018) [19] pointed out that
linear relationship among factors is given due attention
in traditional econometric models, but there are relatively
few researches on non-linear relationship and cross effect
between factors. Actually, Some machine learning algo-
rithms such as SVM, tree models, and neural networks
are more suitable for non-linear modeling, but logistic
regression, as well as classical econometric models, is
good at calibrating linear relationships. In order to capture
the non-linear relationship between factors, we construct
high-order terms and cross terms of basic features at the
stage of preprocessing.
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TABLE 1
FUNDAMENTAL FACTORS IN FAMA FRENCH MODEL

Item Formula Description

Mkt-Rf  rpp — 7y the excess return rate of market, market risk

SMB rs —rp  the return spread of small minus large
stocks, size risk

HML rg —ry  the return spread of cheap minus expensive
stocks, value risk

RMW rr —rw  the return spread of the most profitable firms
minus the least profitable

CMA rc —ra  the return spread of firms that invest con-
servatively minus aggressively

IV. EMPIRICAL RESEARCH
A. Data

In this paper, we select USA 30 industry portfolio
daily data from Jan. 2010 to May. 2019 for numerical
testing, all of the data could be downloaded from Ken.
French website. According to the present academic results,
the USA financial market is relatively mature and is
approaching a weak efficient market. Moreover, the SNR
is higher in industry data than individual stock data, which
is more fit for model comparison. To examine the fitting
and generation of the proposed portfolio model, we split
time series data into the training set and testing set for
parameters fitting and model validating respectively.

B. Models and benchmarks

To test the validity of proposed models, we select 1/N,
mean-variance, worst-case robust portfolio, and S&P 500
index as benchmarks. The reasons for selecting these
benchmarks are as follows: DeMiguel et al (2007) [20]
have illustrated that 1/N is one of the significant refer-
ences as benchmark portfolio. Also, the performance of
1/N in out-of-sample is rather stable. The mean-variance
portfolio is the most classical model widely referenced
in academics. And the worst-case robust portfolio shows
high stable performance in out-of-sample with certain
probability guarantees [5], [6], but there exists theoretical
conservatism in the worst-case robust model. The three
benchmarks provide references from different theoretical
angles, and S&P 500 index provides a reference from a
practical point of view. We would look at the performance
of portfolio models under the no-shorting constraint, the
concrete description of BL series models is listed in
TABLE II.

C. Accuracy and stability

Quantile discretizer is the method employed to classify
the rate of returns, and five levels are defined to form
predictive opinions. We set 50% as the reference for
accuracy which was tested by the one-sided t-test, statis-
tical indicators contain accuracy and stability of machine
algorithms used are shown in TABLE III. It can be found
that the mean accuracy of Logistic Regression, Random
Forest, and XGBoost are significantly higher than 50% and
the range of accuracy is between 20% and 35%. The mean
accuracy in descending order is XGBoost, Random Forest,
Logistic Regression, SVM, and MLP. In terms of numeric

TABLE II
DESCRIPTION OF BL SERIES MODELS AND BENCHMARK PORTFOLIOS

Models Description

BL-LR BL model integrated with investor opinions
generating from Logistic Regression

BL-SVM BL model integrated with investor opinions
generating from SVM

BL-RF BL model integrated with investor opinions
generating from Random Forest

BL-Xg BL model integrated with investor opinions
generating from XGBoost

BL-MLP BL model integrated with investor opinions
generating from MLP

1/N equally weighted portfolio

MV mean-variance portfolio

Worst case  robust portfolio considering the worst case

of parameters

TABLE III
TABLE 3: ACCURACY OF MACHINE LEARNING ALGORITHMS

Algorithm LR SVM RF XGBoost  MLP
Lowest Acc. 39.78%  37.75% 43.49%  61.52% 37.92%
Mean Acc. 53.03%  52.32% 54.53%  70.47% 49.04%
Highest Acc. 69.76%  69.59%  68.79%  84.46% 62.28%
Range of Acc. 29.98%  31.84% 2529%  22.93% 23.46%
Std. of Acc. 6.95% 7.53% 6.26% 5.02% 5.89%
P-value 0.01***  0.05** 0.00***  0.00*** 0.71

* means significant on the level of 10%
f* means significant on the level of 5%
™ means significant on the level of 1%.

stability, from the points of range and standard deviation,
the order of stability from high to low is XGBoost, MLP,
Random Forest, Logistic Regression, and SVM. Overall,
XGBoost reveals the best comprehensive performance.

D. Portfolio performance and analysis

The researches results of Bo et al [18] show that
the investor opinions generating from machine learning
algorithms are timeliness. In this paper, we set up the
monthly warehouse transfer rule following the convention
in the financial industry. The rolling window scheme (see
Fig. 2) is used [48]. We set the training period to 150
days and the testing period to 30 days. BL series models
consider the most up-to-date training samples at each
period.

Fig. 3 reveals the cumulative returns of BL series
models and benchmarks. It can be found that during the
whole period of backtesting, BL-RF obtains the highest
cumulative return, 230.9%. The profitability and risk-
adjusted-performance indicators of portfolio models and
benchmarks are shown in TABLE IV. Consistent with
our theoretical analysis, all optimized strategies are higher
than S&P 500 index in terms of cumulative return. As
far as portfolio /3, the mean-variance model and worst-
case robust model prefer choosing a conservative and
defensive investment style, which could also be derived
from the objective functions. However, BL series models
prefer choosing an active and aggressive investment style,
that is, sacrificing certain stability for higher returns.
From the view of macroeconomics, in 2010-2019 the U.S.
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economy has been gradually out of the woods of the
subprime mortgage crisis and began to recover slowly,
which means the total tendency of economics is in a
narrow range of shocks. Some BL series models such
as BL-RF, BL-MLP, and BL-Xg still obtain significantly
higher cumulative return and information ratio than other
portfolios or benchmarks. In terms of risk, BL-RF, BL-
MLP, and BL-Xg models get similar maximum drawdown
(MDD) to S&P 500 index. Overall, the empirical results
show that machine algorithms that are adapted in modeling
non-linear relationships including tree models and shallow
neural networks are more suitable for low SNR data
like financial series. The conclusion is similar to the
results obtained by Gu et al [19]. It is noteworthy that
the worst-case robust portfolio earns a higher cumulative
return than the mean-variance model, BL-LR model, and
BL-SVM model in backtesting. Meanwhile, the robust
portfolio has a lower annualized standard deviation than
the market index. From the perspective of model structure
analysis, the robust model [5] considers the decomposition
of variance-covariance ¥ = VEFVT +(Q, and calibrates the
uncertainty of the factor loading matrix V' is a space of
elliptical distribution, namely, V' = Vo + W, [|W;|l4 < ps.
Nevertheless, in the BL series models, the posterior of the
variance-covariance matrix is given by combining opinions
and moments of samples. Generally, the model for the
uncertainty of X is more passive in the robust portfolio
model because of certain human-defined static parameters.
Moreover, due to the dynamic nature of the financial
market, the solution of a static robust model that pays
more attention to risk-averse may result in an extreme
case instead. Empirical results show that the robust model
is at a disadvantage to other models in terms of MDD.
To overcome the shortcoming of conservatism to some
extent, investor opinions generating from machine learning
algorithms provide the classical Black-Litterman model
with predictive information. The validity of this approach
is demonstrated by BL-RF, BL-Xg, and BL-MLP portfolio
models in our numerical tests.

E. Weights Analysis

According to the present empirical analysis results, the
portfolio weights of the Markowitz mean-variance model

T End Date

Rolling window scheme for evaluating portfolios. The most recent obtainable data are added for updating investor opinions.

may be concentrated on a few assets, which would result
in insufficient dispersion of non-systemic risk. One of the
intuitive solutions to this problem is to add cardinality con-
straints then reformulate it to mixed-integer programming
(MILP), but in the case of the large-scale portfolio, the
efficiency of MILP is unsatisfactory. We would inspect
the dispersion of weights in BL series models from an
empirical perspective in this section.

The following two indicators are defined to evaluate the
dispersion of portfolio weights:

Indicator 1: The number of assets invested in a portfolio,
N. It is a direct indicator reflecting the degree of portfolio
dispersion. When more assets are invested, a higher prob-
ability of reducing non-systemic risk and obtaining stable
performance in out-of-sample [20].

Indicator 2: The maximum weight in the portfolio, W,
If Wihao 18 too high, it means that there exists excessively
concentrated weight in a portfolio and high non-systemic
risk. This indicator is inversely proportional to the degree
of portfolio dispersion.

Fig. 4 to Fig. 6 reveal that the risk indicators defined
above of BL-RF, BL-Xg, and BL-MLP. The descriptive
statistics of indicators are shown in TABLE V and TABLE
VI. It could be found that the number of allocated assets
is about 10 to 20 in the three proposed models, that is,
about 30% to 60% of all assets are invested. Regarding
Winaz, BL-RF obviously has lower W,,,, than BL-Xg
and BL-MLP. It can be inferred from portfolio 3 that
more aggressive assets are allocated in the BL-RF model.
Accordingly, the BL-RF model obtains higher annual
returns and information ratio at expense of bearing more
MDD and annual standard deviation.

FE. Transaction cost analysis

In this paper, we simulate a trading environment with-
out friction for backtesting. However, there are lots of
transaction costs in the real conditions, some explicit
costs including stamp tax, commissions, and transfer fees
can not be ignored. Moreover, there exist several indirect
influences in the process of warehouse transfer such as
slippage and price impact, etc. In this section, we inspect
the sensitivity of proposed models to transaction costs. For
simplicity, we set bi-directional transaction costs which is
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TABLE IV
INDICATORS OF PORTFOLIOS
. Benchmarks BL series models
Indicators
SP500 1/N MV Worst case  BL-LR BL-SVM  BL-RF BL-Xg BL-MLP
Cum. Ret. 146.80% 160.78%  202.82%  211.68% 164.86%  205.24% 230.9% 214.1% 225.4%
Annual Ret. 14.94% 15.92% 18.62% 19.15% 16.20% 18.77% 20.26% 19.29% 19.94%
Daily Ret. 4.29% % 4.57% % 4.94% % 5.18%% 4.67% % 5.23%% 5.58%% 531%%  5.49%%
Annual Std. 14.91% 16.15% 11.56% 13.78% 16.67% 16.19% 16.15% 15.49% 15.90%
MDD 19.78% 22.99% 11.34% 25.70% 27.72% 25.77% 21.96% 19.84% 21.26%
Port. 8 1.0 1.05 0.66 0.83 1.06 1.04 1.04 1.01 1.03
Sharpe Ratio* 1.00 0.99 1.61 1.39 0.98 1.16 1.25 1.25 1.25
Calmar Ratio 0.75 0.69 1.64 0.75 0.58 0.73 0.92 0.97 0.94
Info. Ratio 0.0 0.046 0.195 0.207 0.056 0.174 0.242 0.202 0.229
Jensen’s o 0.0 0.002 0.087 0.067 0.0023 0.032 0.046 0.042 0.045
Treynor Ratio 0.149 0.151 0.280 0.23 0.152 0.180 0.194 0.191 0.193

* Assuming that the risk-free rate in US is O from 2010 to 2019

a fixed ratio of volume. Fig. 7(a) and Fig. 7(b) show the
cumulative returns and the Sharpe Ratio of BL-RF, BL-Xg,
and BL-MLP under different transaction costs respectively.
We find that BL-RF is more sensitive to the change of
transaction cost. When the transaction cost is about 5%%,
BL series models still obtain cumulative returns higher

than the market index. And when the transaction cost
is slightly higher than 30%%, the performances of the
BL series models and the market index are approximately
flat. In terms of the Sharpe Ratio, BL-MLP reveals better
performance than BL-Xg and BL-RF, hence BL-MLP is
less sensitive to transaction costs than BL-Xg and BL-
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RF. Overall, with the development of artificial intelligence
and the popularization of automatic trading, the transaction
costs would gradually decrease.

V. CONCLUSIONS & DISCUSSIONS

The issues of conservatism and stability in uncertainty
are part of major research areas being under extensive
study. Several attempts have been made to solve these
problems in recent years. For example, some psychological
theories such as regret theory and prospect theory are in-
tegrated into classical portfolio selection framework [49],
[50]; skewness and kurtosis are taken into account break-
ing the limitations of normality and symmetry in asset
distribution [50], [51], [52], [53], [54]; fuzzy program-
ming and robust programming provide the fundamental
theoretical framework for dealing with uncertainty, which

has been widely used in both industries and academics
[50], [53], [55], [56]; statistical forecasting methodology
can also be incorporated into the Markowitz framework
through the Bayesian theory [15], etc. On the one hand,
the methodology of robust modeling exhibits excellent
stability in out-of-sample numerical tests, but relative high
conservatism. On the other hand, the Black-Litterman
model paves the path for combining investor opinions with
the classical Markowitz mean-variance portfolio model.
This work aims at providing relatively objective investor
opinions generating from multiple machine learning algo-
rithms for the Black-Litterman portfolio model. Moreover,
to further overcome the potential conservatism in portfo-
lio models, a dynamic scheme is designed for regularly
updating investor opinions and rolling portfolio models.

In this paper, we implement the Black-Litterman se-

Volume 29, Issue 2: June 2021



Engineering Letters, 29:2, EL._ 29 2 40

TABLE V
DESCRIPTIVE STATISTICS OF N

Model obs* Mean  Std Min  25% quan. Median  75% quan. Max
BL-RF 74 15.00 2.62 8.0 13.0 14.5 17.0 22.0
BL-Xg 74 13.66 250 9.0 12.0 14.0 15.0 22.0
BL-MLP 74 1347 251 7.0 12.0 13.0 15.0 19.0
* obs is the number of warehouse transfer during back test.
TABLE VI
DESCRIPTIVE STATISTICS OF Wax
Model obs*  Mean Std Min 25% quan. Median  75% quan.  Max
BL-RF 74 29.52%  7.59% 15.83%  23.63% 2891%  34.31% 51.77%
BL-Xg 74 39.94% 11.63% 19.60% 31.10% 37.15%  48.39% 71.94%
BL-MLP 74 39.85% 12.07% 20.99%  31.62% 37.93%  46.04% 80.56%
* obs is the number of warehouse transfer during back test.
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Fig. 7.

ries portfolio models incorporated with investor opinions
generating from several machine learning algorithms, in-
cluding Logistic Regression, SVM, Random Forest, XG-
Boost, and Multi-layer perceptron neural network. In the
empirical research stage, the effectiveness and robustness
of our proposed models are demonstrated using U.S.A 30
industry portfolio data set. For comparing and analyzing
the performance of BL series models, we select S&P 500
market index, 1/N portfolio, classical Markowitz mean-
variance portfolio, and worst-case robust portfolio as ref-
erences. It can be observed that:

1) All of the BL series portfolio models obtain higher
cumulative returns than S&P 500 and 1/N even if
transaction costs are taken into account. Except for
BL-LR, our proposed models outperform the mean-
variance portfolio in terms of returns. BL-RF, BL-
Xg, and BL-MLP obtain higher returns than all
benchmarks.

There exists relatively large volatility in our pro-
posed models than S&P 500 index, mean-variance
model, and worst-case robust portfolio model. How-
ever, BL-RF, BL-Xg, and BL-MLP reveal smaller
MDD than the worst-case robust portfolio model.
Regarding the risk-adjusted indicators, all BL series
models except BL-LR obtain higher Sharpe Ratios

2)

T T T T
0.0015 0.0020 0.0025 0.0030

trade fee

0.80 - T T
0.0000 0.0005 0.0010

(b) Sharpe Ratio

Performance of proposed portfolio models under different transaction costs

than S&P 500 and the 1/N portfolio. BL-RF obtains
the highest Information Ratio, and BL-Xg obtains
the second-highest Calmar Ratio (lower than the
mean-variance model). Overall, BL series models
reflect a relatively active and aggressive style which
is opposite to these chosen benchmark portfolios.
From the weight analysis, we can find that, about
30% ~ 60% of all assets are selected, which is
acceptable according to general risk management
regulations. Additionally, Indicator 1 and Indicator
2 we defined in section 4.E reflect that the proposed
models exhibit rather diversification and robustness
to some extent.

3)

Finally, possible further research direction may involve
different constraints such as cardinality and higher mo-
ments. Also, in this work, we only consider the overall
risk, several tail risk measures including VaR, CVaR would
be considered in our future work.
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