
 

  

Abstract—Obstacle detection is the key technology of 

environment perception for intelligent vehicle. To guarantee 

safe operation of an unmanned vehicle the fusion method of 

spatial information from lidar and machine vision is studied. 

The projection of the bounding box generated by lidar on 

machine vision image is designed. The detection area of obstacle 

is constructed. Moreover, the method of strong-classifier 

cascade connection is used to build a classifier. Specially, the 

Haar-like and HOG features within a huge amount of data are 

characterized based on AdaBoost algorithm. To achieve 

classification and recognition of the obstacles, the obstacle 

detection areas generated on the image are fused with the 

designed cascade classifier, and the effectiveness of the 

proposed fusion method is validated. Test results show that the 

obstacle detection method based on fusion of laser radar and 

machine vision shows higher detection accuracy. Under good 

weather conditions, compared with the detection method based 

on laser radar alone and based on machine vision alone, the 

proposed method increases the detection rate of vehicle obstacle 

by 18.33% and 12.74%, and increase the detection rate of 

pedestrian by 17.92% and 12.56%, respectively. Under the 

rainy weather, the detection rate of vehicle obstacle is improved 

by 38.44% and 14.28%, and the detection rate of pedestrian is 

enhanced by 29.34% and 15.84%, respectively. 

 
Index Terms—unmanned vehicle, obstacle detection, data 

fusion, laser radar, machine vision 

 

I. INTRODUCTION 

utonomous drive technology of intelligent vehicle 

involves environment perception, path planning, 

intelligent decision and motion control [1-3]. Among them, 

environment perception is to obtain surrounding environment 
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information of the vehicle through the on-board sensors, and 

then identify obstacles based on fusion of multi-source data, 

As a pre-condition for path planning, intelligent decision and 

motion control the environment perception is essential for the 

development of intelligent vehicle [4]. 

At present, three common modes are utilized to achieve 

environment perception for obstacle detection, including 

machine vision, millimeter-wave radar and data fusion of 

multiple sensors [5]. Data collected by camera affects 

machine vision-based obstacle detection results. The obstacle 

detection method based on machine vision has advantages of 

large detection range and perfect target information. 

However, it cannot obtain depth information [6]. 

Millimeter-wave radar has advantages of high resolution, 

high robustness to weather influence, and real-time feedback 

on relative position, speed and distance. However, the noise 

of such technology is too large to generate obstacle contour 

[7]. Under good weather conditions, lidar-based detection 

method of obstacle obtains a large amount of 

three-dimensional information of the environment directly, 

with small data noise and high measurement accuracy. 

However, the detection performance of such method is 

significantly decreased under bad weather [8]. 

Generally, a single sensor is inadequate to obtain sufficient 

driving environment information. Therefore, obstacle 

detection based on fusion of the information collected from 

dual or multi-sensors is designed. This advanced technology 

makes full use of multiple sensors, so it has improved 

perception accuracy and reliability [9]. Currently, data fusion 

between different kind of sensors has been commonly 

applied in practice, such as data fusion between millimeter 

wave radar and machine vision, data fusion between laser 

radar and machine vision, and so on [10]. 

As for obstacle detection based on fusion of millimeter 

wave radar and machine vision, the information about 

distance and angle of obstacle is confirmed by millimeter 

wave radar, and the obstacle recognition is realized via 

machine vision. However, such obstacle detection method 

shows high false warning rate and large missing rate target 

detection [11]. The obstacle detection method based on dual 

or triple machine visions uses the stereo camera to obtain the 

scale and contour data simultaneously, identifies the obstacle 

by V view, but fails to obtain depth information for path 

planning and intelligent decision making [12-13]. In contrast, 

using the obstacle detection method based on fusion of lidar 

and machine vision, the location of obstacle can be obtained 

by radar, and then the obstacle can be identified by image 

vision processing and classifier [14-15], so more accurate and 

comprehensive information can be obtained. However, the 

perception accuracy and real-time performance of the 

proposed method remain to be further improved due to the 
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low processing speed of input data [15-16]. 

To this end, a dual-sensors fusion method based on a 3-D 

32-line lidar and a monocular camera is proposed in this 

paper. By creating the area of interest for obstacle detection, 

it is possible to realize the extraction of Haar-like and HOG 

features, the design of cascade classifier, and obstacle 

detection in a real time manner. Specially, in chapter 1, the 

conversion of coordinate systems of laser radar and machine 

sensor is completed, and the projection method of bounding 

box generated by laser radar on machine vision image is 

proposed to construct obstacle detection area of interest. In 

Chapter 2, the method based on Haar-like and HOG features 

is designed to calculate the characteristic value of obstacle, 

and a cascaded classifier is created to detect obstacle. Chapter 

3 presents details about test and data discussion. 

II. OBSTACLE DETECTION REGION OF INTEREST  

A. Fusion of Spatial Information from Laser Radar and 

Machine Vision 

Four coordinate systems are designed in the machine 

vision system, including world coordinate system, camera 

coordinate system, imaging plane coordinate system and 

image pixel coordinate system. In this paper, the first one is 

defined as the body coordinate of the intelligent vehicle 

installed with camera. The camera coordinate system is 

created based on its center. The imaging plane and the pixel 

coordinate systems use physical and pixel units as 

benchmarks, respectively. There are two conversions of 

coordinate systems regarding the fusion of spatial 

information of lidar and machine vision.  One is the 

three-dimensional transformation from world coordinate 

system to camera coordinate system. The other one is the 

conversion from camera coordinate system to pixel 

coordinate system. The transformation uses imaging plane 

coordinate system is used as an intermediate medium to 

realize the conversion form three-dimension to 

two-dimension. 

Conversion from World Coordinate System to Camera 

Coordinate System 

As shown in Figure 1, world and camera coordinates are 

illustrated. They are represented by O-XwYwZw and 

O-XcamYcamZcam, respectively. The transformation relationship 

between the two coordinates belongs to the Euclidean 

transformation, that is, one has rotation matrix R and the 

other one has translation vector T. 

Therefore, for the same data in world coordinate and 

camera coordinate, the conversion is confirmed by the 

following formula. 

cam w

cam w

cam w

x x

y R y T

z z

   
   

= +
   
      

                        (1) 

The rotation matrix R is related to the installation position 

of camera, the heading angle φ, pitch angle δ, and roll angle ξ. 

T is determined by the camera installation position. 

cos cos sin cos sin

sin cos cos sin cos cos cos sin sin sin cos sin
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             (2) 

 
Fig. 1.  The conversion from world coordinate system to camera coordinate 

system 

Conversion from Camera Coordinate System to Pixel 

Coordinate System 

Figure 2 shows the schematic of the camera aperture. Point 

O and o1 represent the center of camera coordinate and the 

intersection of axis z and imaging plane, respectively. The 

distance between the two points is defined as f. The imaging 

and pixel coordinate systems are represented by o1-xcyc and 

o1-uv, respectively. Furthermore, point Q is projected to q 

from three-dimensional space to imaging plane. According to 

the triangular proportional relationship, the relationship is 

expressed as: 

X
x f

Z
=                                       (3) 

Y
y f

Z
=                                        (4) 

As shown in formula 5 and 6, the transformation 

relationship from point Q to point q can be expressed as 

q=MQ. 

0 0

, 0 0 ,

0 0 1

xZ f X

q yZ M f Q Y

Z Z

     
     

= = =
     
          

               (5) 

Given the above analysis, the relationship between camera 

coordinate system and imaging plane coordinate system is 

expressed as: 

0 0

0 0

0 0 1

x f X

Z y f Y

z Z

     
     

=
     
          

                        (6) 

 
Fig. 2.  Schematic of small-hole imaging model 
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In pixel plane, the size of each pixel is the product of dx 

and dy. Based on the following relationship, point q is 

converted from imaging plane coordinate system to pixel 

coordinate system. 

0

x

x
u u

d
= +                                  (7) 

0

y

y
v v

d
= +                                   (8) 

Based on the above analysis, the data fusion of imaging 

plane coordinate system and pixel coordinate system is 

realized. 
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                   (9)  

B. Detection Region of Interest Based on Data Fusion 

Conversion from Lidar Coordinate System to World 

Coordinate System 

In this paper, world coordinate system (Ow-XwYwZw) is 

used to characterize the coordinate of vehicle body. The 

centroid point of the vehicle is located on the origin of world 

coordinate system. Two coordinate systems are designed for 

lidar: one is the reference coordinate system (Olb-XlbYlbZlb) 

and the other one is the actual coordinate system 

(Olr-XlrYlrZlr). As shown in Figure 3, the two coordinate 

systems have different locations on axis Z. Therefore, the 

relationship of lidar and the vehicle body is confirmed by R 

and T. 
'

'

1

+

x x

y y

zz

P P

P R P T Z

PP

   
   

= +   
   

  

                    (10) 

where, Z and T are the translation vectors. Since the two 

origins discussed above are on the same axis z, T is defined as 

[tx, ty, tz]T. 

 
Fig. 3.  The world coordinate, lidar reference coordinate and actual 

coordinate 

During the installation process of lidar, the deviations of 

roll angle, pitch angle and deflection angle are unavoidable. 

The error of R will directly determine the error of the final 

return value of radar, so it is necessary to calibrate the radar 

accurately. In this study, the pitch angle is α, the roll angle is 

β'，and the deflection angle is γ'. Since the radar is installed 

in the center of the longitudinal vertical plane of the vehicle 

body, only the calibration of α and β' is required: 

As shown in Figure 4, a rectangular calibration plate is 

used to calibrate the roll angle of lidar. 

The ∠FOE in Figure 4 is the azimuth difference between 

the edge points E and F of the radar and rectangular 

calibration plate. lOE, lOF represent the distance between point 

E and radar as well as that between the point F and radar, 

respectively. lEF can be obtained according to the cosine 

theorem, then the roll angle β' can be expressed by Equation 

11: 

' = arccos( )AB

EF

l

l
                                 (11) 

 
Fig. 4.  The calibration of Lidar roll angle 

The roll angle transformation matrix Ry of the radar is 

shown in Equation 12: 
' '

' '

cos 0 sin

0 1 0

sin 0 cos

yR

 

 

 
 

=  
 
 

                      (12) 

The pitch angle is calibrated by using an isosceles triangle 

calibration plate. As shown in Figure 5. the triangular 

calibration plate is placed at A1, and ∠F1OE1, lOE1, and lOF1 

can all be acquired by radar data. Similarly, lEF1 can be 

obtained according to the cosine theorem. 

1 1 1 1

'cosE Z E Fl l =                          (13) 

1 1 1BZ BC E Zl l l= −                         (14) 

By moving the triangle calibration plate to A2, lBZ2 can be 

obtained in the same way, and then the available radar 

elevation angle can be calculated as follow: 

1 2

1 2

= arctan( )
BZ BZ

A A

l l

l


−
                        (15) 

The transformation matrix Rx is: 

1 0 0

0 cos sin

0 sin cos

xR  

 

 
 

=
 
 − 

                     (16) 

 
Fig. 5.  The calibration of Lidar pitch angle 
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The points (P'x, P'y, P'z) in the world coordinate system can 

be represented by the points (Px, Py, Pz) in the lidar coordinate 

system: 
' ' '

'

' ' '

1 0 0 cos 0 sin

0 cos sin 0 1 0

0 sin cos sin 0 cos

x x x

y x y y y

z z z
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 
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        
        

= + = + +        
        −        

 (17) 

Bounding Box Projection on Machine Vision Images 

As shown in Figure 6, the laser point cloud without ground 

is clustered by using the improved DBSCAN algorithm. By 

applying the obstacle bounding box to the machine vision 

projection, an obstacle can be generated to identify the 

detection region of interest. According to the conversion 

relationship between camera coordinate system and lidar 

coordinate system, the coordinate relation is defined as: 

0

0
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( )cos ( )sin

( )sin ( )cos

l

x l wl c l l c c

l wl c l l c c

y l wl c l l c c

Yf
u u

d X l Z h h

X l Z h hf
v v

d X l Z h h

 

 

 


= − + − − + −


− + + − = − +

 − − + −

  (18) 

where dx and dy represent the physical dimensions of the pixel 

points; lwl is the distance between the origins of radar 

coordinate system and that of world coordinate system; hl and 

hc are the installation heights of the radar and camera, 

respectively; θc is the angle formed by the camera axis and 

vehicle cross section. 

Based on the coordinate transformation relationship shown 

in the formula and the figure 6, the bounding box boundary 

points in the vertical plane formed by the lidar clustering can 

be projected into the image pixel plane to generate an 

obstacle recognition region of interest. 
 

III. OBSTACLE DETECTION AND RECOGNITION IN THE 

REGION OF INTEREST BASED ON MACHINE LEARNING 

A. Obstacle Feature Extraction and Calculation 

Extraction and calculation of Haar-like features 

Haar-like features include two rectangular features and 

three rectangular features. The black and white rectangular 

frames are defined as feature template. The three-matrixe 

feature template is composed of one black and two white 

rectangular frames. In this paper, the feature value size is 

confirmed by the difference value between the black and 

white rectangular areas. The dynamic window length and 

width in the region of interest are represented by L and W, 

respectively. The Haar-like feature value is calculated by 

Equation 19. 

1

( ), (0 , ,0 )
N

k k

k

Haar Sum r x x l L y w W
=

=  +   +    (19) 

where N is the number of feature rectangles, ωk is the weight 

value, Sum(rk) is the sum of all pixel values in the rectangle, r 

represents any matrix region within the window. 

In practical engineering the entire region of interest needs 

to be traversed, and the real-time performance of the 

algorithm is influenced by the calculation of the pixel value. 

Consequently, the principle of integral graph is used to 

ensure the real-time performance, as shown in Equation 20.   

,

( , ) ( , )
i x j y

II x y f i j
 

=                        (20) 

where f (i, j) represents the image pixel value. 

The recursive calculations are applied to increase the speed 

of the algorithm.  
 

( , ) ( , 1) ( 1, ) ( 1, 1) ( , )

( , 1) ( 1, ) ( 1, 1) 0

II x y II x y II x y II x y f x y

II x x II y II

= − + − − − − +


− = − = − − =
(21) 

The calculation process is traversed using the first row and 

the last column. First, calculate the integral map, that is, 

calculate all the pixels in the upper left area of the current 

position, and then use the integral map to accelerate the 

calculation of the pixel sum in a matrix. As shown in Figure 7, 

the sum of the pixels of the D area can be represented by 

Sum(1)+Sum(4)-Sum(2)-Sum(3). 

Extraction and Calculation of HOG Features 

The extraction and calculation algorithm of Haar-like 

feature designed above has real-time performance. However, 

the method is unable to reflect the complex features of the 

object effectively. To balance between detection speed and 

detection accuracy, the extraction and calculation of HOG 

features are fused. Based on cell unit, the image is divided by 

HOG features. Then, the gradient direction histogram of each 

cell unit is calculated and the cell unit is normalized to obtain 

the HOG features. The gradient direction distribution of local 

image reflects significant features (such as shape) of the 

target in the image, which is the core of the algorithm. The 

process for extracting and calculating HOG features is as 

follows. 

Step1：Grayscale processing of the input image; 

Step2：Based on the Gramma correction method, the 

input image is normalized to reduce the influence of factors 

such as lighting conditions. 
1

( , ) ( , )G x y F x y =                               (22) 

When γ is taken as 0.5, the pixel range is converted from 

0~255 to 0 ~ 15.97. 

Step3：This step is designed to confirm the size and 

direction of pixel gradient. The gradient is derived as:  

2 2( , ) [ ( 1, ) ( 1, )] [ ( 1, ) ( 1, )]GM x y f x y f x y f x y f x y= + − − + + − −

(23) 

The gradient direction is confirmed as: 
* *

*

( , ) , ( , ) 0
( , )

( , ),

GD x y GD x y
GD x y

GD x y others

 + 
= 



           (24) 

where GD*(x, y) is: 

* ( , 1) ( , 1)
( , ) arctan

( 1, ) ( 1, )

f x y f x y
GD x y

f x y f x y

+ − −
=

+ − −
           (25) 

Step4：The image is divided into N rectangular blocks.  

First of all, the gradient direction is mapped within 180°. 

Then, the mapped region is divided from 0° to 180° based on 

the number of NGD intervals. The gradient direction 

histogram is expressed by the following formula: 

( , )

( , ) ( , ), 1,2, ,k GD

x y Block

CV Cell k V x y k N


= =             (26) 

where CV (Cell, k) represents the cumulative value of the 

gradient size of cell in the K direction interval; Vk (x, y) is the 

gradient size of (x, y) in the K direction interval. 

Step5 ： Normalize the calculation of the cell:
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(a)                                                              (b)                                                          (c)                                                           (d)                              

Fig. 6.  Improved DBSCAN clustering and generation of Bounding Box 

 

Fig. 7.  Integral map definition map 

[ ( ,1) ( , ) ( , )]T

GDHOGFea BD Cell BD Cell k BD Cell N=          

(27) 

where BD(Cell, k) is: 

1

( , )
( , )

( , )
GDN

k

CV Cell k
BD Cell k

CV Cell k 
=

=

+
                (28) 

where ε is a minimum value that is set to prevent the 

denominator from being 0. 

Step6：Statistical gradient histogram. The HOG feature is 

the result of concatenating the feature vectors of all blocks in 

the window. In order to improve the calculation speed, the 

HOG eigenvalue is calculated by using the gradient 

histogram in integral direction. The integral graph principle is 

shown in Equations 21 and 22. 

B. Obstacle Recognition Based on AdaBoost Cascade 

Classifier 

The AdaBoost algorithm involves both weak classifiers 

and strong classifiers. The weak classifier obtains arbitrary 

precision classifier through certain combinations, but target 

recognition rate is unsatisfactory. The strong classifier has a 

high recognition rate,but its the real-time performance is 

limited unsatisfactory due to the long classification time. As 

the lidar points are projected onto the region of interest, there 

are still obstacle categories that do not contain the current 

detection. Using a strong classifier may lead to an overlong 

classification time. Therefore, this paper uses a cascade 

classifier from weak classifier to strong classifier. The core 

idea is to process the sub-window of the region of interest 

based on the AdaBoost algorithm. Only when the 

classification obstacle is consistent with the target obstacle, it 

will be input to the next-level strong classifier. Otherwise, it 

is directly output as a non-target obstacle. 

Strong Classifier Training Based on AdaBoost 

The process is divided into the following steps: 

Step1：Giving a training sample set. This paper stipulates 

that S={(x1,y1) , (x2,y2) ,..., (xi,yi) ,..., (xNs,yNs)} are sample 

sets, positive samples are yi=1, total Np, negative samples. 

The rule is yi=-1, a total of NN. Where i=1, 2, .., Ns, NF 

features are extracted for each sample. 

Step2: Initialize the weight of the training sample. 

 1 11 12 1 1, , , , ,
Si NG    =                (29) 

1

1
, 1
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1
, 1

2

i
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i

N

y
N

y
N




=


= 

 = −


                          (30) 

Step3：For the t-th iteration: 

1.  According to the sample set S under the training sample 

weight distribution calculated in step 2, the weak classifier 

hj(x) is obtained; 

2. The error rate of weak classifier is obtained by the 

following formula: 

1

( ( ) ), 1,2, ,
SN

j ti A j i i F

i

e I h x y j N
=

= − =        (31) 

 0A x R x=                            (32) 

where IA reflects the positive and negative of A. 

3. Select the et with the smallest error rate, and 

corresponding weak classifier can be obtained, and then 

select the current threshold. 

11
ln

2

t

t

e

e


−
=                             (33) 

4.  Update the weight of the S sample set: 

 1 1,1 1,2 1, 1,, , , , ,
St t t t i t NG    + + + + +=           (34) 
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e
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








−

+

−

=

= =


          (35) 

5.  Finally, a strong classifier is obtained: 

1

( ) ( ( ))
T

t t

t

H x sign h x
=

=                      (36) 

Weak Classifier and Its Training Process 

In order to minimize the sample error rate, it is necessary to 

obtain an optimal weak classifier of which the threshold θ 

and offset Pj are given. Then, multiple weak classifiers can be 

combined into one strong classifier. The weak classifier can 

be determined by the following formula: 

1, ( )
( )

1,

j j j j

j

p f x p
h x

others


= 

−
                    (37) 

where hj(x) is the judgment value; x represents the 

sub-window of the input image; fj(x) is the j-th eigenvalue; θ 

means the threshold of weak classifier; Pj represents the 

direction of inequality. As the classification result is larger 

than θ, Pj is less than the positive value. 
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Four steps are designed to achieve the training of weak 

classifier. 

Step1: Find all feature values j and arrange them in order 

of size; 

Step2: Traverse the ordered feature values in Step1. 

Calculate the weights of all positive and negative samples as 

well as the weights of S+ and S- and all positive and negative 

samples before the i-th sample and S+
i and S-

i; 

Step3: Select a certain number in the interval composed of 

the feature value fj(xi) of the current sample i and the feature 

value fj(xi-1) of the previous sample i-1 as the threshold value 

θlj, and the deviation of the threshold value can be obtained as 

follow: 

min( , )i

je e e− +=                             (38) 

( )

( )

i i

i i

e S S S

e S S S

− + − −

+ − + +

 = + −


= + −

                         (39) 

Step4：Repeat Step2 and Step3 to traverse the entire 

training sample set S so as to find the optimal threshold ei
j 

with the smallest classification error. 

Classifier Cascade 

In this paper, both detection speed and detection what are 

taken into account. The cascade classifier allows each input 

image to pass through in sequence. For a given image, it has 

to pass the test of the strong classifier. Otherwise, it is unable 

to enter the subsequent strong classifier detection. In this way, 

the picture area of all detectors is the effective obstacle area. 

Detailed steps are as follows: 

Step1: The positive and the negative sample sets are 

defined as VP and VN, respectively. 

Step2: The number of cascaded classifier layers is 

represented by K = log fmax Fmax. 

Step3: If k<K, the training set is detected sequentially by 

the trained strong classifiers H1, H2, ... Hk. A sample with 

positive detection results is placed in VPk+1 as a positive 

sample for the k+1th strong classifier training. A sample with 

a negative sample set. Which misdetected as a positive result, 

is placed in VNk+1 as a negative sample for the k+1th strong 

classifier training. 

Step4: If and only if the number of samples of VPk+1 

reaches Np, the number of samples of VNk+1 stops when it 

reaches NN. 

Step5: The final cascade classifier is determined until k=K. 

IV. TEST VERIFICATION 

A. Camera Calibration Experiment 

A calibration plate is made using MATLAB code, printed 

out and then attached to a square plate. Each square side 

measured by the test is 34 mm long. Then, the camera is 

activated in the system to capture calibration plate images at 

different angles and positions. As shown in Figure 8, 30 

calibration plate images are collected in the test. The 

parameters of the camera used in the test are presented in 

table I. 

TABLE I 

CAMERA PARAMETERS 

INDEX PARAMETE UNIT 

resolution 1920×1200 px 
Pixel size 5.86×5.86 um 

frame rate 40 fps 
power 3 w 

target size 1/1.2 in 

case temperature 0-50 ℃ 
weight 90 g 

supply voltage 12-24 v 

Figure 9 (a) shows the measured external position 

parameter map. Figure 9 (b) shows the average error 

histogram. The highest average error is 0.6. The average error 

of all pictures is 0.41, which is less than the average value 0.5. 

Therefore, the camera calibration meets the test 

requirements. 

Based on the test results, the camera internal reference 

matrix is determined as: 

4137.8253 0 1028.3483

0 4147.3578 616.3249

0 0 1

K

 
 

=
 
  

                (40) 

The camera's rotation matrix and translation vector are: 

0.95 0.06 0.18

0.03 0.53 0.66

0.18 0.66 0.52

R

− 
 

= − −
 
 − 

                        (41) 

227.6

216.5

535.7

T

 
 

= −
 
  

                                    (42) 

B. Identification of Areas of Interest 

For the pixel points on x axis and y axis, the physical 

dimensions are 5.86um and 4.37um. The distance between 

radar and world coordinate system is lwl=1594.9mm. The 

installation height of the radar and camera are 2200mm and 

1580mm, respectively. The camera is mounted with a pitch 

angle θc=76.158°, u0=1028.3483, v0=616.3296. In summary, 

transformation relations are confirmed.  

4137.8253 1028.3483
0.9710 ( 1597.9) ( 620)

0.2392 ( 1597.9) 0.9710 ( 620)
4147.3587 616.3249

0.9710 ( 1597.9) 0.2392 ( 620)

l

l l

l l

l l

Y
u

X Z

X Z
v

X Z


= − +  − − +


 − +  + = − +

  − −  +

(43) 

 

Fig. 8.  Calibration plate image 
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(a)Histogram of average projection error                                                         (b) External location parameter map 

Fig. 9.  Camera calibration results 

By substituting the projection of the bounding box 

obtained by the laser radar into the boundary point (Yl, Zl) of 

the YOZ plane into the equation 42 corresponding four pixel 

points in the pixel plane of the image can be obtained so as to 

realize its projection on the image. The experimental radar 

technical parameters are shown in Table 2. The area formed 

by the four pixels is the area of interest. In the original image 

captured by the camera, the region of interest projected by the 

bounding box in the upper section is separately intercepted 

and imported into the classifier for detection and 

identification.  
TABLE II 

LINE LIDAR PARAMETERS 

INDEX PARAMETE UNIT 

accuracy ±2 cm 
harness 32 line 

vertical distance 80-100 m 
vertical range -30~10 degree 

update frequency 10 Hz 

weight 1 Kg 
number of point clouds 700000 point / s 

horizontal range 360 degree 
power 12 w 

vertical angular resolution 1.33 degree 

C. Classification of Obstacles in Camera Raw Images using 

AdaBoost Classifier 

An enormous number of training samples are prepared to 

ensure the reliability of vehicle information. When 

constructing the training set, the positive sample design 

occupies a larger proportion of the picture at the tail of the 

vehicle, the negative sample is designed to exclude all other 

images of the vehicle, and the negative sample occupies more 

sample proportion than the positive sample. In this paper, the 

intercepted image and the open-source data set of the 

experimentally collected video stream are combined as a 

training set, and the total number of positive sample images is 

1582. Since the images collected contain the experiment have 

other targets in addition to the vehicle target, the positive 

sample images need to be intercepted, in order to make the 

vehicle information in each positive sample image fill the 

entire image as much as possible and reduce the influence of 

other invalid features in the training process. 

The negative sample consists of 7786 pictures. To achieve 

perfect training results, the proportion rate of positive sample 

and negative sample is higher than 1:5 in the AdaBoost 

cascade classifier.  Since there is no vehicle in the image, the 

negative sample includes buildings, guardrails, signage, 

flowers and trees, and other targets. Parts of the original 

images collected by the experimental vehicle on the campus 

are imported into the classifier for identification and 

detection. The detection effect is shown in Figure 10. 

Tables 3 and 4 show the classification results for the three 

obstacle detection schemes under good weather conditions. 

Among them, scheme 1 is obstacle detection based on laser 

radar, scheme 2 is machine vision-based obstacle detection 

via direct input of the original image, and scheme 3 is the 

obstacle detection based on the dual sensor fusion and the 

AdaBoost classifier. Since the original image input by the 

camera does not reject targets outside the road boundary, the 

total number of vehicles and pedestrians using the camera 

alone is larger than that obtained by other two technical 

routes. For obstacle vehicle detection, scheme 1 has the 

shortest average detection time per frame. However, scheme 

1 only reflects the general outline of the vehicle, and its 

detection rate is lower than that of scheme 2 and scheme 3 by 

4.71% and 15.48%, respectively. Scheme 3 eliminates the 

invalid area of the image, so the detection rate is increased by 

12.74%, and the average detection time per frame is reduced 

by 25.60% compared with the scheme 2. 
 

TABLE III 
OBSTACLE VEHICLE DETECTION RESULTS UNDER DIFFERENT TECHNICAL 

ROUTES 

scheme sensor type 
total 

number 

of targets 

checkout 

number 

detecti

on rate 

average 

detection 

time per 
frame 

1 laser radar 986 792 80.32% 22.65ms 

2 camera 891 751 84.29% 47.23ms 
3 camera and 

laser fusion 

1006 956 95.03% 35.14ms 

 

TABLE IV 

DETECTION RESULTS OF PEDESTRIANS UNDER DIFFERENT TECHNICAL 

ROUTES 

scheme sensor type 
total 

number 

of targets 

checkout 
number 

detecti
on rate 

average 
time per 

frame 

1 laser radar 1346 1056 78.45% 22.69ms 

2 camera 1594 1309 82.12% 54.36ms 

3 camera and 
laser fusion 

1468 1358 92.51% 43.12ms 

For the detection of pedestrians, scheme 1 has the shortest 

average detection time per frame. However, scheme 1 only 

reflects the general outline of pedestrians, its detection rate is 

lower than that of scheme 2 and scheme 3 by 4.47% and 

15.20% respectively. Since scheme 3 eliminates the invalid 

area of the image, its detection rate is 12.56% higher and 

average detection time per frame is 20.68% lower compared 

with scheme 2. 
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(a) Vehicle classification results 

 
(b) Pedestrian classification results 

Fig. 10.  Classification result of classifier 

Tables 5 and 6 show the classification results of the three 

obstacle detection methods under rainy weather conditions. 

Due to the influence of rainy weather, the detection rate of 

obstacle vehicles of the three detection schemes is lower than 

that under good weather conditions by 18.69%, 6.13% and 

4.85%, respectively. Scheme 1 is most significantly affected 

by weather conditions. Scheme 1 has the shortest average 

detection time per frame, However, it only reflects the 

general outline of the vehicle, so its detection rate is lower 

than that of scheme 2 and scheme 3 by 17.45% and 27.78% 

respectively. Since scheme 3 eliminates the invalid area of 

the image, so the detection rate is improved by 14.28% and 

the average detection time per frame is reduced by 22.4% 

compared with scheme 2. 
TABLE V 

VEHICLE DETECTION RESULTS OF LASER RADAR, CAMERA, CAMERA AND 

LASER FUSION  

scheme sensor type 

total 

number 
of targets 

checkout 
number 

detecti
on rate 

Average 

detection 
time per 

frame 

1 laser radar 695 741 65.31% 22.32ms 

2 camera 646 778 79.12% 47.72ms 

3 camera and 
laser fusion 

612 804 90.42% 37.03ms 

 

TABLE VI 
DETECTION PEDESTRIAN RESULTS OF LASER RADAR, CAMERA, CAMERA 

AND LASER FUSION  

scheme sensor type 

total 

number 

of targets 

checkout 

number 

detecti

on rate 

average 

time per 

frame 

1 laser radar 312 980 70.71% 20.04ms 

2 camera 375 1240 80.31% 49.12ms 

3 camera and 
laser fusion 

346 1056 91.46% 41.34ms 

For the pedestrian detection, the detection rate of the three 

schemes under rainy weather is lower than that under good 

weather conditions by 9.87%, 2.21% and 1.13%, respectively. 

Scheme 1 is most significantly affected by weather 

conditions, followed by scheme 2. The detection rate of 

vehicle obstacle is higher than the detection rate of pedestrian 

obstacle for all three schemes, which is mainly due to that the 

total number of pedestrian obstacles in the rainy weather is 

less than that of vehicle obstacles. Scheme 1 has the shortest 

average detection time per frame. However, it only reflects 

the general outline of pedestrians, so the detection rate is 

lower than that of scheme 2 and scheme 3 by 11.95% and 

22.69% respectively. Scheme 3 eliminates the invalid area of 

the image, so the detection rate is higher by 13.88% and the 

average detection time per frame is decreased by 15.84% 

compared with scheme 2. 

V. CONCLUSION 

This paper studies the sensor-fusion obstacle detection 

method based on 3D 32-line laser radar and monocular 

camera. The following conclusions are drawn from this 

study: 

(1) Unlike traditional approach, the region of interest is 

detected by laser radar and machine vision to generate 

obstacles, which are then input into AdaBoost classifier for 

classification. The proposed method is able to achieve a 

balance between detection accuracy and detection speed. 

Under good weather, the detection rate of vehicle obstacle 

and pedestrian obstacle increases by 12.74% and 12.56%, the 

average detection time per frame decreases by 25.60% and 

20.68%, respectively. Under rainy weather, the detection rate 

of vehicle obstacle and pedestrian obstacle increases by 

14.28% and 13.88%, the average detection time per frame 

decreases by 22.4% and 15.84%, respectively. 

(2) Compared with obstacle detection based on lidar, the 

obstacle detection based on fusion of lidar and machine 

vision has significantly increased obstacle detection rate. 

Under good weather conditions, the detection rate of vehicle 

obstacle and pedestrian obstacle increases by 18.33% and 

17.92%, respectively. Under rainy weather conditions, the 

value increases by 38.44% and 29.34%, respectively. 

(3) Under rainy weather conditions, the obstacle detection 

based on fusion of lidar and machine vision has a high false 

detection rate. Therefore, further research on the fusion of 

laser radar, machine vision (binocular) and millimeter wave 

radar is needed. 

REFERENCES 

[1] JessicaVan Brummelen, MarieO’Brien, Dominique Gruyer, 
Homayoun Najjaran, “Autonomous Vehicle Perception: The 

Technology of Today and Tomorrow,” Transportation Research Part C: 

Emerging Technologies, vol. 89, pp384-406, 2018.  
[2] Weijing Shi, Mohamed Baker Alawieh, Xin Li, Huafeng Yu, 

“Algorithm and Hardware Implementation for Visual Perception 
System in Autonomous Vehicle: A Survey,” Integration, vol. 59, 

pp148-156, 2017. 

[3] Dominique Gruyer, Valentin Magnier, Karima Hamdi, Laurène 

Claussmann, Olivier Orfila, Andry Rakotonirainy, “Perception, 

Information Processing and Modeling: Critical Stages for Autonomous 
Driving Applications,” Annual Reviews in Control, vol. 44, pp323-341, 

2017. 

[4] D. Hermann, R. Galeazzi, J. C. Andersen, M. Blanke, “Smart Sensor 
Based Obstacle Detection for High-Speed Unmanned Surface 

Vehicle,” IFAC-PapersOnLine, vol. 48, no.16, pp190-197, 2015. 

Engineering Letters, 29:2, EL_29_2_41

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 



 

[5] Jacopo Guanetti, Yeojun Kim, Francesco Borrelli, “Control of 
Connected and Automated Vehicles: State of the Art and Future 

Challenges,” Annual Reviews in Control, vol. 45, pp18-40, 2018. 

[6] P. V. Manivannan, Pulidindi Ramakanth, “Vision Based Intelligent 

Vehicle Steering Control Using Single Camera for Automated 

Highway System,” Procedia Computer Science, vol. 133, pp839-846, 
2018. 

[7] PEI Xiaofei, LIU Zhaodu, MA Guocheng, YE Yang, “Safe Distance 
Model and Obstacle Detection Algorithms for A Collision Warning 

and Collision Avoidance System,” Journal of Automotive Safety and 

Energy, vol. 3, no.1, pp26-33, 2016. 
[8] Liang Wang, Yihuan Zhang, Jun Wang, “Map-Based Localization 

Method for Autonomous Vehicles Using 3D-LIDAR,” 
IFAC-PapersOnLine, vol. 50, no.1, pp276-281, 2017. 

[9] Chen, S., Huang, L., Bai, J., Jiang, H. et al., "Multi-Sensor Information 

Fusion Algorithm with Central Level Architecture for Intelligent 
Vehicle Environmental Perception System," SAE Technical Paper 

2016-01-1894, 2016. 
[10] Guan Xin, Hong Feng, Jia Xin, Zhang Yonghe, Bao Han, “A Research 

on the Environmental Perception Method in Intelligent Vehicle 

Simulation Based on Layered Information Database,” Automotive 
Engineering, vol. 37, no.1, pp43-48, 2015. 

[11] Wang T, Zheng N, Xin J, et al., “Integrating Millimeter Wave Radar 
with a Monocular Vision Sensor for On-road Obstacle Detection 

Applications,” Sensors, vol. 11, no.9, pp8992-9008, 2011. 

[12] M. Bertozzi, A. Broggi, A. Fascioli and S. Nichele, “Stereo 
vision-based vehicle detection,” Proceedings of the IEEE Intelligent 

Vehicles Symposium 2000 (Cat. No.00TH8511), pp39-44, 2000. 
[13] Zhang Yi, “Stereo-based Research on Obstacles Detection in 

Unstructured Environment,” Master's thesis, Beijing Institute of 

Technology, Beijing, China, 2015. 
[14] Mahlisch M, Schweiger R, Ritter W, et al., “Sensorfusion Using 

Spatio-Temporal Aligned Video and Lidar for Improved Vehicle 
Detection,” 2006 IEEE Intelligent Vehicles Symposium, pp424-429, 

2006. 

[15] Zhang Shuangxi, “Research on Obstacle Detection Technology Based 
on Radar and Camera of Driverless Smart Vehicles,” Master's thesis, 

Chang’an University, Xi’an, China, 2013. 
[16] Wang Z, Chen B, Wu J, et al., “Real-time Image Tracking with An 

Adaptive Complementary Filter,” IAENG International Journal of 

Computer Science, vol. 45, no.1, pp97-103, 2018. 

Engineering Letters, 29:2, EL_29_2_41

Volume 29, Issue 2: June 2021

 
______________________________________________________________________________________ 




