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Parameter Estimation for Squared Radial
Ornstein-Uhlenbeck Process from Discrete
Observation

Chao Wei, Dehe Li, Hejun Yao

Abstract—This paper is concerned with parameter estimation
problem for squared radial Ornstein-Uhlenbeck process driven
by a-stable noises from discrete observation. Firstly, the exis-
tence and uniqueness of solutions to the stochastic differential
equation is studied. Then, the contrast function is used to
obtain the least squares estimator. The strong consistency
and asymptotic distribution of the estimator are investigated.
Finally, some numerical calculus and simulations are given to
verify the effectiveness of estimator.

Index Terms—Existence and uniqueness of solutions; squared
radial Ornstein-Uhlenbeck process; a-stable noises; consisten-
cy; asymptotic distribution.

I. INTRODUCTION

Stochastic differential equations are important tools for
studying random phenomena and widely used in the fields
of physics, chemistry, medicine and finance ( [2]-[4], [11],
[16]). However, parameters in stochastic model are always
unknown. In the past few decades, some popular methods
have been put forward to estimate the parameters in It6
stochastic differential equations, such as maximum likelihood
estimation ( [1], [18]-[20]), least squares estimation ( [10],
[14], [15], [17]) and Bayes estimation ( [5], [8], [9]). But,
in fact, non-Gaussian noise can more accurately reflect the
practical random perturbation. «-stable noise, as a kind of
important non-Gaussian noise, has attracted wide attention
in the research and practice in the fields of engineering,
economy and society. From a practical point of view in
parametric inference, it is more realistic and interesting
to consider asymptotic estimation for stochastic differential
equations driven by «a-stable motions. Recently, a number of
literatures have been devoted to the parameter estimation for
the models with a-stable noises. When the coefficient of the
a-stable motion term is constant, drift parameter estimation
has been investigated by some authors ( [12], [13]).

As we all know, parameter estimation for Ornstein-
Uhlenbeck processes driven by «-stable motions has been
studied by some authors ( [6], [7], [21]). However, there
are few literature about the parameter estimation problem
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for squared radial Ornstein-Uhlenbeck process driven by -
stable noises. This model has many appealing advantages.
In particular, it is mean-reverting and remains non-negative.
However, it is well-known that many financial processes ex-
hibit discontinuous sample paths and heavy tailed properties
(e.g. certain moments are infinite). These features cannot be
captured by the squared radial Ornstein-Uhlenbeck process.
Therefore, it is natural to replace the driving Brownian
motion by an a-stable process. Since squared radial Ornstein-
Uhlenbeck process has more complex drift coefficient than
Ornstein-Uhlenbeck process, it is difficult to investigate
the parameter estimation problem. Asymptotic properties
of estimators such as consistency, asymptotic distribution
of estimation errors, and hypothesis tests can reflect the
effectiveness of estimators and estimation methods, which
helps to obtain a more reasonable economic model structure
and more accurately grasp the dynamics of related assets .
Therefore, it is of great important to study the topics.

In this paper, we consider the parameter estimation prob-
lem for squared radial Ornstein-Uhlenbeck process with
a-stable noises from discrete observations. The contrast
function is introduced to obtain the least squares estimator.
The strong consistency and asymptotic distribution of the
estimator are proved by using ergodic theorem, Holder in-
equality and Markov inequality. Some numerical calculus and
simulations are given to verify the effectiveness of estimator.

This paper is organized as follows. In Section 2, the
squared radial Ornstein-Uhlenbeck process driven by a-
stable noises is introduced. In Section 3, the existence and
uniqueness of solutions are proved, the contrast function is
given, the explicit formula of the least squares estimator is
obtained, the strong consistency and asymptotic distribution
of the estimator are proved. In Section 4, some simulation
results are made. The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Q2,.%#,P) be a basic probability space equipped
with a right continuous and increasing family of o-algebras
{Zi}i>0 and Z = {Z;,t > 0} be a strictly symmetric -
stable Lévy motion.

A random variable 7 is said to have a stable distribu-
tion with index of stability @ € (0,2], scale parameter
o € (0,00), skewness parameter 8 € [—1,1] and location
parameter 1 € (—00, 00) if it has the following characteristic
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function:

b (u)

—o%|ul*(1 —iBsgn(u) tan %) +ipu,ifa#1,

2
—olul(1 +if—sgn(u)log|ul) + ipu,ifo = 1.
0

We denote n ~ S, (0,5, 1). When p = 0, we say 7 is
strictly a-stable, if in addition S = 0, we call 1 symmetrical
a-stable. Throughout this paper, it is assumed that a-stable
motion is strictly symmetrical and « € (1,2).

In this paper, we investigate the parameter estimation prob-
lem for a-stable squared radial Ornstein-Uhlenbeck process
described by the following stochastic differential equation:

dX; =(1 + 20X,)dt + 2/ X,dZ, 0
XO =Xxo,

where 6 is an unknown parameter with # < 0 and Z is
a strictly symmetric a-stable motion on R with the index
€ (1,2).
It is assumed that the process {X;,t > 0} can be observed
at discrete point {¢; = th,i =0,1,2,...,n} with h > 0. We
introduce the following contrast function:

pu(0) = Do [ X = Xo = (120X, )AL
4Xy, At ’
(2
where Ati,1 =t —ti_1 = h.
Then, we can obtain the estimator as follows
é\ _ Z?:l (Xt1 - Xti—l) —nh (3)
" 2h Z?:l th‘,—l '

Since the a-stable squared radial Ornstein-Uhlenbeck pro-
cess can be written as

1
Xt :X0€20t7%(1 29t)+2A t S / dZ (4)

The expression of §n can be changed as

7 e — 1 n(g5e*" — 55 —h)
" 2h 2h >0 Xty
1 1 «Lﬁl 1 FGQO(tl S)dZ 5)
hz:z 1 XtL 1
III. MAIN RESULTS AND PROOFS
The Lévy measure v is defined as follows:
Ca
v(dz) = o dz, (6)
where (ha)
a20-1p (el
0= ———2, )

m2l(1 - §)

where I'(-) is a Gamma function.

In the following theorem, the existence and uniqueness
of solutions to the above stochastic differential equation are
proved.

Theorem 1: The «-stable squared radial Ornstein-
Uhlenbeck process has the unique global solution z(t).

Proof: Let ky > 0 is large enough and xy < kg. For
every integer, let k£ > ky. Define the stop time

¢ (R ®
where T, is the time of explosion.

Since the coefficients of Equation (1) satisfy the local
Lipschitz conditions. Then, for the given initial value zg € R,
there exists a unique local solution x(t) when ¢ € [0, 7). Let
Too = liMg o0 T and 7o, < 7 a.s. If we get 7, = o0 a.s,,
then, for every ¢ > 0, x(t) € R. For the constant v > 0 and
0<p<l,let

Vy(z) = (x2 + 72)%7

For 0 <t < T, according to Itd formula, it follows that

T = inf{t € [0, 7) :

T €R. 9

Vi(z(tATk)) = VW(:UO)—i—/O " LV, (x(s))ds+ Mi(t ATy),

(10)
where M (t A7) is a local martingale and
LV, = pa(z® + 43T * (14 26)
1
+/ [Vy(z + 2vx2) = Vo (2) = V,2V@210<.<13]
0
Co
|Z|a+1dz. (11)
According to Taylor formula, it can be checked that
1
/ Vs (2 + 2Vxz) — Vy(z) — V2fz]‘ |a+1
0
< sgn(2v'z)[2V/z|*
2z )
/O [V, (& + 2v/F2) — Vs () — V. 2/
Co
————d
g e 10V
o [, Ca
= sgnvmlelf [ V(O gt dVE)
where ¢ € (z,z + 2,/zz) and
" p—2
V(6 =p++) 77 (p-DE+2?). (12
From the basic inequality, it is easy to check that
=< p-DE+H <€+ (13
Then, we obtain
(P = 1€ + 72 < €+ (14)
Substituting (10) into (8), it follows that
Vi (€) Sp(€+7)5 ! < per 2. (15)

Then, it can be checked that

1
/0 [V, (2 + 2va2) — Vi (a) — V,;2\/§z]|zc(ﬁ1dz
2T
< sgn(2y/D)|2v/al° / 2022l — |2v/F2|]P~?
C,
el 107
Coplel )[p2

Volume 29, Issue 2: June 2021



Engineering Letters, 29:2, EL._29 2 48

where ¢(z) = min(||z] — |2y/zz]]).
When |z| = |24/2z|, we obtain

2T .
sgnVml2var [ 202 ()

Ca
e )

< sgn(2V7) 2Vl

2T B
| e e
< VBV
/ fmpm 292l +1%) "7
g /)

Caply[P~?
- 22—«

v /)

Since 0 < p < 1, it is easy to check that

. Cozp|7|p72
1 ———4x = 0. 17
ro0 22— a) * a7
Therefore when fy is big enough, fo (x + 2y/x2) —

Vi () -
Let f(y) =

% 2fz]‘ T dz is convergent.
Vi(z +2vez) —

V,(z), then we obtain

F() =l +2v32)2 +42)"7 — (2% +42) "7 ).

Since |z + 2v/zz| > z, it is easy to check that f'(vy) < 0,

then f(vy) < f(0).
Thus,
|f(9)l
= V(2 +2Vxz) — Vo (z)| < |£(0)]
= |(z + 2Vz2)P — 2P| < [2Vz2P. (18)
Therefore,
+oo
| W2y~ Vi@l s
+oo
< sgn(zya)f2val® [ |Va(o o+ 2vae) - Vita)
Ca v
el 1)
67 e P Ca
< sonVaNVa" [ oo et
d(2v/zz)
= sgn(2\/5)\2\/5|a+pac—j (19)

When 2 € [0,1), substituting (12) and (15) into (7), we

get
LV, (x)
< pz(z? +~%)"7 (1—|—29x)

+sgn<zf>“’(';””')4x T sgn(2v/E) 2v/E
Ca

—Pp
pr(z? +v)

+sgn(2Vz) 5

(1 + 20x)

p 12V o
12v/2] (| @ )|)

( )

+sgn(2\f)

(1 + 20x)
2t=p (

= px(z? + )T
+sgn(2v/z)C, vzl
()]
It is assumed that C, (217? ( |L\(/£)|‘ P+ L

v2)%2 and pa(1 + 20z) + K 2P25 < KQ(
Then,

220:52( )2*17

a—p

) S K@+
+7%).
LV, (x)
< pr(x?++42) 7 (1+29:L‘)
+Ksgn(2v/)27wk (% +9)'5
< (2?2 +97) = (px(1+ 20x) +
< (22497 Ka(2? +77)
= K)V, ().
When z =0, V,(z) = V,(0)
LV, (z) < KnP.

K12Px%)

= ~P. Then, V( ) =0 and

According to Itd formula, as z(t A7;) € R, 0 <t < T, it
follows that

EV,(z(T A1) = V4(zo) + E/O b LV, (x(s))ds. (20)

From (16), we obtain
EV, (z(T A %))
< V,Y(Z‘Q) + KQ’YPE(T A Tk)

< Vo (x0) + Koy*T. Q1)

Note that for all § € {7, < T'}, there exists a constant k
large enough satisfying (73, 8) > k or z(7y,6) < +.
Hence,

V5 (x(7k,0)) >

Therefore,

N L 7))

(K +92) 5 A (5
<E(Vy(7%,6) 1 <7)

< V(o) + KoyPT. (23)
Let £k — oo, we obtain
P10 <T)=0. (24)
Then,
P70 = 0) = 1. (25)
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The proof is complete.

In the following theorem, the strong consistency of the

least square estimator 6,, is proved.

Theorem 2: When h — 0 and nh — oo,

~

0, 3 0. (26)
Proof: Tt can be checked that
i 37 10| = Bl = 2 @7
im — = o — . a.s
n—oo 1 £ fi 20
) 1 n » »
nh_}rrgo - ; | Xt, [P =E|Xo|P =00, p>a,as. (28)
and
IS [ VX et dz |
lim sup ———— =0,a.5s. (29)
n—0o0 Zi:lft-l,l |\/Ys626(ti75)‘0‘d8
Moreover,
|n(2i9626h — % —h)
2h Z” Xi,
/X 20(t;—s)
+Z7, 1 t1 1 6 dZ |
h Zi:l Xti—l
n|§629h—%—h|
N 2h Z?:l ‘th‘,—1|
|§:Z:11j14 C?;ezeui—s)dgg‘
hZ?:l |Xti—1‘ .
n\%e%h—ﬁ—mz 0629h %_m 1 .
2h Zi:l |Xti—1| 2h %Z?:l |Xti—1|

When h — 0, it is easy to check that

‘%620}1 _ % —h|

2h

— 0.

According to (27) and (28), it follows that

oy
2h Zi:l |Xti—1 ‘

(30)

€1V

When h — 0 and nh — oo, by Holder inequality and

(27), (28), (29), we obtain
| Z?:1 ftt,.ifl \/)TseQG(ti*S)dZA
E? VX,
IS VR,
Z? 1 t1 L |Fe29(t *S)|ad8
Zi:l ftill |\/7s€29(ti_5) ‘st
h¥i- 1Xt7 ,
|Z7’ 1 t 1 \/7629“ -s dZ |
< sup =
" i 1 ftl L \/75629(&:—8)‘(1618
n)E ()

\/)73620(t7¢—s)dzs|2)1_,

h Zi:l th‘—l

[ VX et dz |
sup S t_’fl
n i 1ft1 /X 629(ti75)‘o¢d5

nh 1= 1ftL 1|V 6262&78 ‘st) 7%
(E Zi=1 Xti—l)

0.
Thus, we have

n ti
n(ﬁEQGh — ﬁ — h) Zizl «Lﬁi—l

VX,e20(ti=s) gz,

2h Z?:l Xti—l hZ?:l Xti—l

When h — 0, it is obvious that
Oh __ 1
2h

Therefore, from (32) and (33), it follows that

0, “% 9.

— 0.

The proof is complete.
Let

Co = (/ r%sinxdr) ! =
0

and o1 = (Oa/g)_2/a, 09 = (Ca)_l/a.

| a.s.

(32)

(33)

(34)
|

[['(1 — «)cos %]_17

Theorem 3: When h — 0, n — oo, nh't®/logn — 0,
nh?*~1logn — oo and nh?>~*/2t7 — o for some p > 0

small enough,

(logn

where Yy ~ S, /2(01,1,0), Y ~ Sa(02,0,0).
Proof: From (25), we obtain
nh 1~
() ¥ 0 = 0)
nh (1 e
= o — 6
(1ogn) ( 2h )
Lo gy )
logn 2h Zl 1 X4,

29h_1

Q\»—-

WRLEL

It is easy to check that

I nh e20h _ 1

)7 (

logn h2i=1 X,

202n = hita

logn 2h (logn) 1
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According to (27) and (28),

nh 1 n(ge?" — L —h)

(1ogn) 2h 30 X,
nhlJra i (27106?9}1 _ % h) a;sy 0
logn © 2h2130 Xy
n ts g
( nh )L D1 fti,l VX e dz,
logn DD, O

(nlogn)~ah~w 37" Ji VXe?imdz

2 P
2512 n
n-ah T4 Zi:l th‘—l

From (24), we find

X,
:—1+($0+ )29ih
29 20
+226291h / e 205\ /X dZ,. (37)
th—1

By the property of the a-stable stochastic integral, we
obtain that

tr
Vi1 = / e 205\ /X dZ,

tr—1

has the same distribution as Z for all £k = 1,2,...,n,

Tk—1
where
tr
Th_1 :/ |e_295\/Xs|ads.
th—1
Let Ug_1 = V";IL, then, Uy, k = 1,2,...,n are an i.i.d

(Th—1) @
random sequence with same stable distribution S,(1,0,0).

Then, (37) can be written as

1
Xt':_

; 29+($0+

) 20ih +2Z€29ihUk71(7’k—1)%
k=1
(38)

20

As

n
_z,q_2 _z,q_2 _zq
n-ahl7a g Xt%,l:” aht"agl +nant

n—1

2

Y OXE
i=1

It is obvious that

According to (38), we obtain that

n—1
2 2
nehlTe Y X7

1
n—1 1 1
2 2 .
— o ip2 L L\ 20ih
n ;( 29+(1’0+29)6
+23 " MUy (1) 7 )?
k=1
n—1 1
_ o —2%271-2 2 460ih |~ ( 20ih _ 1\2
=n"ah ;(IOG + 1 (e 1)
+4e40ih(z Uk’—l(Tk—l)%)z
k=1
20e®"  ogin 46ih : i
+T(€ — 1) + 4dxpe ZUk*l(Tk*l)a
k=1
2 . )
+§(6291h _ 1)629zh Zkal(kal)g
sz 40ih
n—l 1
—2,1-2 20ih 2
“+n ah @ ; @(e — 1)
n—1 20ih
—2,1-2 To€ 26ih
apl—a = -1
+n Zzzl 7 (e )

n—1 %
_2 _2 i 1
+n-ahl7a E 4%06491h E Ug—1(Ti—1)=
1=1 k=1

n—1 [
—2 2 2 i i p
R N PTG D)e "N Uy (re—1)

=1

n—1 i
_2 _2 i 2
+n~ah! “E 464‘”h§ U2 (Th_1)=

+n-apl"a ZS@‘lethUk 1U -1 (Ti— l)é(TJ 1),
k#j

9\»—‘

It is easy to see that

1
n Oth—fsz 40ih ?(nh) 2/ 2_>0

Thus, we can obtain that

2 2 ]_ P
1-2 2 : 20ih 2
n « h 2 @(6 1) — 07
and
n— 20

—2,1_2 To€ 20ih P

«ht 1) =0

n 2.7 ( )

By the Markov inequality, for any € > 0, it can be checked
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that
n—1 i
_2 4 2 i =
P(jn~ah'~a Z4xoe49 hZUk—l(Tk—l)“| > ¢)
i=1 k=1

n—1 7
< 671]E|n*%h1*% Z 40t Z Uk,l(Tk,l)é |
i=1 k=1

n—1 i
< 47T RITE T NS g B Uy (5—1) 7
=1 k=1
—1 _2
S 05 (nh) @ m — 0.

By using the same methods, it follows that

n—1 7
_2.q_2 2 i i ip
n-ahl™a E 6(620h—1)€29h E Ug—1(Tk—1)= = 0.
i=1 k=1

and

n—1 7
_2.q_2 ; 1 1ip
n <« hl o Z 8649”1 Z kalUjfl(kal) @ (ijl) o = 0.
i=1 kj
With the result that )
n-ahl=% Z?;ll 4et0ih ZZ=1 Ul?—l(Tk—l)% 4 %g’ we
obtain that

n Cg
_2.,q_2 d O&
n-ahl™a g X2 4=
vl 20
i=1

Furthermore,

n

t;
(nlog n)*éh*é Z/ VXe %4z,
i=1Vti-1

t

n—1

= (nlogn)_%h_é ZXti(TiﬁUi
i=0

n—1 1 1
B 1 N L L\ 20in
= (nlognh) g(n) Ui( 5 + (zo + 29)e
+2ze2eihUk71(Tk71)é)

k=1
1 n—1
1 1

= —%(nlognh) o ;(n) U;

n—1 1

1 1 20ih

+(nlognh)™ = ;(Ti)" Ui(zo + %)6

n—1

+2(nlognh)™= > (1)« U; exp®®™ Y~ U1 (re—1)=.

1=0 k=1

By the Markov inequality, for any € > 0, it follows that

n—1
1 1 1 .
P(|(nlognh)~= )= Us —)e20ih
(|(nlognh) ;(7) (zo + 29)6 | >¢)
n—1 1 ‘
< e 'El(nlognh) ™ Y (7:) = Uil + 55)¢*""|
1=0
n—1 1
1 . 1
< e Ynlognh)~= Y e2VME|(r;)=U;|E|(zo + %)\

Thus, we can also obtain that

n—1

1

%(nlognh)_é Z(Ti)éUi Zo.
i=0

Together with the results that

n—1 7
2(nlognh)~ = Z(Tz’)éUie%ih Z Up—1 (1) =
i=0 k=1
we can derive that
nh (1 ,~ 4 20(af)" =Y

« (0, —0 39
(g ¥ (B —0) % =50 (39)
The proof is complete. ]

Remark 1: For the conditions in Theorem 2, h can take
h = cn~* with

1 1 6
- i .9
(o o) fee 2
A€
= ] ifae (L))
1+a’2—a/2+p 7SV
The choice A = ﬁ leads to the optimal convergence rate

in Theorem 2.

IV. SIMULATION

In this experiment, we generate a discrete sample
(Xt,)i=01....n and compute 6,, from the sample. In Table
1 and 2, we let zg = 1 and o = 1.8. In Table 3 and 4, we
let xg = 0.5 and o = 1.2. In Table 5, we let z¢g = 0.06,
« = 0.8. For every given true value of the parameter-6, the
size of the sample is represented as““Size n” and given in
the first column of the table. In Table 1 and 3, h = 0.1,
the size is increasing from 1000 to 5000. In Table 2 and
4, h = 0.01, the size is increasing from 10000 to 50000.
In Table 5, h = 0.05, the size is increasing from 10000 to
50000. The tables list the value of least squares estimator
“0,,” and the absolute errors (AE)“|6 — 6,,|”.

Two tables illustrate that when n is large enough and h is
small enough, the obtained estimators are very close to the
true parameter value. If we let n converge to the infinity and
h converge to zero, the estimator will converge to the true
value.

V. CONCLUSION

The aim of this paper is to estimate the parameter of
squared radial Ornstein-Uhlenbeck process driven by a-
stable noises from discrete observation. The existence and
uniqueness of solutions to the stochastic differential equation
has been studied. The contrast function has been introduced
to obtain the least squares estimator. The strong consisten-
cy and asymptotic distribution of the estimator have been
discussed by using ergodic theorem, Holder inequality and
Markov inequality. Some numerical calculus and simulations
have been given to verify the effectiveness of estimator.
Further research topics will include parameter estimation for
partially observed stochastic differential equation driven by
a-stable noises.
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LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF 6

TABLE 1

TABLE IV
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF 6

True Aver AE
True Aver AE
0 Size n 6y, 16 — B,
9 Size n On |0 — 0,
10000 1.2356 0.2356
1000 1.3641 0.3641
20000 1.1249 0.1249
2000 1.2530 0.2530 1
1 30000 1.0725 0.0725
3000 1.1836 0.1836
50000 1.0091 0.0091
5000 1.0127 0.0127
10000 2.2826 0.2826
1000 2.4135 0.4135
20000 2.1532 0.1532
2000 22821 0.2821 2
2 30000 2.0638 0.0638
3000 2.1731 0.1731
50000 2.0053 0.0053
5000 2.0386 0.0356
TABLE V
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF 6
TABLE II
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF 6 True Aver AE
True Aver AE 0 Size n On 6 — On|
N N 10000 1.1976 0.1976
9 Size n 0, |0 — On|
20000 1.0854 0.0854
10000 1.2175 0.2175 1
30000 1.0073 0.0073
20000 1.1458 0.1458
1 50000 1.0006 0.0006
30000 1.0618 0.0618
10000 2.1849 0.1849
50000 1.0082 0.0082
20000 2.0732 0.0732
10000 2.2637 0.2637 2
30000 2.0081 0.0081
20000 2.1715 0.1715
2 50000 2.0005 0.0005
30000 2.0593 0.0593
50000 2.0071 0.0071
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