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Abstract—In order to investigate the derivation theory on
MV-algebras further more, we give the notion of τ -additive
derivations as a generalization of additive derivations in [29].
Then we discuss some related properties and characterizations
of τ -additive derivations, and obtain the condition for a τ -
additive derivation to be an endomorphism. Furthermore, some
properties of τ -additive derivations related with the fixed set
∆d(A) are given.

Index Terms—MV-algebra, τ -additive derivation, Homomor-
phism.

I. INTRODUCTION

THe Łukasiewicz infinite-valued logic introduced for
philosophical reasons by Jan Lukasiewicz is the most

important and widely studied non-classical logic. MV-
algebras (as algebras of type (⊕, ∗, 0) of signature (2, 1,
0)) have been introduced and studied by Chang in [1] as
an algebraic counterpart of the Łukasiewicz infinite-valued
propositional logic. The monograph [2] is entirely devoted
to give self-contained proofs of all basic results concerning
the infinite-valued propositional calculus of Łukasiewicz
and its algebras, Chang’s MV-alberas. By using special
algebraic structures, some meaningful results are obtained
in MV-algebras. It is worth noticing that the ideal theory
is a powerful tool for studying MV-algebras. One of the
reasons is that ideals are closely related to congruence
relations, and quotient algebras can be constructed on the
basis of congruence relations. Another reason is that the
set of provable formulas in the corresponding reasoning
system can be described by those fuzzy ideals of algebraic
semantics. Hoo [3] showed that how to obtain results in
MV-algebras by considering their fuzzy ideals. The concept
of ideals in BL-algebras as the generalized form of ideals
in MV-algebras, was introduced by Lele and Nganou from
a purely algebraic point of view [4]. By using the set of
complement elements, the relationships between ideals and
deductive systems in BL-algebras were analyzed. Filters and
ideals are dual notions in MV-algebras, while some papers
investigated algebraic properties of MV-algebras via the filter
theory [5]. It is noticed that the concepts of states and
pseudo valuations which can measure the average truth-value
of propositions, become very important in studying logical
structures. Dvurečenskij and Zahir [6] defined a state as a
[0, 1]-valued, finitely additive function attaining the value 1
on an EMV-algebra, and showed that states always exist and
the extremal states are exactly state-morphisms. Yang and
Zhu [7] gave the the concept of pseudo MV-valuations in
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MV-aglebras, and investigated some related characterizations
of them.

From the analytic theory, the notion of derivations was
first introduced in a prime ring as a map d : R → R
satisfying the conditions d(x + y) = d(x) + d(y) and
d(x ·y) = d(x) ·y+x ·d(y), for any x, y ∈ R [8]. Inspired by
the concept of derivations in prime rings, some researchers
studied the derivation theory in rings and near rings, respec-
tively ([9], [10]). In fact, the notion of derivations in the
ring theory plays a significant role in algebraic geometry,
so it has been investigated for the cases of lattices and
algebras of fuzzy logic. The notion of left-right (resp. right-
left) derivations of BCI-algebras was introduced by Jun and
Xin [11], and some characterizations of a p-semisimple BCI-
algebra were given by using the idea of regular derivations.
Ciungu [12] defined two types of implicative derivations on
pseudo-BCK algebras, and discussed some related properties
of isotone implicative derivations. In 1975, Szász defined
a derivation on a lattice (L,∨,∧) as a map d : L → L
satisfying the conditions d(x ∨ y) = d(x) ∨ d(y) and
d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)), for any x, y ∈ L [13].
Xin et al. [14] characterized modular lattices and distributive
lattices by some particular derivations. As a generalization of
derivations in [14], the notion of f -derivations on lattices was
introduced, and some related properties were investigated in
[15]. Continuing the work on derivations for lattices, Xin
[16] established some characterizations of distributive lattices
and modular lattices by the fixed set of isotone derivations.
Torkzadeh and Abbasian [17] studied (�,∨)-derivations on
BL-algebras. Alsatayhi and Moussavi [18] gave the notions
of (ϕ,ψ)-derivations of types 1 and 2 on BL-algebras via
endomorphisms. In order to characterize some special types
of residuated lattices in terms of derivations, He et al. gave
the concepts of multiplicative derivations and implicative
derivations [19]. Based on [19], Kondo considered some
properties of multiplicative derivations and d-filters of com-
mutative residuated lattices in [20]. Zhu et al. introduced the
notion of a generalized derivation determined by a derivation
for a residuated lattice in [21], and then presented the concept
of derivations of state residuated lattices (L, τ) in [22].
A number of researchers have studied derivations in other
algebraic systems, such as lattice implication algebras [23],
residuated multilattices [24] and semihoops [25].

In 2010, Alshehri introduced the notion of derivation-
s for MV-algebras, and obtained some related properties
[26]. Moreover, the notion of derivations on MV-algebras
has been generalized to f -derivations and (f, g)-derivations
[27]. Ghorbani et al. [28] presented the notions of (�,⊕)-
derivations and (	,�)-derivations for MV-algebras, and
studied the connection between these derivations. To give
some representations of MV-algebras in terms of derivations,
Wang et al. [29] introduced the notions of additive derivations
(implicative derivations) and difference derivations in MV-
algebras. As a supplement of the derivation theory, Yang and
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Zhu [30] presented the concept of τ–difference derivations
on MV-algebras.

Motivated by notions of additive derivations in MV-
algebras [29] and generalized derivations in BL-algebras
[18], we introduced the notion of τ -additive derivations
which is a generalization of additive derivations on MV-
algebras. Some related properties and characterizations of
τ -additive derivations are given. Usually, a τ -additive deriva-
tion d maybe not a homomorphism τ , however, we get some
conditions for a τ -additive derivation d to be a homomor-
phism τ in the paper. Finally, we present some properties
of τ -additive derivations related with the set ∆d(A), and
show that d(A) forms an MV-algebra under some suitable
operations.

II. PRELIMINARIES

In the section, in order to facilitate our discussion, we
summarize some definitions and results about MV-algebras,
which will be used in the subsequent discussions.

An algebra (A,⊕, ∗, 0) of type (2, 1, 0) is called an
MV-algebra if it satisfies the following conditions: for any
x, y, z ∈ A,

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV2) x⊕ y = y ⊕ x,
(MV3) x⊕ 0 = x,
(MV4) x∗∗ = x,
(MV5) x⊕ 0∗ = 0∗,
(MV6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
For any MV-algebra (A,⊕, ∗, 0) , we define the constant

1 and the operations 	, ∨, ∧, ⊗ and → as follows: for any
x, y ∈ A,

(i) 1 = 0∗,
(ii) x	 y = (x∗ ⊕ y)∗,
(iii) x ∨ y = (x	 y)⊕ y,
(iv) x ∧ y = y 	 (y 	 x),
(v) x⊗ y = x	 y∗,
(vi) x→ y = x∗ ⊕ y.

Lemma 2.1: [31] Let A be an MV-algebra. Then the
following conditions are equivalent: for any x, y ∈ A,

(i) x = x ∧ y,
(ii) x	 y = 0,
(iii) there is z ∈ A such that y = x⊕ z.
For any x, y ∈ A, x ≤ y iff x and y satisfy one of the

above equivalent conditions (i)–(iii). It follows that ≤ is
a partial order, called the natural order of A. And on each
MV-algebra, the natural order determines a lattices structure.
In fact, one can show that (A,∨,∧, 0, 1) forms a distributive
lattice.

Proposition 2.2: [31] Let A be an MV-algebra. Then the
following results are valid: for any x, y, z ∈ A,

(1) 1⊕ x = 1, 0⊕ x = x, x⊕ x∗ = 1;
(2) x	 y ≤ z if and only if x ≤ y ⊕ z;
(3) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z);
(4) y ⊗ (x⊕ z) ≤ x⊕ (y ⊗ z);
(5) x	 y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y;
(6) x ≤ y if and only if x→ y = 1.
A subset D of an MV-algebra A is called a deductive

system of A if it satisfies the following axioms:
(ds1) 1 ∈ D,

TABLE I
THE OPERATION ⊕ ON A

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 b 1

1 1 1 1 1

(ds2) x ∈ D and x → y ∈ D imply y ∈ D, for any
x, y ∈ A.

Denote by DS(A) the set of all deductive systems of A.
If X ⊆ A, denote by

[X) =
⋂
{D ∈ DS(A)|X ⊆ D}.

Then one can prove that [X) is the smallest deductive system
of A containing X , and we call it the deductive system
generated by X .

Definition 2.3: [1] Let f : A1 → A2 be a mapping, where
(A1,⊕1, ∗1, 01) and (A2,⊕2, ∗2, 02) are two MV-algebras.
Then f called a homomorphism iff it satisfies the following
conditions:

(1) f(01) = 02,
(2) f(x⊕1 y) = f(x)⊕2 f(y),
(3) f(x∗1) = f(x)∗2 ,

for any x, y ∈ A1.
Definition 2.4: [29] Let A be an MV-algebra. A map d :

A→ A is called an additive derivation if it satisfies:
d(x⊕ y) = d(x)⊕ y,

for any x, y ∈ A.

III. τ -ADDITIVE DERIVATIONS ON MV-ALGEBRAS

In the section, we extend the notion of additive derivations
on MV-algebras to the notion of τ -additive derivations, and
investigate some characterizations of τ -additive derivations.
In the following, unless mentioned otherwise, A is an MV-
algebra.

Definition 3.1: Let τ be an endomorphism on A. A map
d : A → A is called a τ -additive derivation on A if it
satisfies:

d(x⊕ y) = d(x)⊕ τ(y)

for any x, y ∈ A.
From the above definition, it is easy to see that

d(x⊕ y) = d(x)⊕ τ(y) = τ(x)⊕ d(y)

for any x, y ∈ A. If τ is the identity map on A, according
to Definition 2.4, we get that the τ -additive derivation d is
actually an ordinary additive derivation.

Example 3.2: Define a map d : A→ A by
d(x) = x

for any x ∈ A. If τ is the identity map, then d is a τ -
additive derivation on A, which is called an identity τ -
additive derivation.

Example 3.3: Let A = {0, a, b, 1}, where 0 < a < 1 and
0 < b < 1. Then it is easy to check that (A,⊕, ∗, 0) is an
MV-algebra, where the operation ⊕ on A is defined in Table
I, and the operation ∗ on A is defined in Table II.

We define two maps τ : A→ A and d : A→ A as follows
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TABLE II
THE OPERATION ∗ ON A

∗ 0 a b 1

1 b a 0

τ(x) =


0, x = 0,

b, x = a,

a, x = b,

1, x = 1.

d(x) =


b, x = 0,

b, x = a,

1, x = b,

1, x = 1.

By routine calculations, τ is a homomorphism on A, and d
is a τ -additive derivation on A.

Proposition 3.4: Let d be a τ -additive derivation on A
Then the following properties hold: for any x, y ∈ A,

(1) d(1) = 1;
(2) if x ≤ y, then d(x) ≤ d(y);
(3) τ(x) ≤ d(x);
(4) d(x⊕ y) ≤ d(x)⊕ d(y);
(5) d(x)	 d(y) ≤ d(x	 y).

Proof: (1) According to the definition of τ -additive
derivations, we have

d(1) = d(1⊕ 1)

= d(1)⊕ τ(1)

= d(1)⊕ 1

= 1.

(2) For any x, y ∈ A, if x ≤ y, then there exists z ∈ A
such that y = x⊕ z. It follows that

d(y) = d(x⊕ z)
= d(x)⊕ τ(z)

= d(z)⊕ τ(x).

Therefore, we get that d(x) ≤ d(y) and τ(x) ≤ d(y) by
Lemma 2.1.

(3) For any x, y ∈ A, if x ≤ y, then τ(x) ≤ d(y) follows
the proof process of (2). Hence, we get τ(x) ≤ d(x) due to
x ≤ x.

(4) According to (3), we have τ(y) ≤ d(y) for any y ∈ A.
And so d(x⊕ y) = d(x)⊕ τ(y) ≤ d(x)⊕ d(y).

(5) Using (2) and (4), we obtain that

d(x	 y)⊕ d(y) ≥ d((x	 y)⊕ y)

= d(x ∨ y)

≥ d(x),

which means that d(x 	 y) ⊕ d(y) ≥ d(x), and therefore
d(x)	 d(y) ≤ d(x	 y).

Theorem 3.5: Let d : A → A be a map. Then the
following statements are equivalent:

(1) d is a τ -additive derivation on A;
(2) d(x) = d(0)⊕ τ(x), for any x ∈ A;
(3) d(x→ y) = τ(x)→ d(y), for any x, y ∈ A.

Proof: (1) ⇒ (2) Assume that d is a τ -additive
derivation on A, then d(x) = d(0 ⊕ x) = d(0) ⊕ τ(x) for
any x ∈ A.

(2)⇒ (3) For any x, y ∈ A,

d(x→ y) = d(0)⊕ τ(x→ y)

= d(0)⊕ τ(x∗ ⊕ y)

= d(0)⊕ (τ(x)∗ ⊕ τ(y))

= τ(x)∗ ⊕ (d(0)⊕ τ(y))

= τ(x)∗ ⊕ d(y)

= τ(x)→ d(y).

(3)⇒ (1) By hypothesis, we have

d(x⊕ y) = d(x∗ → y)

= τ(x∗)→ d(y)

= τ(x)∗ → d(y)

= τ(x)⊕ d(y)

for any x, y ∈ A. By the commutativity of ⊕, we can get

d(x⊕ y) = d(x)⊕ τ(y).

Hence, d is a τ -additive derivation on A.
Proposition 3.6: Let d be a τ -additive derivation on A.

Then for any x, y ∈ A,
(1) d(x ∧ y) = d(x) ∧ d(y);
(2) d(x⊗ y) ≥ τ(x)⊗ d(y).

Proof: (1) Using Theorem 3.5 and Proposition 2.2 (3),
we get that

d(x ∧ y) = d(0)⊗ τ(x ∧ y)

= d(0)⊕ (τ(x) ∧ τ(y))

= (d(0)⊕ τ(x)) ∧ ((d(0)⊕ τ(y))

= d(x) ∧ d(y)

for any x, y ∈ A.
(2) For any x, y ∈ A, we have

d(x⊗ y) = d(0)⊕ τ(x⊗ y)

= d(0)⊕ (τ(x)⊗ τ(y))

≥ τ(x)⊗ (d(0)⊕ τ(y))

= τ(x)⊗ d(y)

by Theorem 3.5 and Proposition 2.2 (4).
An MV-algebra A is a Boolean algebra if it satisfies the

additional equation x⊕x = x (or x⊗x = x) for any x ∈ A,
and denote by

B(A) = {x ∈ A|x⊕ x = x}

the set of all idempotent elements of A.
Proposition 3.7: [1] Let A be an MV-algebra. Then fol-

lowing conditions are equivalent: for any x, y ∈ A,
(i) x ∈ B(A);
(ii) x⊕ x = x;
(iii) x⊗ x = x;
(iv) x⊕ y = x ∨ y;
(v) x⊗ y = x ∧ y.
Proposition 3.8: Let d be a τ -additive derivation on A,

and d(0) ∈ B(A). Then for any x, y ∈ A,
(1) d(x) = d(x) ∨ τ(x);
(2) d(x⊕ y) = d(x)⊕ d(y);
(3) d(x ∨ y) = d(x) ∨ d(y);
(4) d(x⊗ y) ≥ d(x)⊗ d(y).

Proof: (1) Since d(0) ∈ B(A), then we have
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d(x) = d(0)⊕ τ(x) = d(x) ∨ τ(x)

by Proposition 3.7.
(2) For any x, y ∈ A, we get

d(x⊕ y) = d(0)⊕ τ(x⊕ y)

= (d(0)⊕ d(0))⊕ (τ(x)⊕ τ(y))

= (d(0)⊕ τ(x))⊕ (d(0)⊕ τ(y))

= d(x)⊕ d(y).

(3) According to (1) and Proposition 3.7, we obtain that

d(x ∨ y) = d(0)⊕ τ(x ∨ y)

= d(0) ∨ τ(x ∨ y)

= (d(0) ∨ d(0)) ∨ (τ(x) ∨ τ(y))

= (d(0) ∨ τ(x)) ∨ (d(0) ∨ τ(y))

= d(x) ∨ d(y).

(4) Applying Proposition 2.2 (4) twice, we have

d(x⊗ y) = d(0)⊕ τ(x⊗ y)

= (d(0)⊕ d(0))⊕ (τ(x)⊗ τ(y))

= d(0)⊕ (d(0)⊕ (τ(x)⊗ τ(y)))

≥ d(0)⊕ (τ(y)⊗ (d(0)⊕ τ(x)))

≥ (d(0)⊕ τ(x))⊗ (d(0)⊕ τ(y))

= d(x)⊗ d(y).

Proposition 3.9: Let τ : A→ A be a homomorphism. For
a fixed element a ∈ A, if a map d⊕a : A→ A is defined by

d⊕a (x) = τ(x)⊕ a
for any x ∈ A, then d⊕a is a τ -additive derivation on A.

Proof: For any x, y ∈ A,

d⊕a (x⊕ y) = τ(x⊕ y)⊕ a
= (τ(x)⊕ τ(y))⊕ a
= (τ(x)⊕ a)⊕ τ(y)

= d⊕a (x)⊕ τ(y).

According to Definition 3.1, we get that d⊕a is a τ -additive
derivation on A.

Proposition 3.10: Let τ : A → A be a homomorphism.
For a fixed element a ∈ A, if a map d→a : A→ A is defined
by

d→a (x) = a→ τ(x)
for any x ∈ A, then d→a is a τ -additive derivation on A.

Proof: For any x, y ∈ A,

d→a (x→ y) = a→ τ(x→ y)

= a→ (τ(x)→ τ(y))

= τ(x)→ (a→ τ(y))

= τ(x)→ d→a (y).

Using Theorem 3.5, we get that d→a is a τ -additive derivation
on A.

Theorem 3.11: Let the endomorphism τ on A be an
identity map and d be a τ -additive derivation on A. If
∅ 6= X ⊆ A, then

[X) = {a ∈ A|d(x1)→ (· · · → (d(xn)→ a) · · · ) =
1 for some x1, · · · , xn ∈ X and n ∈ N}.

Proof: For any D ∈ DS(A), we have that d(D) ⊆ D.
In fact, suppose that y ∈ d(D), that is, there exists x ∈ D

such that y = d(x). Noticing that τ is an identity map and d
is a τ -additive derivation on A, we get x = τ(x) ≤ d(x) by
Proposition 3.4 (3). And so x → y = x → d(x) = 1 ∈ D,
hence y ∈ D, so that d(D) ⊆ D. Denote

X∗ ={a ∈ A|d(x1)→ (· · · → (d(xn)→ a) · · · ) = 1,

x1, · · · , xn ∈ X,n ∈ N}.

Obviously, 1 ∈ X∗. Assume a, b ∈ A such that
a, a → b ∈ X∗, then there exist m,n ∈ N and
x1, x2, · · · , xm, y1, y2, · · · , yn ∈ X such that

d(x1)→ (· · · → (d(xm)→ (a→ b)) · · · ) = 1

and

d(y1)→ (· · · → (d(yn)→ a) · · · ) = 1.

Then we get inductively:

a→ (d(x1)→ (· · · → (d(xm)→ b) · · · ))
= d(x1)→ (· · · → (d(xm)→ (a→ b)) · · · )
= 1

It follows that a ≤ (d(x1) → (· · · → (d(xm) → b) · · · )),
and we get inductively:

1 = d(y1)→ (· · · → (d(yn)→ a) · · · )
≤ d(y1)→ (· · · → (d(yn)→ (d(x1)→ (· · · → (d(xm)

→ b) · · · ))) · · · ).

So that d(y1)→ (· · · → (d(yn)→ (d(x1)→ (· · · (d(xm)→
b) · · · ))) · · · ) = 1. Therefore, b ∈ X∗, that is, X∗ ∈ DS(A).
Let X ′ ∈ DS(A) such that X ⊆ X ′, and let a ∈ X∗. Then
there exist n ∈ N and x1, x2, · · · , xn ∈ X such that

d(x1)→ (· · · → (d(xn)→ a) · · · ) = 1.

From xi ∈ X ⊆ X ′, X ′ ∈ DS(A) and d(X ′) ⊆ X ′, we
have d(xi) ∈ X ′, hence a ∈ X ′. It follows that X∗ ⊆ X ′,
thus X∗ is the smallest deductive system of A containing X .
We conclude that X∗ = [X).

In general, an endomorphism τ is a τ -additive derivation
on an MV-algebra, but a τ -additive derivation d maybe not
an endomorphism. In the following, we derive a set of con-
ditions for a τ -additive derivation d to be an endomorphism.

Proposition 3.12: Let d be a τ -additive derivation on A.
Then

(1) d(0) = 0;
(2) d = τ ;
(3) d(x→ y) = d(x)→ τ(y) for any x, y ∈ A.

Proof: (1)⇒ (2) Suppose that d(0) = 0, then

d(x) = d(0⊕ x)

= d(0)⊕ τ(x)

= 0⊕ τ(x)

= τ(x)

for any x ∈ A, and so d = τ .
(2)⇒ (3) It is obviously.
(3)⇒ (1) Since 1 = d(1) = d(0→ 0) = d(0)→ τ(0) =

d(0)→ 0, then d(0) ≤ 0. By Proposition 3.4 (3), we have

0 = τ(0) ≤ d(0),

hence d(0) = 0.
Let f and g be two maps on A. We define f · g by
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(f · g)(x) = f(g(x))

for any x ∈ A. If f = f2 := f · f , then f is called an
idempotent map.

Proposition 3.13: Let d1 and d2 be two τ -additive deriva-
tions on A. If τ is an idempotent homomorphism, then d1 ·d2
is also a τ -additive derivation on A.

Proof: Noticing that d1 and d2 are τ -additive derivations
on A, and τ is an idempotent homomorphism, we get that

(d1 · d2)(x⊕ y) = d1(d2(x)⊕ τ(y))

= d1(d2(x))⊕ τ2(y)

= (d1 · d2)(x)⊕ τ(y)

for any x, y ∈ A. Therefore d1 · d2 is a τ -additive derivation
on A.

For a τ -additive derivation d on A, we denote the fixed
set ∆d(A) with respect to the endomorphism τ by

∆d(A) = {x ∈ A|d(x) = τ(x)}.

If τ is the identity map and d is idempotent, then clearly
d(x) ∈ ∆d(A) for any x ∈ A.

Proposition 3.14: Let d be a τ -additive derivation on A.
(1) If τ is the identity map on A, then

∆d(A) ⊆ ∆d2(A).
(2) If x ∈ A and y ∈ ∆d(A), then

d(x⊕ y) = d(x)⊕ d(y).
(3) If x ∈ ∆d(A) and y ∈ ∆d(A), then

x⊕ y ∈ ∆d(A) and x ∧ y ∈ ∆d(A).
Proof: (1) If τ is the identity map on A, then we have

x = d(x) for any x ∈ ∆d(M). It follows that

d2(x) = d(d(x)) = d(x) = x,

and so x ∈ ∆d2(A), therefore ∆d(A) ⊆ ∆d2(A).
(2) If x ∈ A and y ∈ ∆d(A), then d(y) = τ(y), and

therefore d(x⊕ y) = d(x)⊕ τ(y) = d(x)⊕ d(y).
(3) If x ∈ ∆d(A) and y ∈ ∆d(A), then d(x) = τ(x) and

d(y) = τ(y). Using (2) we have

d(x⊕ y) = d(x)⊕ d(y)

= τ(x)⊕ τ(y)

= τ(x⊕ y),

and so x⊕ y ∈ ∆d(A).
From Proposition 3.6 (1), it follows that

d(x ∧ y) = d(x) ∧ d(y)

= τ(x) ∧ τ(y)

= τ(x ∧ y),

hence x ∧ y ∈ ∆d(A).
Theorem 3.15: Let d1 and d2 be two idempotent τ -

additive derivations on A such that d1 · d2 = d2 · d1, and
τ be the identity map on A. Then the following asserts are
equivalent:

(1) d1 = d2;
(2) d1(A) = d2(A);
(3) ∆d1

(A) = ∆d2
(A).

Proof: (1)⇒ (2) Obviously.
(2) ⇒ (3) Assume that d1(A) = d2(A). For any x ∈

∆d1
(A), we have

x = d1(x) ∈ d1(A) = d2(A).

Then there exists y ∈ A such that x = d2(y). And

d2(x) = d2(d2(y)) = d2(y) = x,

so x ∈ ∆d2
(A), it follows that ∆d1

(A) ⊆ ∆d2
(A). Similarly,

we can prove ∆d2(A) ⊆ ∆d1(A). Thus ∆d1(A) = ∆d2(A).
(3)⇒ (1) Suppose that ∆d1(A) = ∆d2(A). For any x ∈

A, since d1(x) ∈ ∆d1
(A) = ∆d2

(A), we get that

d2(d1(x)) = d1(x).

Similarly, d1(d2(x)) = d2(x). Then

d1(x) = d2(d1(x))

= (d2 · d1)(x)

= (d1 · d2)(x)

= d1(d2(x))

= d2(x),

thus, d1 = d2.
Theorem 3.16: Let d be a τ -additive derivation on A such

that d(0) ∈ B(A). Then (d(A),+, ?, d(0)) is an MV-algebra,
where

d(x) + d(y) = d(x⊕ y),
d(x)? = d(x∗)

for any x, y ∈ A.
Proof: According to Proposition 3.8, we obtain that

d(x) + d(y) = d(x⊕ y) = d(x)⊕ d(y).

It is easy to check that d(A) satisfies the conditions (MV 1)–
(MV 6), hence (d(A),+, ?, d(0)) is an MV-algebra.

IV. CONCLUSION

The notion of derivations is helpful for studying structures
in algebraic systems. In the paper, we have generalized the
notion of derivations to the notion of additive derivations
based on endomorphisms, and introduced the notion of τ -
additive derivations on MV-algebras. Some related properties
and characterizations of τ -additive derivations are discussed.
Some conditions for a τ -additive derivation d to be a
homomorphism are also obtained. The results we obtained
are complete and further generalize the known ones about
additive derivations for MV-algebras.
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[10] M. Brešar, D. Eremita and T.L. Wong, “On commutators and deriva-
tions in rings,” Journal of Algebra, vol. 278, no. 2, pp. 704–724, 2004.

[11] Y.B. Jun and X. Xin, “On derivations of BCI-algebras,” Information
Sciences, vol. 159, no. 3-4, pp. 167–176, 2004.

[12] L.C. Ciungu, “Derivation operators on generalized algebras of BCK
logic,” Fuzzy Sets and Systems, vol. 407, pp. 175–191, 2021.

[13] G. Szász, “Derivations of lattices,” Acta Scientiarum Mathematicarum,
vol. 37, pp. 149–154, 1975.

[14] X. Xin, T. Li and J. Lu, “On derivations of lattices,” Information
Sciences, vol. 178, no. 2, pp. 307–316, 2008.

[15] Y. Ceven and M.A. Ozturk, “On f-derivations of lattices,” Bulletin of
the Korean Mathematical Society, vol. 45, no. 4, pp. 701–707, 2008.

[16] X. Xin, “The fixed set of a derivation in lattices,” Fixed Point Theory
and Applications, vol. 218, pp. 1–12, 2012. 218 (2012) 1-12.

[17] L. Torkzadeh and L.Abbasian, “On (�,∨)-Derivations for BL-
Algebras,” Journal of Hyperstructures, vol. 2, no. 2, pp. 151–162, 2013.

[18] S. Alsatayhi and A. Moussavi, “(ϕ,ψ)-derivations of BL-algebras,”
Asian-European Journal of Mathematics, vol. 11, no. 1, pp. 1–19, 2018.

[19] P. He, X. Xin and J. Zhan, “On derivations and their fixed point sets
in residuated lattices,” Fuzzy Sets and Systems, vol. 303, pp. 97–113,
2016.

[20] M. Kondo, “Multiplicative derivations and d-filters of commutative
residuated lattices,” Soft Computing, vol. 24, no. 10, pp. 7029–7033,
2020.

[21] K. Zhu, J. Wang and Y. Yang, “On generalized derivations in resid-
uated lattices,” IAENG International Journal of Applied Mathematics,
vol. 50, no. 2, pp. 330–335, 2020.

[22] K. Zhu, J. Wang and Y. Yang, “On derivations of state residuated
lattices,” IAENG International Journal of Applied Mathematics, vol.
50, no. 4, pp. 751–759, 2020.

[23] H. Zhu, Y. Liu and Y. Xu, “On derivations of linguistic truth-valued
lattice implication algebras,” International Journal of Machine Learning
and Cybernetics, vol. 9, no. 4, pp. 611-620, 2018.

[24] L.N. Maffeu, C. Lele, J.B. Nganou and E.A. Temgoua, “Multiplicative
and implicative derivations on residuated multilattices,” Soft Computing,
vol. 23, no. 23, pp. 12199-12208, 2019.

[25] L. Zhang and X. Xin , “Derivations and differential filters on semi-
hoops,” Italian Journal of Pure and Applied Mathematics, vol. 42, pp.
916–933, 2019.

[26] N.O. Alshehri, “Derivations of MV-algebras,” International Journal of
Mathematics and Mathematical Sciences, vol. 2010, pp. 1–7, 2010.

[27] L. Kamali Ardakani and B. Davvaz, “f -derivations and (f, g)-
derivations of MV-algebras,” Journal of Algebraic Systems, vol. 1, no.
1, pp. 11–31, 2013.

[28] Sh. Ghorbani, L. Torkzadeh and S. Motamed, “(�,⊕)-Derivations and
(	,⊗)-Derivations on MV-algebras,” Iranian Journal of Mathematical
Sciences and Informatics, vol. 8, no. 1, pp. 75–90, 2013.

[29] J. Wang, Y. She and T. Qian, “Study of MV-algebras via derivations,”
Analele Universitatii Ovidius Constanta–Seria Matematica, vol. 27, no.
3, pp. 259–278, 2019.

[30] Y. Yang and K. Zhu, “Derivation theoretical approach to MV-algebras,”
IAENG International Journal of Applied Mathematics, vol. 50, no. 4,
pp. 772–776, 2020.

[31] A. Dvurecenskij and S. Pulmannová, “New trends in quantum struc-
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