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Denoising of Low Light Images using Patch Priors
and Wavelets

Sreekala Kannoth, Member, IAENG, Sateesh Kumar H C, Raja K B

Abstract—The work aims to find a novel technique to remove
noise from low light or low luminous level images to improve
the visibility of the image and the performance of many image
processing systems. A denoising technique using patch priors
in wavelet domain for images with low luminous levels, with
the help of the Gaussian Mixture Model, is presented here.
The main idea is to perform denoising in a sparse domain.
Initially, the image is decomposed into approximate and detailed
components with the help of wavelet transform, and then
the patch based Gaussian mixture model denoising process
is applied on both approximate and detailed components.
Expectation maximization algorithm is used for estimating the
Gaussian mixture model parameters from the image patches.
After denoising each component, inverse wavelet transform is
applied to obtain the denoised output image. This denoising
method was applied to a set of natural low luminous level
images, and it resulted in clean images with good Peak Signal
to Noise Ratio and Structural Similarity Index, compared to
other conventional methods. This work is a novel method
combining wavelet transform and Gaussian mixture model for
the denoising of low light images.

Index Terms—EM algorithm, GMM, Denoising, MAP esti-
mation, Wavelet decomposition.

I. INTRODUCTION

OW Low light image processing has opened its wings
to a wide range of applications, especially in the area of
surveillance, and they include night surveillance through the
usage of security cameras, target detection and recognition in
defense, and health care through the new advent of medical
imaging. The intensity of light is very feeble in such captured
images, resulting in increased noise, resulting in poor visi-
bility. Such images captured in low light environments affect
the accuracy and performance of many image processing
techniques. It is essential to enhance these images, and
low light image enhancement is a relevant research topic
among many researchers associated with image processing.
However, the application of an enhancement scheme results
in amplifying noise content too, which is undesired. There
are many spatial domain [1] and transform domain [3], [12],
[15] methods available in literature to reduce the noise level
from images.
Discrete wavelet transform (DWT) decomposes a signal
into two components, namely the coarse and the detailed,
and performs the analysis at different frequency levels with
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different resolutions. Coarse and detailed components are as-
sociated with low frequency and high frequency components,
respectively. Successive highpass and lowpass filtering of the
time domain signal results in these components. DWT finds
many applications in signal and image processing areas, and
one of the primary applications includes image denoising. In
addition to DWT, there also exist other methods which use
the wavelet thresholding technique for image denoising [11].
Compared to other multiscale representations, DWT helps in
non-redundant restoration, giving better spatial and spectral
localization of signal formation. Also, wavelet decomposition
is very efficient in decoupling the higher order statistical
features from images.

In this work, a patch based denoising in the wavelet
domain is proposed for denoising low intensity images. Here
the patches are modeled using Gaussian Mixture Model
(GMM) in the wavelet domain. Gaussian distribution is well
suited for modeling image patches and pixels [4]. Using
GMM in the wavelet domain is similar to modeling the
image patch with a constrained GMM. After performing
noise removal for all the frequency bands, the inverse wavelet
transform is applied to obtain a clear output image. A crisp
survey of the articles referred to is described in section II,
with the motivation and objectives of the proposed work
being mentioned in section III, The methodology used in
the implementation of the proposed research is explained in
section IV and the simulation results are provided in section
V. The conclusion is presented in section VI.

II. LITERATURE SURVEY

Lu-Jing Yi et al., [11] in their research work, have tried
to remove the noise from the signal by making use of
the threshold function in the wavelet domain. The authors
have improvised the existing threshold function by incor-
porating what is known as adjustment factors. As per the
authors, the wavelet threshold function depends primarily
on selecting a proper threshold, which can be ’minimaxi’,
’sqtwolog’, ’heursure’, ’fixed’, etc. In this research work,
the authors have proposed an improved threshold based
on the fixed threshold and then apply this for denoising
various signals and then perform a comparative analysis.
The authors, through their results, have validated that the
proposed scheme of denoising has improved the signal-to-
noise ratio by filtering the signals and reducing the mean
square errors.

Wang Chunli et al., [5] in their work, have developed
a denoising algorithm that works on speech signals. They
have taken a noisy speech signal as the input and have
initially converted that signal into the wavelet domain. In
the wavelet domain, the authors have applied the wavelet
threshold function, filtered the signal coefficients from the
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noisy signal, and extracted the signal components that are
then made to undergo an inverse wavelet transform, thus
resulting in the denoised and reconstructed signal. In this
paper, the authors have estimated the threshold using the
steepest descent algorithm and several other adaptations.
The authors have compared the threshold functions like
hard threshold and soft threshold and, through their results,
have established that the usage of hard threshold in wavelet
domain may lead to an increase in discrete points, and
usage of the soft threshold may result in increased loss of
information.

The authors of [6] have proposed a new algorithm for
noise removal in images by making use of wavelet transform
and threshold function. The authors have mentioned that the
signal transformation into the wavelet domain will result
in the noise getting distributed over the entire time axis
because of the non-wavelet coefficients. In contrast, the
signal will get concentrated due to the lower number of
coefficients in the wavelet domain. The denoising in the
signals when performed using the threshold function depends
on a comparison between the coefficients in the transformed
domain and the threshold value, and these coefficients, which
are processed, are then reconstructed to obtain a denoised
signal.

The authors of [7] have used a hyperbolic tangent function
for estimating the threshold function used for denoising in
the wavelet domain. The objectives of their research work
were to introduce a new threshold function in the wavelet
domain that can be used for denoising applications. The
authors have then optimized the shape parameters of the
new threshold function by making use of the ’Artificial
Fish Swarm’ algorithm and through their results have shown
that the denoising effect with this new threshold function
based on hyperbolic tangent function and optimized in the
shape parameter through the artificial fish swarm algorithm,
is better than the traditional wavelet threshold function used
in the wavelet domain. Their research has shown that using
that threshold function will result in better continuity and
maintainability to improve the denoising effect.

The combination of wavelet transform and singular vector
decomposition is used for noise removal from a signal in
work proposed in [8]. The author has compared and validated
that the usage of this combination is better than using the
wavelet transform alone when being used for noise removal
from a signal. The deviation shown by the data points over
a particular dimension can be ordered and identified by
using a method called singular vector decomposition, which
allows unearthing the most appropriate approximations for
the data points, thus resulting in the reduction of noise and
this when combined with the wavelet transform which has
the advantage of representing the signal in time-frequency
domain results in enhanced removal of noise.

Image denoising is a very critical requirement for low light
image enhancement, and this is obvious from the literature
available and Julie Delon et al., in their work [4] have
proposed to denoise the image by making use of patch
based priors using the Gaussian Mixture model. The authors
reveal that the method involved in image denoising using
the patch based method consists of several steps that include
extracting patches from the input denoise image as the first
step. The extracted patches are then grouped and modeled

using the Gaussian mixture model, and the estimation of
the image parameters is then performed by using various
estimation strategies like MAP (Maximum A Posteriori),
MMSE (Minimum Mean Square Error), and linear MMSE.
Finally, this method involves aggregating all the denoised
patches to form a clean output image with a noise reduction.

There is considerable literature available about the tech-
niques used for noise reduction in images used in medical
and other applications where the presence of noise may result
in contamination of results and usage of filters have helped
in the reduction of the same [9], [10], [17]. They speak about
noise reduction using filters like Gaussian filter, classic filter,
and median filter and also have analyzed the performance
of different filters in terms of noise reduction from medical
images. Noise covariance is measured by using an adaptive
Kalman filter which is constrained and unscented, and the
design of the same has been stressed in [16]. Denoising
of colour images has been implemented by using a norm
minimization technique that is multi-channel weighted [18],
and the authors have used spatial filters initially, and the
resultant images after filtering are then used as input to
their sequential algorithm, and hence they have named their
method as having a warm start.

III. MOTIVATION AND OBJECTIVE

From the literature reviewed, it is seen that the denoising
of images can be done in many ways, but there is a
considerably good amount of research that performs image
denoising by making use of wavelet threshold. However, as
seen from [4], patch based denoising using GMM is also one
of the better ways to achieve the same, and this proposed
work aims at performing the denoising of low light images
by using patch based method in the wavelet domain. The
literature shows a void in the image denoising methods,
which is done in sparse domain with the help of patch priors.
The patch priors, when modelled with GMM and estimating
the parameters by using any one of MAP, MMSE, or linear
MMSE, is one such technique that is used in denoising a low
light image. This work has identified the image denoising
by using patches and modelling using GMM as its primary
objective, and the method is discussed in detail in the below
sections.

IV. METHODOLOGY

In this proposed patch based denoising method, noise
removal is done in the wavelet domain using GMM. This
is performed for all the frequency components of the input
image. In this method, GMM parameters are found from
patches using the Expectation-Maximization(EM) algorithm,
and with the help of these parameters, patches are updated
using Maximum APosteriori (MAP) estimation. Then the
denoised image is generated by aggregating the denoised
patches. The parameter estimation and patch estimation
happen periodically until a clear output image is obtained.
Outline of the complete denoising process used here is given
in figure (1).

Initially, the image is decomposed into low and high
frequency components with the help of discrete wavelet
transform. The low frequency part is the approximate compo-
nent, and there are three high frequency components, namely
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Fig. 1: Outline of the complete process

detailed horizontal, detailed vertical, and detailed diagonal
components. After the wavelet decomposition, a patch based
denoising technique using GMM is applied to all the low
and high frequency components separately. In patch based
denoising process using GMM, patches are extracted from
the approximate component of the noisy input image in the
initial step. The patches of the approximate component are
grouped and modeled using GMM.

Model parameters are initialized by using the maximum
log-likelihood function and Gaussian parameters to get the
MAP estimation. The estimated image patches are then
restored, and clean patches are aggregated to recover the
denoised image components. Then the same process is per-
formed for all three detailed components.

For the k!" model, MAP estimation for the i*" image patch
P is given as

P = (3, + o*I)7HEY + P, (D)

The estimation of the denoised image x from the patches is
given as,

F=\+8Y RIR)'(My+B8Y_ RI'P)

where regularization parameters are represented by A and /3
[2]. The window used in the extraction of the i" patch is
represented by R;, the noisy component is represented by ¥,
the identity matrix is represented by I.

Then EM algorithm is used to update GMM which in turn
updates the patches. Steps involved in this process are:

o Calculate the likelihood of the fresh patch with the help
of equation 3, [13] which is given as

N (il Xr)
Vki

= 3)
S N (Bl i)

fori=1,2.nmand k=1,2.. K

o Gaussian parameters are updated using a linear com-
bination of new data and parameters (my, itx, 2k), as
shown in equations 4, 5 and 6 [13].
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Restoring the image patches using MAP estimation and
updating Gaussian parameters are performed periodically
until an image with a satisfactory noise level is obtained.
The resulting denoised image component is the denoised
approximate component. The above process is applied on
detailed horizontal, vertical, and diagonal components sepa-
rately to obtain their denoised versions. Finally, performing
the inverse discrete wavelet transform results in the formation
of a clear denoised image. In the end, results are compared
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with the help of Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index (SSIM).

V. SIMULATION RESULTS

Simulations were carried out on Plane, and Tiger images
from Berkeley segmentation database [14]. Simulation was
done by keeping noise level o =5, 10, 15, 20, 30, 40, 50, 70
and 100. Output images were observed in each case. Haar
wavelet was used for decomposing image into low and high
frequency components, and the patch size in the simulation
was set to 8 x 8. Figure (2) shows the noisy images of Plane
and Tiger with noise level o = 20. Figure (3) and figure
(4) are the results of decomposition using Haar wavelet on
noisy Plane and Tiger images, respectively, and the result
of denoising on the decomposed components. It is seen
from the decomposed noisy and denoised components that
the level of noise is considerably reduced in the transform
domain with the help of the proposed method. The final
reconstructed output is obtained by applying inverse wavelet
transform on the denoised components. Simulation output
on the above two images with noise level o = 20, using
the proposed method along with the result of conventional
wavelet thresholding technique is shown in figure (5) and
figure (6).

TABLE I: Quality metrics - PSNR values

Image Noise Noisy Wavelet Proposed
Level(o) | Image threshold Method
5 34.1320 | 35.8288 37.3635
10 28.1550 | 31.1768 33.4833
15 24.6651 28.2531 31.1848
20 22.1874 | 26.0290 29.7530

Planc 30 18.8314 | 22.7607 28.1549
40 16.4644 | 20.4698 27.1690
50 14.7182 18.7556 26.3778
70 12.3022 16.0624 25.2685
100 10.1833 13.3708 24.0148
5 34.0979 33.5822 35.9668
10 28.0978 30.1093 31.3778
15 24.6491 27.4843 28.9309
20 222134 | 25.4743 27.3515

Tiger 30 18.7499 22.4476 25.3791
40 16.4610 | 20.2619 24.0335
50 14.7955 18.5674 23.2029
70 12.4288 15.9550 21.8778
100 10.3005 13.4498 20.8219

TABLE II: Quality metrics - SSIM values

Image Noise Noisy Wavelet Proposed
Level(o) | Image threshold Method
5 0.8420 0.9098 0.9328
10 0.6117 0.7681 0.8789
15 0.4505 0.6335 0.8341
20 0.3468 0.5217 0.7968

Plane 30 0.2279 0.3650 0.7382
40 0.1649 0.2742 0.6996
50 0.1227 0.2191 0.6624
70 0.0793 0.1450 0.5979
100 0.0489 0.0868 0.4961
5 0.9288 0.9401 0.9599
10 0.7898 0.8733 0.9018
15 0.6633 0.7876 0.8468
20 0.5613 0.7068 0.7987

Tiger 30 0.4088 0.5645 0.7207
40 0.3130 0.4632 0.6542
50 0.2499 0.3874 0.6056
70 0.1702 0.2810 0.5216
100 0.1087 0.1889 0.4470

Peak signal to noise ratio (PSNR) and structural similarity
index (SSIM) values were also calculated for the noisy image
and noise-free images, and they are tabulated for the noise
level o = 5, 10, 15, 20, 30, 40, 50, 70 and 100. Table (I)
gives the PSNR values, and table (II) gives the SSIM values
obtained from the proposed method for the two images along
with the corresponding PSNR and SSIM values obtained
using the wavelet thresholding technique. From the values
shown in table (I), it is evident that the PSNR values of
the proposed denoising method are higher than the PSNR
values of the denoising techniques based on the conventional
wavelet thresholding technique. PSNR is an image quality
metric that is used to measure the performance of any image
processing algorithm, and it gives the ratio of the peak value
of the signal to the noise level in the signal and thus higher
the value of PSNR suggests a better signal strength compared
to the one with lower PSNR value. The PSNR values of the
noisy images are also provided in the table, which is very
low compared to the PSNR values of the denoised images
using the proposed method. This can be further explained
by taking one of the noise levels, say ¢ = 20. For this value
of the noise level, the PSNR value of the noisy input image
is 22.1874dB, and the PSNR values of the denoised images
using conventional wavelet thresholding technique and the
proposed denoising technique are 26.0290dB and 29.7530dB,
respectively, which allows us to draw the inference that the
proposed method has a better PSNR value which shows
that it performs better in image denoising compared to the
conventional denoising method in the wavelet domain. This
is true not just for the noise level of o = 20, but also for other
noise levels for which the values have been provided in the
table, thus leading to a conclusion that the PSNR values
of the proposed denoising method are very much higher
compared to that of the noisy input image and the denoised
images using conventional wavelet thresholding technique.
Thus, the proposed method is more efficient than denoising
based on the conventional wavelet thresholding technique in
removing noise from a noisy input image.

The other quality metric used in this proposed work to
evaluate the performance is the structural similarity index
measure (SSIM) which highlights the similarity in the struc-
ture of the image when compared with the ground truth. The
SSIM values for various noise levels have been tabulated in
table (II). Similar to the case of PSNR, let us take the case of
noise level o = 20. For this noise level, it is observed that the
value of SSIM for the noisy input image is 0.3468, whereas
the SSIM value of the conventional wavelet thresholding
technique based denoising method is observed to be 0.5217
and that of the proposed denoising method is 0.7968. This
indicates that the denoised image obtained with the proposed
method is having a similarity of 79.68% to the ground truth
image when compared to that of 52.17% that is obtained
with the conventional wavelet thresholding technique based
denoising method and 34.68% that is of the noisy input
image. These values further consolidate that our proposed
denoising method provides a better output not just in terms
of the increased signal values but also in terms of increased
similarity with the ground truth images. The SSIM values
show a consistent value for all the noise levels as shown in
the table (II) and not just for the noise level of o = 20. This
enables us to conclude that the proposed method is more
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(a). Noisy Plane Image

(b). Noisy Tiger Image

Fig. 2: Noisy input Images - Plane and Tiger

Noisy approximation Coefficients

Noisy vertical Detail Coefficients

(a). Decomposed noisy components

Noisy horizontal Detail Coefficients penoised approximation Coefficients Denoised horizontal Detail Coefficients

Noisy diagonal Detail Coefficients  Denoised vertical Detail Coefficients Denoised diagonal Detail Coefficients

(b). Decomposed dnoised components

Fig. 3: Decomposed noisy components and its denoised versions - Plane image

efficient in removing noise by increasing the signal level in
the image and maintaining the structural similarity of the
output image with the ground truth image. A plot of these
values against o is shown in figure (7) and figure (8). The
graph shows that the proposed method using wavelet has
better PSNR and SSIM values than the conventional wavelet
thresholding method. This means that the proposed method
is efficient in removing the noise component by keeping the
signal level high, retaining the edges and structure of the
image.

The proposed denoising technique is applied to natural
images with low luminous levels from the data set created.
This data set contains images captured at different luminous
levels for simulation purposes. Images of Car, Cup, Building,
and Sculpture captured at different luminous levels, and with
the noise level of o = 5, 10, 20, 30, 40, 50, 70, 100 were
considered for simulation. Simulation results for one set
of luminous level images are shown in figure (9), figure
(10) and figure (11). Table (III) to Table (VI) shows the
Quality metrics (SSIM and PSNR) values for the images
with different luminous level and varying noise levels.

Figure (12) to figure (19) shows the graph of PSNR and
SSIM values plotted against noise levels (o) for different
light intensity images of Car, Cup, Building and Sculpture.
The light intensity level at which the images are captured
is given in the corresponding graph. Figure (12) and figure
(13) are the plots of PSNR and SSIM values for Car images
of intensities 315, 282, 261, 232 against noise levels 5, 10,
20, 30, 40, 50, 70, 100. Figure (14) and figure (15) are
the same plots for Cup images of intensities 98, 72, 61, 49
against noise levels 5, 10, 20, 30, 40, 50, 70, 100. Figure (16)
and figure (17) are the plots of PSNR and SSIM values for
Building images of intensities 321, 298, 253, 230 against the
same noise levels 5, 10, 20, 30, 40, 50, 70, 100. Finally figure
(18) and figure (19) are the plots of PSNR and SSIM values
for Sculpture images of intensities 152, 140, 112, 84 against
noise levels 5, 10, 20, 30, 40, 50, 70, 100. It is seen from the
graph that the proposed method is effective in removing high
noise levels, which resulted in comparatively high PSNR and
SSIM values compared to noisy images. A plot of PSNR
and SSIM against different intensity levels for the images
are given in figure(20) for a single noise level of o = 20.

Volume 29, Issue 3: September 2021



Engineering Letters, 29:3, EL._29 3 53

Noisy approximation Coefficients Noisy horizontal Detail Coefficients Denoised approximation Coefficients Denoised horizontal Detail Coefficients

Noisy vertical Detail Coefficients Noisy diagonal Detail Coefficients = Denoised vertical Detail Coefficients Denoised diagonal Detail Coefficients

(a). Decomposed noisy components (b). Decomposed dnoised components

Fig. 4: Decomposed noisy components and its denoised versions - Tiger image

(@) Ground truth (b) 22.1874/ 0.3468 (0 26.0290/ 0.5217 (d) 29.7530/ 0.7968

Fig. 5: Results of denoising on Plane image for noise level(c) = 20 with PSNR/SSIM values below the image. (a) Ground
truth (b) Input noisy Image (c) Result of denoising with conventional wavelet thresholding technique (d) Result of
denosing using proposed technique

(@) Ground truth (b) 22.2134/ 0.5613 (0) 25.4743/ 0.7068 (d) 27.3515/ 0.7987

Fig. 6: Results of denoising on Tiger image for noise level(c) = 20 with PSNR/SSIM values below the image. (a) Ground
truth (b) Input noisy image (c) Result of denosing with conventional wavelet thresholding technique (d) Result of
denosing using proposed technique
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Fig. 9: Ground truth of natural low luminous level imagesused for simulation
These sample images are captured at light intensities: Car - 315 lux, Cup - 98 lux,
Building - 321 lux and Sculpture - 152 lux.

Fig. 10: Noisy versions of the ground truths, with noise level o = 20

Fig. 11: Result of denoising by proposed method on natural low luminous level images
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TABLE III: Quality metrics for Car image with different noise levels and luminous levels

Image Light Inten- | Noise level - | PSNR - Noisy | PSNR - Denoised | SSIM - Noisy | SSIM - Denoised
sity o Image Image Image Image
315 5 34.1923 37.6698 0.8599 0.9585
282 5 34.1543 37.6692 0.8574 0.9578
261 5 34.2295 37.8686 0.8542 0.9574
232 5 34.3746 38.1809 0.8446 0.9536
315 10 28.2468 33.2415 0.6560 0.9082
282 10 28.1167 33.2475 0.6463 0.9064
261 10 28.2701 33.3971 0.6424 0.9036
232 10 28.5267 33.9375 0.6268 0.9014
315 20 22.2650 29.7803 0.4002 0.8282
282 20 223172 29.6484 0.3981 0.8269
261 20 22.5080 29.9583 0.3939 0.8254
232 20 22.7104 30.5156 0.3717 0.8300
315 30 18.9504 28.0071 0.2757 0.7731
282 30 19.0711 28.0011 0.2761 0.7666
261 30 19.1636 28.1268 0.2666 0.7652

Car 232 30 19.3754 28.7200 0.2483 0.7755
315 40 16.6298 26.9855 0.2042 0.7282
282 40 16.7707 26.7546 0.2022 0.7226
261 40 16.9040 27.0339 0.1948 0.7240
232 40 17.1065 27.5994 0.1814 0.7336
315 50 14.8443 26.0172 0.1562 0.6883
282 50 15.0643 26.0395 0.1572 0.6830
261 50 15.1826 26.1062 0.1496 0.6782
232 50 15.3996 26.6666 0.1398 0.6898
315 70 12.4694 24.9831 0.1027 0.6343
282 70 12.6199 24.9206 0.1038 0.6091
261 70 12.8077 25.0518 0.0997 0.6106
232 70 12.9247 25.2872 0.0885 0.6183
315 100 10.3195 23.6403 0.0656 0.5460
282 100 10.3753 23.6041 0.0624 0.5371
261 100 10.5015 23.7110 0.0601 0.5261
232 100 10.5529 24.0447 0.0534 0.5178

TABLE IV: Quality metrics for Cup image with different noise levels and luminous levels

Image Light Inten- | Noise level - | PSNR - Noisy | PSNR - Denoised | SSIM - Noisy | SSIM - Denoised
sity o Image Image Image Image
98 5 34.1613 41.7073 0.7698 0.9653
72 5 34.2178 41.7488 0.7705 0.9653
61 5 34.8800 42.2692 0.7622 0.9627
49 5 35.1222 43.0420 0.7086 0.9679
98 10 28.1197 39.1145 0.4796 0.9512
72 10 28.3524 39.0500 0.4911 0.9496
61 10 28.9743 39.3821 0.4755 0.9405
49 10 29.1133 40.3471 0.4043 0.9488
98 20 22.2786 35.7542 0.2202 0.9122
72 20 22.7069 36.2031 0.2343 0.9160
61 20 23.0716 36.7258 0.2094 0.9084
49 20 23.2082 37.5624 0.1646 0.9022
98 30 19.0172 34.2874 0.1281 0.8810
72 30 19.3512 34.3993 0.1342 0.8801
61 30 19.6740 34.9523 0.1126 0.8697

Cup 49 30 19.8625 35.7810 0.0871 0.8713
98 40 16.6854 32.8863 0.0823 0.8424
72 40 17.0487 33.2033 0.0870 0.8449
61 40 17.3797 33.6209 0.0700 0.8243
49 40 17.6868 34.1224 0.0561 0.7935
98 50 14.9340 31.7855 0.0581 0.8031
72 50 15.2956 32.0040 0.0607 0.8003
61 50 15.6886 32.9058 0.0487 0.7998
49 50 15.9593 33.2060 0.0399 0.7126
98 70 12.4880 29.6078 0.0343 0.6937
72 70 12.8191 30.3268 0.0340 0.7267
61 70 13.1808 30.6661 0.0277 0.7002
49 70 13.4157 31.7391 0.0223 0.6531
98 100 10.2473 28.2667 0.0183 0.6208
72 100 10.5093 28.1555 0.0182 0.6053
61 100 10.7171 28.8975 0.0148 0.5945
49 100 10.7858 28.6419 0.0114 0.4969
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TABLE V: Quality metrics for Building image with different noise levels and luminous levels

Image Light Inten- | Noise level - | PSNR - Noisy | PSNR - Denoised | SSIM - Noisy | SSIM - Denoised
sity o Image Image Image Image
321 5 34.6119 39.8243 0.8371 0.9717
298 5 34.1696 39.7352 0.8088 0.9713
253 5 34.1823 39.7399 0.8049 0.9698
230 5 34.3910 40.5193 0.7908 0.9693
321 10 28.7014 35.7745 0.6111 0.9420
298 10 28.2244 35.7015 0.5618 0.9393
253 10 28.2815 35.8407 0.5573 0.9388
230 10 28.4962 36.6399 0.5336 0.9385
321 20 22.8322 32.4760 0.3459 0.8939
298 20 22.5763 32.4617 0.3158 0.8911
253 20 224110 32.5379 0.3050 0.8846
230 20 22.5503 33.0683 0.2828 0.8852
321 30 19.5768 30.7154 0.2252 0.8545
298 30 19.3276 30.5144 0.2074 0.8460
253 30 19.1350 30.4653 0.1979 0.8347

Building 230 30 19.0878 31.2929 0.1755 0.8420
321 40 17.2483 29.3476 0.1581 0.8061
298 40 17.1451 29.2551 0.1473 0.7973
253 40 16.9570 29.4079 0.1428 0.7992
230 40 16.8477 29.9420 0.1224 0.7922
321 50 15.4836 28.4331 0.1175 0.7770
298 50 15.4044 28.3310 0.1104 0.7575
253 50 15.2662 28.4798 0.1057 0.7484
230 50 15.1886 28.9548 0.0918 0.7511
321 70 12.9816 27.1064 0.0734 0.7038
298 70 12.9819 26.8940 0.0710 0.6753
253 70 12.8589 26.9130 0.0663 0.6650
230 70 12.7618 27.4283 0.0563 0.6679
321 100 10.5567 25.6529 0.0423 0.6204
298 100 10.6232 25.6333 0.0423 0.5850
253 100 10.5493 25.4945 0.0387 0.5610
230 100 10.5260 26.1578 0.0329 0.5833

TABLE VI: Quality metrics for Sculpture image with different noise levels and luminous levels

Image Light Inten- | Noise level - | PSNR - Noisy | PSNR - Denoised | SSIM - Noisy | SSIM - Denoised
sity o Image Image Image Image
152 5 34.1659 37.1090 0.8687 0.9400
140 5 34.2264 37.2183 0.8712 0.9408
112 5 34.2470 37.3038 0.8629 0.9400
84 5 34.4492 37.4565 0.8543 0.9412
152 10 28.2014 33.3981 0.6662 0.8918
140 10 28.2912 33.5076 0.6622 0.8929
112 10 28.3288 33.4882 0.6586 0.8912
84 10 28.4662 33.6988 0.6426 0.8917
152 20 22.2790 30.1817 0.4037 0.8227
140 20 22.3212 30.2025 0.3998 0.8214
112 20 22.4339 30.1950 0.3961 0.8177
84 20 22.5168 30.4655 0.3808 0.8216
152 30 18.9865 28.4358 0.2627 0.7661
140 30 18.9165 28.4761 0.2665 0.7665
112 30 18.9850 28.4684 0.2631 0.7651

Sculpture 84 30 19.1030 28.7583 0.2490 0.7640
152 40 16.4926 27.3959 0.1938 0.7303
140 40 16.5256 27.2743 0.1921 0.7192
112 40 16.5807 27.3829 0.1869 0.7151
84 40 16.7319 27.5051 0.1772 0.7067
152 50 14.6446 26.3542 0.1420 0.6794
140 50 14.7438 26.4935 0.1434 0.6820
112 50 14.8419 26.5525 0.1416 0.6855
84 50 14.9674 26.7791 0.1295 0.6708
152 70 12.2611 25.2818 0.0902 0.6228
140 70 12.2817 25.2422 0.0905 0.6172
112 70 12.3463 25.2524 0.0881 0.6140
84 70 12.5423 25.4394 0.0825 0.5936
152 100 10.1501 23.8239 0.0556 0.5394
140 100 10.1693 23.6900 0.0535 0.5109
112 100 10.2135 23.7657 0.0513 0.5205
84 100 10.2847 24.0498 0.0478 0.4974
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Fig. 12: Plot of PSNR values for Car images of different intensities against varying noise levels.
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Fig. 20: Plot of quality metrics for the images against different luminous levels.
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From the tables and graphs, it is evident that the perfor-
mance of the proposed method in terms of quality metrics
like PSNR and SSIM is far better than that of image
denoising based on wavelet thresholding which uses wavelet
transforms. The graphs reveal that as the noise level values
increase, the proposed method’s performance improvement
relatively increases. In other words, the PSNR and SSIM
values of the proposed method are very high compared to
the PSNR and SSIM values of the noisy image at higher
noise levels than at the lower noise levels. From figure (20),
it is evident that the performance of the proposed method is
stable and consistent at any light intensity level when used
on low light images

VI. CONCLUSION

A noise removal method for the images with low lumi-
nous levels in sparse domain with the help of GMM is
implemented in this paper. The sparse representation of the
image is obtained by transforming the image into the wavelet
domain. The simulation was done on standard test images
and low luminous level images created for this work. Quality
metrics values calculated show that the proposed technique
effectively denoises images by retaining the structural sim-
ilarity. Simulation performed on low luminous level natural
images with different intensities shows that the method is
efficient in denoising the images taken at different light
intensities. Future work can be done to incorporate a method
to improve the resolution of the output image.
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