
Evaluation of Alternative NTRU Modular Inverse
Solutions

Juliet N. Gaithuru, Member, IAENG, Mazleena Salleh, Member, IAENG, and Nor Muhainiah

Abstract—The NTRU public key cryptosystem key generation
algorithm requires the computation of two modular polynomial inverses
whereby it is difficult to predict whether an inverse exists for any
randomly chosen private polynomial. In this study, we use the ring
homomorphism from the NTRU lattice to a circulant matrix to find
the solution of a system of simultaneous linear equations in order to
solve the modular inverse problem. We propose and evaluate alternative
modular inverse solutions, namely naı̈ve matrix inversion, Strassen-
type matrix inverse, Gauss Jordan elimination with partial pivoting,
LU decomposition, Gram Schmidt orthogonalization and least squares
method. The least squares method is identified as the best solution
following a performance comparison of these alternative solutions in
terms of the probability of finding an inverse, speed of inversion
and computational time complexity. The least squares method applies
the Pseudo-Inverse in finding the least squares solution to the NTRU
modular inverse. It has the highest probability of finding an inverse,
resulting in a 50% increase in the number of invertible polynomials
(compared to the classical inverse algorithm) thereby doubling the size
of the key space with a trade-off in computational cost.

Index Terms—public key cryptography, NTRU, modular
polynomial inverses, Pseudo-Inverse, least squares, matrix in-
version, Gauss Jordan elimination, Gram Schmidt orthogonal-
ization.

I. INTRODUCTION

The internet has become an indispensable part of today’s
society. The internet facilitates essential communication,
commerce, social connections along with a myriad of means
for information exchange. All these interactions need to be
secured in order to facilitate secure commerce, communica-
tions and protection of personal data [1]. It is imperative
that these large volumes of data are scalably stored and
secured [2]. Cryptography is a crucial tool for protecting
this information in computer systems and over the internet.

Once quantum computers become commercially available,
classical cryptography primitives such as RSA and Elliptic
Curve Cryptography will be obsolete following Shors [3]
revelation that the discrete logarithm and integer factorization
problems can be effectively solved using polynomial time
quantum computing algorithms [4].

Post-quantum cryptography offers secure alternatives for
public key cryptography that are quantum secure. Post-
quantum cryptography is based on the principles of lattices,
codes, hashes, multivariate quadratic polynomials and isoge-
nies [5]. In this study we pay particular attention to NTRU
[6], a lattice-based public key cryptosystem.

This paper looks into the key generation process of the
NTRU public key cryptosystem, with particular focus on

Manuscript received January 15, 2021; revised July 3, 2021.
Juliet N. Gaithuru is a PhD candidate of the School of Computing,

Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor,
Malaysia; phone: +971508341140; e-mail: julietgaithuru@gmail.com.

Mazleena Salleh is an Associate Professor at the School of Computing,
Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor,
Malaysia; e-mail: mazleena@utm.my.

Nor Muhainiah is an Associate Professor at the Department of Mathe-
matical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai
81310, Johor, Malaysia; e-mail: normuhainiah@utm.my.

the modular inverse algorithm. Key generation in NTRU
involves the computation of two modular polynomial inverses
whereby there is an inherent difficulty in predicting the
existence of an inverse [7] for any randomly chosen private
polynomial. In case an inverse is not found, the classical
NTRU inverse algorithm goes into an infinite loop of trying
to find an inverse, thus no inverse is found, no private key
is generated and as a consequence the message encryption
process is halted. Previous research studies propose alterna-
tive modular inverse algorithms, such as [8], [7], [9], [10]
in an effort to counteract this problem. This study embarks
on finding a solution to this modular inverse problem by
considering a range of possible alternative inverse algorithms
using varied algebraic structures and finally zeroing in on
the solution with the most favourable results and improved
chances of finding a modular polynomial inverse.

Given that NTRU is a lattice-based public key cryptosys-
tem, we use an adaptation of the circulant matrix for the
inverse polynomial algorithm. Based on the assertion by
[11] that any circulant matrix can effectively be expressed
as a polynomial function, along with the concept of a ring
homomorphism (a mapping that preserves both additions
and multiplications [12]), we use matrices to solve a sys-
tem of simultaneous linear equations thereby solving the
modular inverse problem by considering alternative inverse
algorithms. These alternative NTRU inverse algorithms are
discussed and presented in subsequent sections, along with
a comparative evaluation of their performance against that
of the classical NTRU inverse algorithm [13], [6], [14].
The main objective of this study is to propose an NTRU
inverse algorithm which provides for the highest probability
of finding a modular polynomial inverse for any randomly
chosen private polynomial. This will effectively enlarge the
key space thereby enhancing the algorithm’s security along
with eliminating the need to have a parameter selection
algorithm since any private polynomial can be inverted.

This paper presents a background on the NTRU public key
cryptosystem, a discussion of the NTRU inverse algorithm
and the mathematical background to the solutions evaluated
in this study in Section II. This is followed by an evaluation
of the alternative modular inverse solutions in Section III. A
performance comparison of the alternative modular inverse
solutions is provided in Section IV eventually followed by a
conclusion in Section V.

II. BACKGROUND

NTRU is a public key cryptosystem which was developed
and presented in the rump session of CRYPTO ’96 and
later patented by Hoffstein, Pipher and Silverman (1998)
[6]. NTRU is taken to be an abbreviation for Number
Theorists aRe Us or Number Theory Research Unit by other
researchers [15].

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

NTRU is a ring-based cryptosystem which is made up of
polynomials with integer coefficients. It is defined over the
polynomial ring R = Z[x]

(xN−1)
based on the three key integer

parameters N, p and q where N > 1, q > p and the integers
p and q are relatively prime. R is the set of convolution
polynomials which have a degree (N − 1) [6]. The degree
of polynomials in R is reduced modulo (xN − 1) while the
polynomials’ integer coefficients are reduced modulo p or q.

NTRU cryptosystem is comprised of three services:
NTRUSign, NTRUKE and NTRUEncrypt which are a family
of signature schemes with a structure similar to the NTRU
lattice, a key exchange protocol and encryption algorithm,
respectively.

NTRUEncrypt was made available by Security Innovation
on an open-source General Public License (GPL) free for
non-commercial use making its application possible on open
source products such as web browsers and TLS/SSL (Trans-
port Layer Security/ Secure Socket Layer) servers [16].

The basic framework of NTRUEncrypt allows for great
variation in the types of parameter sets generated. Poly-
nomials utilized in the cryptosystem may be binary, tri-
nary/ternary, or product-form. Ternary polynomials provide a
better trade-off between security and efficiency, as opposed to
the binary polynomials; while binary polynomials provide for
a smaller key size [17]. This paper focuses on NTRUEncrypt
which will simply be referred to by the term NTRU in this
paper.

Operation in classical NTRU begins with the establishment
of the integers N, p, q and the polynomials f, g, r and m.
The private key is then generated by first obtaining the
multiplicative inverse of f mod p and fmod q such that:
f ∗ Fpmod p = 1 and f ∗ Fqmod q = 1. The private key
is then set as the polynomial pair (f, Fp). The public key
h is obtained by computing h = p ∗ Fq ∗ gmod q. The
message m is encrypted using the public key h by computing
e = r ∗ h + mmod q. The ciphertext is decrypted by the
recipient using the private key by computing a = f ∗emod q.
After which adjustment is done to a by ensuring that the
coefficients of a are in the range of q

2 and −q
2 . This is then

followed by retrieving the decrypted message by computing
C = Fp ∗ amod p.

Decryption is made possible because the polynomials
p, r, g and m are chosen to have small values in the poly-
nomial convolution ring R thus ensuring the polynomial
p∗r∗g+f∗m has a high probability of having width b (which
represents p ∗ r ∗ g + f ∗m) less than q. The coefficients of
these terms are selected in a manner that ensures that their
absolute value does not exceed the range q

2 and −q
2 [17],

[18].

A. NTRU Inverse Algorithm

The NTRU key generation process requires the computa-
tion of the multiplicative inverse of the private polynomial f
modulo a small integer p and a large integer q, given by Fp

and Fq respectively. These polynomials’ coefficients are in
Z/pZ and Z/qZ respectively. These inverses Fp and Fq are
in the rings Rp, Rq and reduction is done modulo (xN − 1),
in order to ensure the parameter size N is not exceeded [13],
[6], [14].

Definition 1. [19] Z/pZ and Z/qZ are described as the set

of residue classes modulo p and q respectively. A residue
class tmod p is defined as the equivalence class of results
from adding integer multiples of p, that is t+ pZ. The class
has p elements based on the number of possible remainders
0, . . . , p − 1. For example, the residue classes of modulo 3
are 0 + 3Z, 1 + 3Z, 2 + 3Z.

A description of the algorithm used to compute the in-
verses in NTRU is provided in the NTRU Technical Report
[20]. The report describes the algorithm used to find the
inverse of a polynomial a(x) in the ring Z/pZ and Z/qZ
where p = 2, p = 3 and modulo power pr (where r is an
integer). The algorithm used is an adaptation of the “Almost
Inverse Algorithm” of [21] provided in [20]. The report
describes separate algorithms for:

i. Inverse of a polynomial (x) in the ring Z/2Z[x]
xN−1

.
ii. Inverse of a polynomial (x) in the ring Z/3Z[x]

xN−1
.

iii. Inverse of a polynomial (x) in the ring Z/2rZ[x]
xN−1

where
2r stands for an integral power of 2.

iv. Inverse of a polynomial (x) in the ring Z/pZ[x]
xN−1

where
p is an arbitrary prime.

The IEEE P1363.1 standard [22], EESS 1 Version 3.0
[23], and [24] also provide a description of the polynomial
inverse algorithm described in [20]. The algorithm is also
cited in [25], [26]. [27] also provide inverse polynomial
algorithms in Fp and Fq based on the algorithms in [20]. The
algorithm contains a combination of the division algorithm,
a variation of the Extended Euclidean algorithm applicable
to an integer ring and the process of finding possible inverses
in the convolution ring.

The classical NTRU inverse polynomial algorithm in Fq

is illustrated in Algorithm 1 [27], [23], [20], [28], [24]. The
same algorithm is used to find the inverse polynomial in Fp

by replacing input parameters (a(x), N, q) with (a(x), N, p).

B. Solution Background

In this study, the ring homomorphism of the ring R
and an N × N circulant matrix with integer coefficients is
considered. This is based on the concept of the structure
of the NTRU lattice [29], [30] and an adaptation of the
circulant matrix for the inverse polynomial algorithm. This is
supported by the assertion by [11] that any circulant matrix
can be expressed as a linear combination of the set of basis
matrices I,K, · · · ,KN−1 thereby facilitating the expression
of F as a polynomial function given by Equation (1).

F = f0I + f1K + · · ·+ fN−1K
N−1

= f(K). (1)

A ring homomorphism from R to Ŕ is defined as a mapping
θ from a ring R to Ŕ such that for all r and s in R

θ(r + s) = θ(r) + θ(s) and f(xy) = f(x)f(y) (2)

which is otherwise denoted as θ : R → Ŕ. Ring homo-
morphism is a mapping that preserves both additions and
multiplications [12].

Under this homomorphism, the polynomial f(x) =∑
i fix

i maps onto the matrix F of dimension (N × N),
where fi are the coefficients of f(x) and 0 ≤ i ≤ (N − 1).
An N -dimensional complex vector space is created by gener-
ating a circulant matrix which is defined by its first row [31],

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

Algorithm 1 Classical inverse polynomial algorithm in Fq

1: procedure INVERSE POLYNOMIAL Fq(a(x), b(x))
2: Input: a(x), N, q
3: Output: Fq

4: Initialize k = 0, b = 1, c = 0, f(x) = a(x), g = 0 . Steps
5-6 set g(x) = xN − 1.

5: g[0] = −1, g[N] = 1
6: loop
7: while f [0] = 0 do
8: for i = 1 to N do
9: f [i− 1] = f [i]f(x) = f(x)/x

10: c[N + 1− i] = c[N − i]c(x) = c(x) · x
11: end for
12: f [N] = 0, c[0] = 0
13: k = k + 1
14: end while
15: if deg(f) = 0 then
16: goto Step 32
17: end if
18: if deg(f) < deg(g) then
19: temp = f . Exchange f and g.
20: f = g, g = temp
21: temp = b . Exchange b and c.
22: b = c, c = temp
23: end if
24: f = f ⊕ g, b = b⊕ c
25: end loop
26: j = 0
27: k = kmodN
28: for i = N − 1 downto 0 do
29: j = i− k
30: if j < 0 then
31: j = j +N
32: end if
33: Fq [j] = b[i]
34: end for
35: v = 2
36: while v < q do
37: v = v ∗ 2
38: StarMultiply (a, Fq , temp,N, v)
39: temp = 2− tempmod v
40: StarMultiply(Fq, temp, Fq,N, v)
41: end while
42: for i = N − 1 downto 0 do
43: if Fq [i] < 0 then
44: Fq [i] = Fq [i] + q
45: end if
46: end for
47: return Fq

48: end procedure

[32], [33] and each subsequent row is generated by cyclic
permutations of the vector with an offset equal to the column
index. In this study, we generate F using Algorithm 2.

The aim of the study is to solve the problem of the form
Ax = b, restated as

F xi = Ii (3)
f0 f1 f2 . . . fN−1

fN−1 f0 f1 . . . fN−2

...
...

...
. . .

...
f1 f2 f3 . . . f0




x0
x1
...

xN−1

 =


1
0
...
0

 .
whereby the circulant matrix F is derived from polynomial f ,
xi are the columns of the inverse matrix F−1 mod q where
q is a large prime and Ii are the columns of the identity
matrix I with 0 ≤ i ≤ (N − 1).

Algorithm 2 Generating circulant matrix F

1: procedure CIRCULANT MATRIX(f(x))
2: Input: f(x), N
3: Output: F
4: Initialize f = (f0, f1, f2, . . . , fN−1)
5: function CIRCULANTMATRIX(S)
6: v = S, N= No. of polynomial terms in S
7: for i = (N + 1) downto 2t do . 2t > N
8: Append S ←− 0
9: end for

10: N = 2t

11: S ← (s0, s1, s2, . . . , sN−1)
12: v = S, t = []
13: for i = 1 downto N do
14: T = Shift(S, 1)
15: T · t, S = T
16: end for
17: T1 = t · t, Circl(S) = v · T1

18: return Circl(S)
19: end function
20: F = circulantMatrix(f)
21: return F
22: end procedure

III. EVALUATING ALTERNATIVE MODULAR INVERSE
SOLUTIONS

In the quest for a befitting modular inverse solution, we
evaluated several alternative inverse solutions, namely:

i. Naı̈ve matrix inversion
ii. Strassen-type matrix inverse

iii. Gauss Jordan elimination with partial pivoting
iv. LU decomposition
v. Fast fourier transform

vi. Gram Schmidt orthogonalization
vii. Least squares method.

These alternative inverse solutions are discussed in the subse-
quent sections, along with a description of their suitability in
addressing the inverse problem in the NTRU public key cryp-
tosystem. These solutions were considered on the premise
that the NTRU private polynomial could be translated to
a representative matrix structure. The circulant matrix was
considered based on the fact that the matrix is identified by its
first row and every subsequent row is obtained by repetitive
shift operations [34]. A circulant matrix F = Circ(f)
associated with vector f (the coefficients of polynomial
f(x)) was used in the subsequent evaluations. The alternative
solutions were evaluated in terms of the speed of inversion,
correctness of the inverse and the computational complexity
of the resulting algorithm.

The ideal objective of this investigation was to find a
solution which has the following beneficial features:

i. It allows for the selection of any random polynomial f ;
thereby eliminating the need for a parameter selection
criteria for polynomial f .

ii. Ensures that a modulus inverse Fp and Fq can be
obtained regardless of the random polynomial f selected
i.e., f will always be invertible.

iii. In the event that f is not invertible modulo p and
modulo q, the user should be notified accordingly and
an alternative f selected.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

A. Naı̈ve Matrix Inversion
The first solution we considered was the naı̈ve matrix

inverse. This approach of finding the inverse solution was
first proposed in [10] and involves first generating a circulant
matrix F from the coefficients of the private polynomial f .
This is followed by a computation of the determinant d of the
matrix F , after which the matrix of cofactors is computed.
The inverse matrix is then obtained by computing the product
of the transpose of the matrix of cofactors (otherwise referred
to as the adjoint matrix) and the multiplicative inverse of
d modulo an integer k (which represents either p or q) all
reduced modulo k as given by Equation (4).

(Cofactors(F))T ×(d−1modk)modk = F−1modk (4)

The first row of elements in F−1 is retrieved as the coeffi-
cients of the modular inverse Fk.

This solution yielded correct modular inverses Fk but at
the expense of long computation times for matrices of large
dimension. This is attributed to the computational complexity
of the adjoint operation which takes N3 iterations.

The algorithm’s efficiency was improved by computing the
inverse of the first row only and deriving the rest of the matrix
by a series of successive shift operations. This method in-
volves finding the adjoint of 1 row, cofactors of one column,
determinant of the matrix (arithmetic using cofactors) and
eventually finding the inverse matrix at which point only one
row is printed. Algorithm 3 shows an implementation of this
naı̈ve matrix inversion solution within the NTRU structure
whose corresponding computational complexity is O(N3).

Algorithm 3 Finding NTRU Inverse Polynomial Algorithm
Using Naı̈ve Matrix Inversion Method

1: procedure INVERSE POLYNOMIAL ALGORITHM(F, k)
2: Input: F,N, k
3: Output: fk
4: t = [] . Finding Adjoint(F)
5: for i = 1 downto N do
6: elementi1 = Cofactor(F, i, 1)
7: Append elementi1tot
8: end for
9: rowi1 = t . transposing column 1 to row 1

10: for j = 1 downto rowi1 do
11: rowi1[j] ∗ F [j, 1] . products of element and

cofactors
12: end for
13: d = det−1 modk
14: X = Matrix(Ncolumns1row, rowi1)
15: X0 = d ∗X . To compute d ∗X modk
16: X1 = X0/q
17: X2 = Matrix(X0 − (X1 ∗ q))
18: InvXmodInt = X2

19: Frow1 = InvXmodInt
20: Finv = ElementToSequence(Frow1)
21: Fk = Finv

22: return Fk

23: end procedure

a) Analysis:: The efficient version of the naı̈ve ma-
trix inversion algorithm took a comparatively long time to
generate an inverse compared to the classical NTRU inverse
algorithm.

B. Strassen-type Matrix Inverse
The second alternative solution considered is the Strassen-

type matrix inverse. This approach was implemented and

evaluated as follows:
i. Generate the matrix F from the polynomial coefficients

of f .
ii. Given that the parameter size N is prime, the matrix is

padded with zeros up to the nearest power of 2.
iii. Subsequently, a circulant matrix F = Circ(f) associ-

ated with vector f is generated resulting in a dimension
which is an integral power of 2 and thus divisible into
2
N dimension matrices.

iv. The matrix F is subdivided into four square sub-matrices
of dimension 2

N up to the (1× 1) level and the inverse
is computed as follows:
Given that

F =

[
F11 F12

F21 F22

]
the inverse F−1 is given by

F−1 =

[
F11

−1 + F12S
−1F21F11

−1 −F11
−1F12S

−1

−S−1F21F11
−1 S−1

]
where S = F22 − F21F11

−1F12 which is referred to as
the Schur complement of F11.

v. The inverse algorithm is used recursively and the multi-
plication is carried out using the Strassens matrix mul-
tiplication algorithm [35], [36] resulting in the inverse
matrix F−1.

vi. The inverse matrix modulo k is obtained by finding the
product of the inverse matrix F−1 the determinant and
the multiplicative inverse of the determinant modulo k
given by

Fk = F−1modk = F−1 ∗ |F | ∗ dmod k (5)

This results in the modular inverse matrix Fk. The first
row of the resultant inverse matrix Fk gives the polynomial
coefficients of the multiplicative inverse of f mod k given by
Fk(x). An illustration of the integration of this Strassen-type
matrix inverse solution with the NTRU structure is given
by Algorithm 4 which has a computational complexity of
O(6

5N
2.807).

a) Analysis:: This solution yielded correct modular
inverses Fk. However, the algorithm had a long computation
time for matrices of large dimension. The time taken to find
an inverse for a polynomial of parameter size N = 251
which translates to a circulant matrix of dimension 251
took over 1 hour and 40 minutes to generate and print an
inverse using the Strassen-type matrix inverse algorithm. The
classical NTRU inverse algorithm took a fraction of a second
to find an inverse of the same polynomial.

This observation is supported by the assertion made in [36]
that the practical implementation of the Strassen inverse al-
gorithm encounters an overhead as a result of the subroutine
calls, which subsequently results in slower performance. In
practice, full recursion is not used, but rather a switch is
made to another algorithm at an appropriate block size. It is
recommended that a switch is made to the LU factorization
algorithm [36].

C. Gauss Jordan Elimination with Partial Pivoting

The third solution considered was Gauss Jordan elimina-
tion with partial pivoting. The matrix inverse of F−1 was
obtained by implementing Gauss-Jordan elimination of the

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

Algorithm 4 Finding NTRU Inverse Polynomial Algorithm
Using the Strassen-Type Method

1: procedure INVERSE POLYNOMIAL ALGORITHM(F, k)
2: Input: F,N, k
3: Output: Fk

4: function PARTITION(F)
5: F11 = F [1, 1] to F [(N

2
), (N

2
)]

6: F12 = F [1, (N
2
)] to F [(N

2
), (N

2
)]

7: F21 = F [(N
2

+ 1), 1] to F [(N
2
), (N

2
)]

8: F11 = F [(N
2

+ 1), (N
2

+ 1)] to F [(N
2
), (N

2
)]

9: return F11, F12, F21, F22

10: end function
11: function STRASSENINVERSE(F)
12: F11

−1 = 1
|F11|

∗AdjF11

13: R1 = F11
−1

14: R2 = F21 ∗R1

15: R3 = R1 ∗ F12

16: R4 = F21 ∗R3

17: R5 = R4 − F22

18: R5
−1 = 1

|R5|
∗AdjR5

19: R6 = R5
−1

20: C12 = R3 ∗R6

21: C21 = R6 ∗R2

22: R7 = R3 ∗ C21

23: C11 = R1 −R7

24: C22 = −R6

25: P1 = C11, C12

26: P2 = C21, C22

27: C = P1, P2

28: return C
29: end function
30: F−1 = strassenInverse(F)
31: if GCD(|F |, k) = 1 then
32: Multiplicative inverse exists.
33: else
34: exit. Select another f .
35: end if
36: d = |F |−1 modk
37: F−1 modk = F−1 ∗ |F | ∗ dmod k
38: Fk = F−1[1], Fk(x)⇐ Fk

39: return Fk(x)
40: end procedure

augmented matrix [f |I]. The steps followed in finding the
polynomial inverse Fk, are as follows:

i. Partially pivot the augmented matrix [F |I] containing
2N columns. Since division by zero results in a fatal
error, rows are interchanged in order to ensure that there
is a non-zero element (pivot element) along the diagonal.
If M[i,i] = 0, then row i cannot be used to eliminate the
elements in the column i below the diagonal. Thus, it is
necessary to find a row j, where M[j,i] 6= 0 and j > i,
then interchange row i and row j so that a non-zero
pivot element is obtained.

ii. Eliminate the elements below and above the diagonal to
result in the reduced row echelon form. This was done
using elementary row operations.

iii. Reduce the resulting reduced row echelon form to the
identity matrix with only 1’s along the diagonal. This
was done by dividing each row by the reciprocal of the
diagonal element. The resulting matrix on the left should
be the identity I while the matrix on the right is the
inverse matrix F−1.

iv. Compute the determinant |F |. Check if GCD(|F |, k) =
1 in order to establish whether the two integers are
relatively prime. Once it is ascertained that |F | and k
are coprime, then a multiplicative inverse exists. If not,

then another polynomial f should be selected.
v. Compute the multiplicative inverse Fk using Equation

(5).

An illustration of this matrix inverse solution using Gauss
Jordan elimination with partial pivoting integrated in the
NTRU structure is given by Algorithm 5 which has a
computational complexity of O(N2). Details of the findings
of this evaluation of an NTRU inverse algorithm using Gauss
Jordan elimination with partial pivoting were published in
[37].

Algorithm 5 Inverse polynomial algorithm based on cir-
culant matrices using Gauss-Jordan elimination with partial
pivoting

1: procedure INVERSE POLYNOMIAL ALGORITHM(F, k)
2: Input: F,N, k
3: Output: Fk

4: I = identity(F), B = F · I
5: n = rows(F), j = columns(F), n1 = columns(B)
6: for i = 2 downto n do . Partial pivoting.
7: if B[i− 1, 1] < B[i, 1] then
8: for j = 1 downto n1 do
9: d = B[i, j], B[i, j] = B[i− 1, j]

10: B[i− 1, j] = d
11: end for
12: end if
13: end for
14: for i = 1 downto n do
15: for j = 1 downto n do
16: if j 6= i then
17: if B[i, i] = 0 then
18: B[i, i]← B[j, i]
19: end if
20: d = B[j, i]/B[i, i]
21: (B[i] ∗ −d) +B[j]
22: end if
23: end for
24: end for
25: for i = 1 downto n do
26: d = B[i, i], (B[i] ∗ 1/d) . Reduction to I.
27: end for
28: F−1 = B[n+ 1] to B[n1]
29: if GCD(|F |, k) = 1 then
30: Multiplicative inverse exists.
31: else
32: exit. Select another f .
33: end if
34: d = |F |−1 modk
35: F−1 modk = F−1 ∗ |F | ∗ dmod k
36: Fk = F−1[1], Fk(x)⇐ Fk

37: return Fk(x)
38: end procedure

a) Analysis:: Implementation of Gauss Jordan elimi-
nation with partial pivoting in the NTRU key generation
structure was found to be more simplified and can be
extensible to polynomials with coefficients in other fields
besides binary and ternary fields, allowing for the use of
non-prime modulus. However, the algorithm was slower than
classical NTRU inverse algorithm, but faster than the naı̈ve
matrix inversion and Strassen-type matrix inverse algorithms
implemented in NTRU. It was also characterized by division
by zero errors, despite the use of partial pivoting, which
limits the parameter selection to polynomials without a series
of consecutive zero coefficients and a polynomial whose first
coefficient is not a zero.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

D. LU Decomposition

The fourth solution considered was the LU (lower-and-
upper) decomposition method. This approach was imple-
mented as follows:

i. F was decomposed into the product LU . Then the
decomposed product was substituted into the original
equation resulting in the statement of the problem as
L · U ·X = I .

ii. Letting U ·X = Y thus L ·Y = I . Then, the solution for
Y in L ·Y = I was obtained by solving the N system of
linear equations by forward substitution and the process
repeated for all the N columns of the identity matrix I ,
which were then combined to form matrix Y .

iii. The solution for X in U · X = Y was obtained by
solving the N system of linear equations by substituting
back the values of y and the process repeated for all the
N columns of the matrix Y , which were then combined
to form matrix X which represents the inverse matrix
F−1.

iv. The multiplicative inverse Fk was then computed using
Equation (5).

An illustration of the integration of this LU decomposition
matrix inverse solution with the NTRU structure is given by
Algorithm 6.

a) Analysis:: This algorithm was found to be faster and
less complex than the naı̈ve matrix inverse [10] algorithm,
but is slower and more complex than the classical NTRU
inverse algorithm and the inverse algorithm using Gauss
Jordan elimination but with the benefit of allowing for
the use of a non-prime modulus. However, the algorithm
was characterized by division by zero errors, which limits
the parameter selection to polynomials without a series of
consecutive zero coefficients and a polynomial whose first
coefficient is not a zero.

E. Gram Schmidt orthogonalization

The fifth solution considered was the use of Gram Schmidt
orthogonalization. This solution using Gram Schmidt or-
thogonalization was considered in this study on the premise
that, given an orthogonal matrix, the columns of the matrix
can be transformed so as to possess orthonormal properties
thereby making it an orthonormal matrix. Consequently, the
transpose of an orthogonal matrix is its inverse. Thereby, it
would eliminate the need for computing an inverse provided
that any randomly selected polynomial f is transformed
into a circulant matrix and subsequently transformed into
an orthonormal matrix whose inverse is its transpose. Gram
Schmidt orthogonalization is formally defined by [38] as:

Definition 2. The process of forming an orthogonal sequence
qn from a linearly independent sequence xn of members
from a finite or infinite inner-product space by defining qn
inductively as

q1 = x1, qn = xn −
n−1∑
k=1

< qk, xn >

|qk|2
, n ≥ 2 (6)

An orthonormal sequence can be obtained by replacing each
qn by

qn
|qn|

.

Algorithm 6 Finding NTRU inverse polynomial algorithm
using LU decomposition method of matrix inversion

1: procedure INVERSE POLYNOMIAL ALGORITHM(F, k)
2: Input: F,N, k
3: Output: Fk

4: function LUDECOMPOSITION(B)
5: L = identity(F),
6: for i = 1 downto N do . Partial pivoting.
7: for j = 1 downto N do
8: if j > i then
9: d = B[j, i]/B[i, j]

10: L[j, i] = d, (B[i] ∗ −d) +B[j]
11: end if
12: end for
13: end for
14: return B,L
15: end function
16: U,L = LUDecomposition(F)
17: function GAUSSELIMINATIONSOLVE(B)
18: for i = 1 downto N do
19: for j = 1 downto N do
20: if j 6= i then
21: if B[i, i] = 0 then
22: B[i, i]← B[j, i]
23: end if
24: d = B[j, i]/B[i, i]
25: (B[i] ∗ −d) +B[j]
26: end if
27: end for
28: end for
29: for i = 1 downto N do
30: d = B[i, i], (B[i] ∗ 1/d) . Reduction to I.
31: end for
32: return B
33: end function
34: I = identity(F)
35: Q = []
36: for i = 1 downto N do
37: B ← I[i]
38: C = L ·B
39: BI = gaussEliminationSolve(C) . Solving

LY = B for Y .
40: Y ← BI [N + 1]
41: D = U · Y
42: DI = gaussEliminationSolve(D) . Solving

UX = Y for X.
43: Q ·X
44: end for
45: F−1 = QT

46: d = |F |−1 modk, F−1 modk = F−1 ∗ |F | ∗ dmod k
47: Fk = F−1[1], Fk(x)⇐ Fk

48: return Fk(x)
49: end procedure

This approach was implemented as follows:

i. The orthogonal transformation of the vectors of matrix F
was obtained by using Gram Schmidt orthogonalization.
This involves splitting the matrix F into vectors defined
row-wise from F . The vectors are then transformed by
applying Equation (6). The orthogonal basis is described
by a row-wise combination of the transformed vectors.

ii. The orthonormal transformation F́ of F was obtained
by dividing each of the vectors in F by the norm and
then combining the results column-wise.

iii. The inverse of F́ (denoted by F́−1) was obtained by
finding the transpose of F́ . The resulting F́−1 was taken
to represent the inverse F−1.

iv. Finally, the multiplicative inverse Fk was obtained by
applying Equation (5).

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

An integration of this Gram Schmidt orthogonal transfor-
mation solution in the NTRU structure is given by Algorithm
7 which has a computational complexity of O(2MN2) for a
matrix of dimension M×N [39]; given that NTRU matrix F
has a dimension of N×N , the corresponding computational
complexity is O(2N4).

Algorithm 7 Inverse polynomial algorithm based on Gram
Schmidt orthogonal transformation

1: procedure INVERSE POLYNOMIAL ALGORITHM(F)
2: Input: F, q
3: Output: Fk

4: n = number of columns(F)
5: m = number of rows(F)
6: Initialize V and B as null space matrices of dimension n× n
7: for j = 1 downto m do
8: V [j] = F [j]
9: for i = 1 downto j − 1 do

10: r = (F [j], V [i]) / (V [i], V [i])
11: V [j] = V [j]− r ∗ V [i]
12: end for
13: end for
14: Norm = 0
15: for k = 1 downto m do
16: Norm = 0
17: for i = 1 downto n do
18: Norm = (V [k, 1])2 + Norm
19: end for
20: Norm =

√
Norm

21: B[k] = V [k]/Norm
22: end for
23: B−1 = BT

24: d = |B|
25: Fk = B−1 ∗ d mod q . Fk ∗B mod q = I.
26: return Fk

27: end procedure

a) Analysis:: The results of this evaluation revealed
that, despite the ease in finding the inverse provided by
transforming F (derived from any random polynomial f)
into its orthonormal form by simply finding its transpose,
the resulting inverse matrix F−1 and subsequently Fk had
non-integral coefficients.

For example: a polynomial f with coefficients
[1, 1, 1, 1, 1, 0, 0] resulting in a matrix F whose
determinant is 5, had a resulting orthonormal
form F́ whose first row of elements was
[0.4472, 0.4472, 0.4472, 0.4472, 0.4472, 0, 0] and whose
resulting inverse F́−1

k had the first row of the coefficients
[0.4472,−0.5963, 0.0833, 0.4692, 0.0726, 0.3451,−0.3050]
with k = 37. Therefore, this solution was not considered to
be suitable for this study, due to the resulting inverse with
non-integral coefficients.

F. Least Squares Method

The sixth and final solution considered was the use of the
Pseudo-Inverse in finding the least squares solution to an
inverse matrix problem. This alternative inverse solution is
founded on the premise that a unique “matrix-like” inverse
referred to as a pseudo-inverse can be applied in finding
the solution to a problem of the form Ax = b. For instance,
when b is within the range of A, one or more solutions to the
system exist. Conversely, if b lies outside the range of A, no
solutions to the system exist but it is possible to find a value
x̂ closest to a solution. This value will be an approximate

solution to the system Ax = b whereby there is minimum
residual error r = Ax− b [40], [41].

Definition 3. [42] The least squares solution to a system is
a vector such that

‖r̂‖ = ‖Ax̂− b‖ ≤ ‖Ax− b‖ (7)

where A ∈ Rm×n is a matrix with linearly independent
columns. The vector b ∈ Rm is a vector whose entries are
subject to random errors of equal variance.

The unique least squares solution is the one with a
minimum norm in the residual vector. The norm of a vector
x is given by ‖x‖ where ‖x‖ =

√
x2 [40].

The best approximate solution to the problem Ax = b is
given by

x̂ = A+ b = (AT A)−1AT b (8)

An implementation of the NTRU inverse polynomial al-
gorithm using the solution of least squares is given by
Algorithm 8.

Algorithm 8 Efficient NTRU inverse polynomial algorithm
using the solution of least squares

1: procedure INVERSE POLYNOMIAL ALGORITHM(F, k)
2: Input: F,N, k
3: Output: Fk

4: I = identity(F)
5: B = I[1]
6: A = FT ∗ F
7: X[1] = A−1 ∗ FT ∗B
8: x̂ = X[1]
9: Ft = circulantMatrix(X)

10: F−1 = FT
t

11: d = |F−1|modk
12: F−1 modk = F−1 ∗ |F | ∗ dmod k
13: Fk = F−1[1], Fk(x)⇐ Fk

14: return Fk(x)
15: end procedure

We describe an implementation of the least squares so-
lution to the NTRU inverse problem using a small-scale
example.

Example 1. If we take the following NTRU parameters: N =
7, p = 2 and f = x+ x3 + x5 whereby df = 3, the modular
polynomial inverse Fp is computed as follows:

i. Given that an N -dimensional complex vector space is
created by generating a circulant matrix which is defined
by its first row (f0, f1, f2, · · · , fN−1) [31], [33], [32],
we formulate matrix F = Circ(f) (derived from the
polynomial f) and state the problem F x1 = I1, where
x1 is the first column of the inverse matrix and I1 is the
first column of the identity matrix.

F x1 = I1

0 1 0 1 0 1 0
0 0 1 0 1 0 1
1 0 0 1 0 1 0
0 1 0 0 1 0 1
1 0 1 0 0 1 0
0 1 0 1 0 0 1
1 0 1 0 1 0 0


· x1 =



1
0
0
0
0
0
0


(9)

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

ii. Solving for x1 by multiplying both sides of the equation
with FT and making x1 the subject of the equation,
results in:

x1 = (FT · F)−1 · FT · I1

x1 = x̂1 =



−0.67
0.33
0.33
0.33
0.33
0.33
−0.67


(10)

which gives the least squares solution x̂1 for the first
column of the inverse matrix F−1.

iii. Based on the premise of Conjecture 1, once the first
column of x̂i is obtained where i = 1, instead of
repeating the process of finding x̂i for columns 2 · · ·N ,
the least squares solution x̂1 is transformed into a row-
wise sequence, that is, x̂T1 .

Conjecture 1. A square circulant matrix exhibits circu-
lant properties both row-wise and column-wise. There-
fore, if you solve for one column of a square circulant
matrix, the remaining subsequent columns can be ob-
tained by cyclic shifts of the columns by an offset equal
to the row index.

iv. A square circulant matrix X of dimension N × N is
generated using x̂T1 by transforming it into a column-
wise sequence by obtaining its transpose, which is taken
as the inverse matrix F−1.

v. The inverse matrix modulo p is obtained by computing

Fp = F−1 × |F | × (|F |−1mod p)

=



0 0 1 1 1 1 1
1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0


Extracting the first column of the matrix
[0, 0, 1, 1, 1, 1, 1] and expressing it as a polynomial in
the ring (XN − 1), that is (X7 − 1), results in the
modular polynomial inverse

Fp = x6 + x5 + x4 + x3 + x2. (11)

It can be confirmed that the product f ∗ Fpmod p ≡ 1
in the polynomial ring (x7−1) thereby proving that the
inverse is correct in the ring (X7 − 1).

IV. ANALYSIS OF ALTERNATIVE NTRU INVERSE
POLYNOMIAL ALGORITHMS

An overall evaluation of the alternative modular inverse
solutions provided valuable insight on the strengths and
weaknesses of the alternative NTRU inverse solutions con-
sidered for this study. The alternative inverse solutions are
evaluated in terms of the following attributes:

i. It allows for the selection of any random polynomial f ;
thereby eliminating the need for a parameter selection
criteria for polynomial f .

ii. It allows for the use of a non-prime modulus, that is an
inverse can be found even when p and q are not relatively
prime.

iii. The result is free from division by zero errors.
iv. The resulting inverse is correct (F ∗ Fkmodk = 1) and

the inverse has integral coefficients.
v. Computational complexity and thereby time taken to find

an inverse.
An evaluation of the six alternative inverse solutions in terms
of these attributes yielded the results in Table I.

TABLE I
COMPARISON OF ALTERNATIVE INVERSE

SOLUTIONS

Inverse Solution Random
polynomial
f selection

Allows
use of
non-prime
modulus

Free of
division
by zero
errors

Correct
inverse
result
with
integral
coeffi-
cients

Computational
complexity

Naı̈ve matrix inver-
sion [10]

3 3 3 3 O(N3)

Strassen-type matrix
inverse

7 3 3 3 O(65N
2.807)

Gauss Jordan elim-
ination with partial
pivoting [37]

7 3 7 3 O(N2)

LU decomposition
[43]

7 3 7 3 O
(
N2
)

Gram Schmidt or-
thogonalization

3 3 3 7 O(2N4)

Least squares
method

3 3 3 3 O(N3)

The evaluation revealed that the naı̈ve matrix inversion
and least squares method have the most favourable results.
A much closer look at the two solutions reveals that the least
squares method has a faster speed of inversion compared to
the naı̈ve matrix inversion.

Further evaluation of the alternative inverse algorithms
in terms of: the probability of finding an inverse, speed of
inversion and computational time complexity is discussed in
the subsequent sections.

A. Probability of finding an inverse

A comparison (using NTRU binary polynomials) of the
proposed alternative inverse solutions against that of the
classical NTRU Inverse algorithm yielded the results shown
in Table II.

In accordance with the results depicted in Table II, com-
pared to the other inverse algorithms, the NTRU inverse
algorithm using the least squares method of finding a gener-
alized (or “almost inverse”) provides the greatest probability
of finding an inverse. The classical inverse algorithm has no
result when the algorithm encounters a randomly selected
private polynomial f which is not invertible, thereby going
into an infinite loop of trying to find an inverse. This thereby
justifies the recommendation of a parameter selection criteria.

The experimental evaluation conducted in this study re-
vealed a probability of finding an inverse that ranges from

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

TABLE II
COMPARISON OF THE PROBABILITY OF FINDING AN INVERSE

Algorithm Probability of Finding an Inverse
Classical NTRU inverse algorithm [44], [14],
[6]

0.49 to 0.51.

Zhao and Su inverse algorithm [10] Polynomials with an odd number of 1 coefficients; matrices with a non-zero
determinant

Inverse algorithm using Gauss Jordan Elim-
ination [37]

Polynomials yielding matrices with a non-zero determinant; matrices without
a division by zero error while conducting row operations

Inverse algorithm-solution using LU Decom-
position [43]

Matrices with a non-zero determinant, matrices without a division by zero
error while conducting row operations

Proposed inverse algorithm-solution using
least squares method

100% of the polynomials; all binary polynomials except for polynomials with
all 1 coefficients

0.49 to 0.51. The algorithm by [10] finds inverses for matri-
ces with a non-zero determinant, in other words non-singular
matrices. The algorithms using Gauss Jordan elimination
and LU decomposition methods encounter division by zero
errors.

A comparison of the probability of finding an inverse using
the proposed NTRU inverse algorithm using the least squares
method compared to the classical NTRU inverse algorithm is
shown in Figure 1a, with an example using test parameters
for N = 11 in Figure 1b.

0

20

40

60

80

100

120

0 50 100 150 200 250 300

P
er

ce
n

ta
g
e

N

% of invertible polynomials (from results in 4.5.1 Table 4.3) using

classical NTRU inverse algorithm

% of invertible polynomials using proposed NTRU inverse

algorithm using pseudo-inverse in least squares method

48%-51%

(a) Comparative percentages.

𝑵 = 𝟏𝟏
211=2048 combinations

𝑓 1 = 𝑒𝑣𝑒𝑛 1023

𝑓 1 = 𝑜𝑑𝑑 1024

𝑓 1 = 11 1

Classical Inverse Algorithm

Proposed Inverse Algorithm - Least Squares

(Binary)

(b) Size of the key space.

Fig. 1. Comparison of invertible polynomials for the least
squares inverse algorithm and the classical NTRU inverse
algorithm

As depicted by Figure 1b, the application of the Pseudo-
Inverse in finding the least squares solution in NTRU resulted
in a 50% increase in the number of invertible polynomials
thereby doubling the size of the key space. The classical in-

verse algorithm covers only 49.95% of the polynomial space
while the improved inverse algorithm using the Pseudo-
Inverse in finding the least squares solution covers 99.95%
of the polynomial space. An inverse and thus key generation
can be successfully done for all binary NTRU polynomials
using the Pseudo-Inverse in finding the least squares solution
with the exception of the polynomial with all 1 coefficients
(that is, with f(1) = N). Therefore, the least squares
solution of inversion provides for wholly random selection
of polynomial f for a specified parameter size.

B. Speed of Inversion

The comparative speed of inversion is shown in Figure
2. The tests were conducted on the Magma Computational
Algebra System [45] running on a Windows 10 Enterprise
operating system (with an Intel(R) Core(TM) i7-4790 pro-
cessor running at 3.60GHz, 4GB RAM and 1TB Hard-disk
capacity). The parameters tested were obtained from test
vectors published in [46], [47], [48].

As depicted in Figure 2, the proposed algorithm using the
least squares method shows better performance in terms of
the speed of inversion compared to the algorithm by [10]
as well as the inverse algorithm using LU decomposition.
However, the classical inverse algorithm [44], [14], [6] and
the inverse algorithm using Gauss Jordan elimination show
faster speeds of inversion, with the classical inverse algorithm
being the fastest.

Overall, the classical NTRU inverse algorithm takes the
shortest time to find an inverse which is attributed to the
speed of convolution multiplication operation. This is fol-
lowed by the inverse algorithm using Gauss Jordan elimina-
tion in second place. However, the application of the inverse
algorithm using Gauss Jordan elimination is characterized by
instances of division by zero errors, arising as a result of the
arrangement of 0 and 1 coefficients.

The proposed inverse algorithm using the least squares
method is in third place, followed by the Zhao and Su
Inverse algorithm, while the inverse algorithm using LU
decomposition has the longest computation time. The power
consumption increases as the size of the matrices gets larger,
which has a consequence on the computation speed. This is
particularly observed in the NTRU inverse algorithms consid-
ered in this research study, with the inverse algorithm using
LU decomposition having the greatest resource consumption
at N = 449. This implies that the LU decomposition is less
efficient for inversion of matrices of larger dimension.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500

Classical Inverse algorithm

NTRU Inverse Algorithm-Gauss Jordan Elimination

Zhao and Su Inverse Algorithm

Inverse Algorithm using LU decomposition

Proposed Inverse Algorithm using Least Squares

Proposed Least Squares

Alg.

Zhao and Su Inverse Alg.

LU decomposition Alg.

Classical

Inverse

Alg.
Gauss Jordan Elimination Alg.

Fig. 2. Comparative speed of inversion

Despite the fast speed of inversion using the classical
NTRU inverse algorithm, a randomly selected private polyno-
mial f is not always invertible thereby restricting the parame-
ter selection range. The speed of inversion and thereby utility
of computational resources by the proposed inverse algorithm
using the least squares method is at a moderate level among
the five algorithms, which coupled with the probability of
finding an inverse provides flexibility in parameter selection
thereby making it a favourable solution among the alterna-
tives.

C. Computational Time Complexity

The third metric of comparison we considered was the
computational time complexity. The five inverse algorithms
were compared in terms of their computational time com-
plexity yielding the results illustrated in the Table III.

TABLE III
COMPARATIVE TIME COMPLEXITY

Algorithm Time complexity

Classical NTRU inverse algorithm O(N2log2 q + 1)

Zhao and Su inverse algorithm O(N2)

Inverse algorithm using Gauss Jordan Elimination O(10N2 + 4N)

Inverse algorithm-solution using LU Decomposition O(13N2 + 6N)

Proposed inverse algorithm-solution using least squares
method

O(N3 +N2 +N + log2N)

The computational complexity of the proposed inverse
algorithm using the least squares method is O(N3 + N2 +
N+log2N ' N3+N2+N) which simplifies to O(N3). On
the other hand, the complexity of the inverse algorithm using
Gauss Jordan Elimination is O(10N2 + log2N + 4N + 22 '
10N2 +4N) which simplifies to O(N2) while the algorithm
using LU decomposition has a complexity of O(13N2+6N).

A closer evaluation of the complexities reveals that the
classical NTRU inverse algorithm requires fewer operations
of O(N2 log2 q + 1 ' N2 log2 q) which justifies the faster
numerical speed of inversion illustrated in Figure 2. This
is attributed to the convolution multiplication operation and
computation of the products of small coefficients.

V. CONCLUSION

The NTRU public key cryptosystem’s key generation
entails the computation of two modular polynomial inverses
thereby pointing to the crucial value of modular inversion in
NTRU. However, previous studies point out the difficulty in
determining whether a polynomial is invertible [7]. There-
fore, this study seeks to address the problem of invertibility
in the NTRU key generation process by studying alternative
inverse algorithms, presenting their integration in the NTRU
structure and identifying the best inverse algorithm.

This study presents a discussion of the classical NTRU
inverse algorithm, an evaluation of alternative modular in-
verse algorithms examined in the course of this study along
with a proposal of the best inverse algorithm. We compare
naı̈ve matrix inversion, Strassen-type matrix inverse, Gauss
Jordan elimination with partial pivoting, LU decomposition,
Gram Schmidt orthogonalization and least squares method.
Given that a generalized inverse is not unique, we apply the
principle of the pseudo-inverse in finding the least squares
solution (with a minimum norm in the residual error for
an over-determined system of linear equations) of a matrix
problem because it results in a unique solution

A comparative evaluation of the algorithms in terms of the
probability of finding an inverse, the speed of inversion and
the computational time complexity of the algorithms revealed
that the least squares algorithm provides 100% probability
of finding a modular inverse for NTRU binary polynomials.
This guarantees that an inverse can be found provided the
polynomial does not have all N number of 1 coefficients.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

Therefore, the integration of this algorithm in the NTRU
structure allows for random selection of any private key
polynomial f in the ring R = Z[x]

(XN−1)
(i.e., any polynomial

combination with maximum degree (N − 1)) which thereby
enlarges the key space and consequently improves security.

REFERENCES

[1] G. C. Kessler, “An overview of cryptography,” 2019.
[2] X. A. Wang, X. Yang, C. Li, Y. Liu, and Y. Ding, “Improved functional

proxy re-encryption schemes for secure cloud data sharing,” Computer
Science and Information Systems, vol. 15, no. 3, pp. 585–614, 2018.

[3] P. W. Shor, “Algorithms for quantum computation,” in 35th Annual
Symposium on Foundations of Computer Science (FOCS).

[4] J. A. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, “Post-quantum
cryptography: state of the art,” in The New Codebreakers. Springer,
2016, pp. 88–108.

[5] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,
vol. 549, no. 7671, pp. 188–194, 2017.

[6] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in Algorithmic number theory, J. P. Buhler,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 267–
288.

[7] X.-R. Luo and C.-H. J. Lin, “Discussion on matrix NTRU,” Interna-
tional Journal of Computer Science and Network Security, vol. 11,
no. 1, pp. 32–35, 2011.

[8] R. Nayak, C. Sastry, and J. Pradhan, “Algorithmic comparison between
polynomial base and matrix base NTRU cryptosystem,” International
Journal of Computer and Network Security (IJCNS) Vol, vol. 2, 2010.

[9] W. D. Banks and I. E. Shparlinski, “A variant of NTRU with non-
invertible polynomials,” in International Conference on Cryptology in
India. Springer, 2002, pp. 62–70.

[10] N. Zhao and S. Su, “An improvement and a new design of algorithms
for seeking the inverse of an NTRU polynomial,” in 7th International
Conference on Computational Intelligence and Security (CIS), 2011,
Conference Proceedings, pp. 891–895.

[11] P. I. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vain-
trob, and E. Yudovina, Introduction to representation theory. Amer-
ican Mathematical Society Providence, RI, 2011, vol. 59.

[12] A. P. Hillman and G. L. Alexanderson, Abstract algebra: A first
undergraduate course. PWS Publishing Company, 1994.

[13] N. Howgrave-Graham, J. H. Silverman, and W. Whyte, Choosing
parameter sets for NTRUEncrypt with NAEP and SVES-3. Springer,
2005, pp. 118–135.

[14] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman, An
introduction to mathematical cryptography. Springer, 2008, vol. 1.

[15] R. T. Monteiro, “Post-quantum cryptography: lattice-based cryptogra-
phy and analysis of NTRU public-key cryptosystem,” Faculdade de
Ciencias, Departamento de Matematica, 2016.

[16] S. R. Fluhrer, “Quantum cryptanalysis of NTRU.” IACR Cryptology
ePrint Archive, vol. 2015, p. 676, 2015.

[17] P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte,
“Choosing NTRUEncrypt parameters in light of combined lattice
reduction and mitm approaches,” in Applied Cryptography and
Network Security, ser. Lecture Notes in Computer Science,
M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud,
Eds. Springer Berlin Heidelberg, 2009, vol. 5536, pp. 437–455.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-01957-9-27

[18] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos,
J. Silverman, A. Singer, and W. Whyte, “The impact of decryption
failures on the security of NTRU encryption,” in Advances in
Cryptology - CRYPTO 2003, ser. Lecture Notes in Computer
Science, D. Boneh, Ed. Springer Berlin Heidelberg, 2003, vol.
2729, pp. 226–246. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-45146-4-14

[19] J. A. Buchmann, Congruences and Residue Class Rings. New
York, NY: Springer New York, 2004, pp. 29–70. [Online]. Available:
https://doi.org/10.1007/978-1-4419-9003-7 2

[20] J. H. Silverman, “Almost inverses and fast NTRU key cre-
ation,” NTRU Cryptosystems,(Technical Note# 014): http://www. ntru.
com/cryptolab/pdf/NTRU Tech014. pdf, 1999.

[21] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck, “Fast
key exchange with elliptic curve systems,” in Annual International
Cryptology Conference. Springer, 1995, Conference Proceedings, pp.
43–56.

[22] IEEE, “IEEE standard specification for public key cryptographic
techniques based on hard problems over lattices,” IEEE Std 1363.1-
2008, pp. C1–69, March 2009.

[23] A. K. Jones, “Efficient embedded security standard (EESS)
1,” March 2015. [Online]. Available: https://github.com/
NTRUOpenSourceProject/ntru-crypto

[24] IEEE, “Efficient embedded security standards (EESS),” p. 78, June
2003.

[25] P. G. Tata, H. Narumanchi, and N. Emmadi, “Analytical study of
implementation issues of NTRU,” in International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
2014, Conference Proceedings, pp. 700–707.

[26] N. Challa and J. Pradhan, “Performance analysis of public key cryp-
tographic systems rsa and ntru,” International Journal of Computer
Science and Network Security, vol. 7, no. 8, pp. 87–96, 2007.

[27] C. O. Rourke and B. Sunar, “Achieving NTRU with montgomery
multiplication,” IEEE Transactions on Computers, vol. 52, no. 4, pp.
440–448, 2003.

[28] “IEEE draft standard specification for public- key cryptographic tech-
niques based on hard problems over lattices,” IEEE Unapproved Draft
Std P1363.1/D12, Oct 2008, p. 1, 2008.

[29] W. Stallings, Cryptography and Network Security: Principles and
Practice, International Edition: Principles and Practice. Pearson
Higher Ed, 2014, vol. 5.

[30] W. Whyte, Ntru. Boston, MA: Springer US, 2005, pp. 427–430.
[Online]. Available: http://dx.doi.org/10.1007/0-387-23483-7-279

[31] P. J. Davis, Circulant matrices. American Mathematical Soc., 2012.
[32] I. Kra and S. R. Simanca, “On circulant matrices,” Notices of the AMS,

vol. 59, no. 3, pp. 368–377, 2012.
[33] D. S. G. Pollock, “Circulant matrices and time-series analysis,”

International Journal of Mathematical Education in Science and
Technology, vol. 33, no. 2, pp. 213–230, 2002.

[34] I. Kra and S. R. Simanca, “On circulant matrices,” Notices of the AMS,
vol. 59, no. 3, pp. 368–377, 2012.

[35] S. M. Balle, P. C. Hansen, and N. Higham, “A strassen-type matrix
inversion algorithm,” Advances in Parallel Algorithms, pp. 22–30,
1994.

[36] M. D. Petkovic and P. S. Stanimirovic, “Generalized matrix inversion
is not harder than matrix multiplication,” Journal of Computational
and Applied Mathematics, vol. 230, no. 1, pp. 270 – 282,
2009. [Online]. Available: //www.sciencedirect.com/science/article/
pii/S0377042708006237

[37] G. J. Nyokabi, M. Salleh, and I. Mohamad, “Ntru inverse polynomial
algorithm based on circulant matrices using gauss-jordan elimination,”
in 6th ICT International Student Project Conference (ICT-ISPC).
IEEE, May 2017, pp. 1–5.

[38] G. James and R. C. James, “Mathematics dictionary,” Mathematics
dictionary, by James, Glenn; James, Robert C. Princeton, NJ, Van
Nostrand [1959], 1959.

[39] V. Lyubashevsky and T. Prest, “Quadratic time, linear space algo-
rithms for gram-schmidt orthogonalization and gaussian sampling in
structured lattices,” in Advances in Cryptology – EUROCRYPT 2015,
E. Oswald and M. Fischlin, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 789–815.

[40] R. MacAusland, “The moore-penrose inverse and least squares,” Math
420: Advanced Topics in Linear Algebra, 2014.

[41] S. Boyd. (2008) Least squares. [Online]. Available: https://see.
stanford.edu/materials/lsoeldsee263/05-ls.pdf

[42] S. J. Leon, Å. Björck, and W. Gander, “Gram-schmidt orthogo-
nalization: 100 years and more,” Numerical Linear Algebra with
Applications, vol. 20, no. 3, pp. 492–532, 2013.

[43] J. N. Gaithuru, M. Salleh, and I. Mohamad, “Ntru inverse polynomial
algorithm based on the lu decomposition method of matrix inversion,”
in IEEE Conference on Application, Information and Network Security
(AINS), Nov 2017, pp. 1–6.

[44] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and
Z. Zhang, “Choosing parameters for NTRUEncrypt,” 2015. [Online].
Available: http://eprint.iacr.org/2015/708.pdf

[45] M. Group et al., “Magma computational algebra system,” Version
2.22-7, 2016.

[46] Y. Angel, “NTRUEncrypt,” 2014. [Online]. Available: https://github.
com/Yawning/ntru/tree/master/testvectors

[47] A. Yawning, “Package NTRU,” 2016. [Online]. Available: https:
//godoc.org/github.com/Yawning/ntru

[48] J. N. Gaithuru, M. Salleh, and M. Bakhtiari, “Identification of influ-
ential parameters for NTRU decryption failure and recommendation
of extended parameter selection criteria for elimination of decryption
failure.” IAENG International Journal of Computer Science, vol. 44,
no. 3, pp. 358–367, 2017.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

Juliet N. Gaithuru was born in Thika, Kenya
on the 15th of November 1985. This author at-
tained a BSc. in Computer Information Systems
from Kenya Methodist University in 2011. The
author also holds a Master of Computer Science
in Information Security from Universiti Teknologi
Malaysia, 2013, where she carried out research on
the S-Box in the Advanced Encryption Standard
(AES) Algorithm. The author is currently pursuing
a PhD degree in computer science specializing
in the field of information security at Universiti

Teknologi Malaysia. Her research interests are in the field of symmetric
and asymmetric cryptography with particular interest in post-quantum
cryptography.

Mazleena Salleh is an Associate Professor at
the Faculty of Computing, Universiti Teknologi
Malaysia. The author holds a PhD in Computer
Science from Universiti Teknologi Malaysia. The
author holds an MSc in Electrical Engineering
from Virginia Polytechnic and State University
in USA. The author attained a BSc in Electrical
Engineering from University of Southern Cali-
fornia, USA as well as a Diploma in Electrical
Engineering from Universiti Teknologi Malaysia.

Nor Muhainiah Mohd Ali is an Associate Profes-
sor in the Mathematical Sciences department at the
Faculty of Science, Universiti Teknologi Malaysia.
Her research interests are in pure mathematics,
discrete mathematics, graph theory, algebra and
analysis.

Engineering Letters, 29:4, EL_29_4_04

Volume 29, Issue 4: December 2021

__

