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Abstract—Improvement of the performance, stability and
security of power systems is of great significance. In this
paper, the mechanisms of chaotic behavior and photovoltaic
power predictions are discussed on the basis of phase s-
pace reconstruction of chaotic dynamic systems. The analysis
shows that photovoltaic power has both chaotic and random
components, which is in accordance with the experimental
data. By combining the advantages of the orthogonality of
Laguerre polynomials and the approximation effect of a local
chaos prediction model, a chaos model for photovoltaic power
prediction is presented based on information entropy and is
applied to replace the Euclidean distance in choosing the weight
of the fitting phase points in the reconstructed phase space.
The prominent advantage of this method is that it can avoid
oscillations resulting from subjectivity and randomness when
neighbor phase points are selected. Real photovoltaic power
data are used to simulate the proposed model, and the results
show that the proposed chaos model for photovoltaic power
prediction can greatly improve the precision in power systems.

Index Terms—photovoltaic power; Laguerre polynomials;
information entropy; local chaos model

I. INTRODUCTION

PHOTOVOLTAIC power generation produces variable
output. Efficient prediction of photovoltaic power can

help scheduling departments arrange and coordinate cooper-
ation between conventional power and photovoltaic power
generation, assist in making reasonable arrangements for
power grid operation modes, improve the safety and stability
of power system operations, contribute to the development of
rational power field control strategies, minimize the adverse
effects of solar variability on the power grid, and reduce the
operational costs of power systems.[1], [2], [3]

In recent years, a large number of empirical studies
have shown that photovoltaic power has chaotic behavior
and unpredictable impacts on power system performance.
Furthermore, the traditional model for photovoltaic power
prediction cannot predict the evolutionary trend of power
flow. Therefore, finding a flow prediction model and method
that matches the chaotic characteristics of photovoltaic power
generation is necessary[3].

Since the local chaos model is a good approximation
for photovoltaic power generation, it has attracted increas-
ing attention from researchers in the field of photovoltaic
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power prediction. Because the traditional local chaos model
has slow convergence, incurs a large computational cost,
and determines the fitted phase points and their weight
according to the Euclidean distance, it displays poor perfor-
mance in predicting photovoltaic power with high embedding
dimensions[4]. To solve these problems, in this paper, a
local chaos model based on the Laguerre polynomials and
information entropy is proposed. The model combines the
advantages of Laguerre polynomials and information entropy
and can more accurately depict the dynamic behavior of
photovoltaic power.

II. PHASE SPACE RECONSTRUCTION THEORY

Chaotic behavior can appear to be random motion, and
similar random behavior occurs in deterministic complex
systems without the addition of any external factors[5], [6],
[7], [8], [9], [10], [11]. The degree of chaos of a system can
be measured by the maximum Lyapunov index λ. If λ ≥ 0,
then the system will appear to be chaotic.

Many complex factors can lead to the chaotic behavior of
photovoltaic power. Because photovoltaic power data can be
obtained through measurements obtained during the actual
management of power systems, a method for restoring the
geometry of the phase space of a chaotic data system from a
known time series is needed. Takens’ theorem in phase space
reconstruction theory was proposed to solve this problem.

Takens’ theorem states that for a known chaotic time series
{x(k)}k=1,2,...,n, any delay time τ and an embedding space
dimension m ≥ 2D2 + 1 (D2 is the correlation dimension),
we can find a smooth map F : Rm → Rm for the attractor
such that Y (t + 1) = F [Y (t)], where Y (t) is an m-
dimensional vector and Y (t) = [x(t), x(t + τ), . . . , x(t +
(m− 1)τ)], t = 1, 2, . . . , n− (m− 1)τ .

Takens’ theorem[8] laid a theoretical foundation for pho-
tovoltaic power prediction. The theorem indicates that the
evolution trajectory of the reconstructed phase space of a
chaotic time series is equivalent to the original chaos system
in the sense of diffeomorphism, and the kinetic properties of
the original system remain unchanged in the reconstructed
phase space. By reconstructing the phase space, the limited
system information can be used to explore the kinetic prop-
erties of the entire system.

According to the theorem, delay time τ can be determined
with the autocorrelation function method[1], and embedding
dimension m can be determined with the GP algorithm[3].

III. LAGUERRE POLYNOMIALS

In the interval [0,∞], the weight function w(t) = e−x

constitutes orthogonal polynomials Ln(x)(n = 0, 1, . . . ),
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which are called Laguerre polynomials and are expressed as
Ln(x) = e−x dx

dxn (xne−x). Laguerre polynomials have the
following key properties[12]:
(1) Recurrent relation:

L0(x) = 1,

L1(x) = 1− x,
Ln+1(x) = (1 + 2n− x)Ln(x),

−n2Ln − 1(x), n = 1, 2, . . . .

The following expressions can be obtained:

L1(x) = 1,

L2(x) = x2 − 4x+ 2,

L3(x) = −x3 + 9 ∗ x2 − 18x+ 6,

L4(x) = x4 − 16x3 + 72x2 − 96x+ 24,

L5(x) = −x5 + 25x4 − 200x3 + 600x2 − 600x+ 120.

(2) Orthogonality:

(Ln, Lm) =

∫ +∞

0

e−xLm(x)Ln(x) dx =

{
0, m 6= n,

(n!)2, m = n.

(3) The best approximation[12], [13]: if {Li(x)}|ni=0 is a
polynomial sequence in interval [a, b], then

Φ = span{T0., T1., . . . , Tn.}

= {T (x)|T (x) =

n∑
k=0

akTk(x), ak ∈ R}.

If f ∈ C[a, b] is a continuous function on interval [a, b],
then there exists a uniform approximation T ∗ ∈ Φ such that
||f − T ∗|| = inf

T∈Φ
||f − T ||.

According to the above properties, Laguerre polynomials
are orthogonal, converge quickly and have several excellent
properties. From the point of view of a numerical approxi-
mation, applying several of these former items can allow the
model to achieve high accuracy.

IV. LAGUERRE POLYNOMIALS AND LOCAL CHAOS
MODEL

A. Local Chaos Model

Suppose that the time series {x(j)}j=1,2,...,n is known.
To predict the time series, the phase space of the series is
first reconstructed, and then, a local model is established
for prediction. An appropriate delay time τ is selected
and embedded into the phase space dimension, and the
corresponding phase points of the reconstructed phase space
can be obtained:

Y (1) = [x(1), x(1 + τ), . . . , x(1 + (m− 1)τ)],

Y (2) = [x(2), x(2 + τ), . . . , x(2 + (m− 1)τ)], . . . ,

Y (N) = [x(N), x(N + τ), . . . , x(n)].

To predict x(n + 1), only the phase points need to be
predicted,

Y (N + 1) = [x(N + 1), x(N + 1 + τ), . . . , x(n+ 1)].

Because x(n + 1) is the last component, the key to
predicting a time series is to obtain a good approximation

of mapping F . Because chaotic behavior only exists in
nonlinear circumstances, a nonlinear expression for F if
obtained when fitting F . It is natural to consider polynomial
fitting. According to Weierstrass approximation theory, any
continuous function can be approximated through polynomial
approximation in any small neighborhood domain with the
desired accuracy.

The functional relationship between Y (N + 1) and Y (N)
can be approximately expressed with polynomials as follows:

Y (N + 1) = F [Y (N)]

= α0 + α1Y (N) + α2Y
2(N) + · · ·+ αpY

p(N). (1)

Model (1) is a polynomial local chaos model for chaotic
time series. Some adjacent points of the predicted center
Y (N) are used as reference points for calculating the coef-
ficients α0, α1, . . . , alphap. Then, the historical data can be
used to predict Y (N + 1), thereby obtaining the predicted
value of time series x(n+ 1). The above steps are repeated,
and then, x(n + 1) and x(n + 2) are predicted through the
phase space reconstruction technique to establish a chaos
model for photovoltaic power prediction.

B. Laguerre Polynomial Model
When Model (1) has a high order p and a large number

of samples, many calculations are required to calculate the
coefficients α0, α1, . . . , αp; if these coefficients have a high
degree of correlation, then the prediction performance of the
model will be affected. To eliminate these phenomena, in
this paper, the good approximation effect, orthogonality and
other good mathematical properties of Laguerre polynomials
are utilized to establish a local prediction model.

Laguerre polynomial series {Ln(x), n = 0, 1, 2, . . . } is
selected and used to replace the polynomial series {Y n, n =
0, 1, 2, . . . } in Model (1); then, the following formula can be
obtained:

Y (N + 1)

= β0 + β1L1[Y (N)] + β2L2Y (N) + · · ·+ βqLq[Y (N)].
(2)

Model (2) is called the Laguerre polynomial local pre-
diction model. The model coefficients β0, β1, . . . , βq are
calculated.

Suppose that Y (k1), Y (k2), . . . , Y (kM ) are M adjacent
points of the predicted center Y (N). According to Model (2),
each adjacent phase point satisfies the following condition:

Y (ki + 1)

= β0 + β1T1[Y (ki)] + β2T2Y (ki) + · · ·+ βqTq[Y (ki)],

i = 1, 2, . . . ,M. (3)

Our aim is to obtain the predicted value of the last
component of the phase point Y (N + 1). When calculating
the coefficients, we only need to consider the last component
of each phase point. According to Model (3), the last com-
ponent of each adjacent phase point satisfies the following
condition:

x(ki + 1)

= β0 + β1Lj [x(ki)] + β2Ljx(ki) + · · ·+ βqLj [x(ki)],

i = 1, 2, . . . ,M. (4)
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Because Y (k1), Y (k2), . . . , Y (kM ) exert different effects
on the predicted center Y (N), we should consider this factor
in the determination of the coefficients. Therefore, we first
define the weight of each adjacent point. The traditional
weighted local model can determine the adjacent phase point
and the weight of the predicted center according to the
Euclidean distance. When the embedding dimension of the
reconstructed phase space is small, the distance parameter
can basically reflect the correlation between the kinetic
behaviors of the adjacent phase point and the predicted
center. However, when the embedding dimension increases,
the distance cannot objectively reflect their relationship[4],
and the prediction effect of the model will be gradually
reduced because it cannot be guaranteed that a point near
the central point is on a track adjacent to the center point’s
track. Therefore, it cannot be guaranteed that the point exerts
a large effect on the kinetic behavior of the predicted center,
and a new method to identify an adjacent phase point and
its weight must be found. This can improve the accuracy of
the model in predicting a chaotic time series with a high
embedding dimension.

V. LAGUERRE POLYNOMIAL LOCAL MODEL BASED ON
INFORMATION ENTROPY

A. Concept of Information Entropy

Entropy was originally a concept in thermodynamics[14]. Af-
ter it was introduced into information theory, a wide variety
of its applications in engineering technology, management
science, social economy and other fields were discovered.
In information theory, information entropy is a measure of
the degree of disorder. If the information entropy is large,
then the information has a high degree of disorder, and the
information’s utility value will be small. If the information
entropy is small, then the degree of disorder is small, and
the utility value of the information will be large. In a
comprehensive evaluation, the use of entropy to evaluate
the degree of disorder and utility value of information in
an obtained information system is natural.

B. Establishment of the Model

To address the shortcomings of the traditional local model,
in this paper, a weighted local linear model based on infor-
mation entropy is proposed.

The concept of entropy can be used to explore
the kinetic relationships between the predicted center
Y (N) and other phase points. In the evolution of
Y (N), the kinetic behavior is inevitably affected by
other phase points Y (1), Y (2), . . . , Y (N − 1). However,
Y (1), Y (2), . . . , Y (N − 1) exert different effects on the
kinetics of the predicted center; thus, their contributions to
fitting Y (N + 1) generally have different proportions. If the
kinetic properties of a phase point are similar to those of
the predicted center or if a certain phase point carries richer
kinetic information than the predicted center, it will play a
greater role in the fitting of Y (N + 1). Based on this idea,
we can first consider defining the entropy of each phase
point. The entropy value describes the amount of kinetic
information in the predicted center contained by the adjacent
phase points. Then, entropy is used to find the adjacent
phase points of the predicted center, and the weight of each

adjacent phase point is determined according to the entropy
value. A new weighted local linear model is constructed to
improve the low accuracy of the traditional weighted local
linear model when predicting a chaotic time series with a
high embedding dimension. First, the definition of adjacent
phase points should be clarified. Here, an adjacent phase
point refers to a phase point in the phase space for which
the kinetic behavior and properties are very similar to the
kinetic behavior and properties of the predicted center. That
is, an adjacent phase point includes the kinetic information of
the predicted center, and some kinetic characteristics of the
predicted center can be deduced based on this information.

To facilitate description, the m components of each phase
point in the phase space are renumbered. Suppose that

Y (1) = [x(1), x(1 + τ), . . . , x(1 + (m− 1)τ)]

= (x11, x21, . . . , xm1),

Y (2) = [x(2), x(2 + τ), . . . , x(2 + (m− 1)τ)]

= (x12, x22, . . . , xm2), . . .

Y (N − 1) = [x(N − 1), x(N − 1 + τ), . . . , x(n− 1)]

= (x1,N−1, x2,N−1, . . . , xm,N−1),

Y (N) = [x(N), x(N+τ), . . . , x(n)] = (x1N , x2N , . . . , xmN ).

Then, δ1k = |x1k − x1N |, δ2k = |x2k − x2N |, . . . , δmk =
|xmk − xmN |, k = 1, 2, . . . , N − 1.

The goal of searching for adjacent phase points is to un-
derstand the kinetic features of the predicted center according
to the kinetic information obtained from the adjacent phase
points. We focus on the amount of kinetic information from
the predicted center carried by the adjacent phase points
and select the adjacent phase points that contain the kinetic
information of the predicted center in phase space. Therefore,
the following decision matrix is constructed:

4 =


δ11 δ12 . . . δ1,N−1

δ21 δ22 . . . δ2,N−1

...
...

. . .
...

δm1 δm2 . . . δm,N−1

 .
The matrix elements δij represent the absolute deviation

between the ith component of phase point Y (j) and the ith

component of predicted center Y (N).
In phase space, the evolution of a phase point in orbit can

be represented by its evolution in each component direction.
Chaos theory[2] considers that the evolution of each com-
ponent in a system is determined by the other components
that interact with it, and the evolution of a single component
in a kinetic system contains rich information. Therefore, by
investigating the differences between the adjacent phase point
and predicted center kinetic behaviors in each component
direction of the phase point orbit, we can obtain the overall
degree of similarity or dissimilarity between the kinetic
properties of an adjacent phase point and the predicted center.
A smaller δij indicates that the kinetic behaviors of the ith

component of phase point Y (j) and the ith component of the
predicted center Y (N) have greater similarity in the orbit in
phase space and that Y (j) contains richer kinetic information
of the predicted center Y (N); when the kinetic information
of the predicted center Y (N) contained by Y (k) is richer
than that contained by Y (l), Y (k) has a stronger impact on
the kinetic behavior of Y (N) in that direction.
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Suppose that δ∗j = min
i
{δij}(j = 1, 2, . . . ,m); that is, δ∗j

is the minimum value of the jth column and represents the
absolute deviation of the lower limit of all of the components
of phase point Y (j) and the corresponding component of the
predicted center Y (N) on the evolution track corresponding
to the jth column. Dij =

δ∗j
δij

is used to represent the
approximation of δij and δ∗j . Dij is normalized and denoted
by dij =

Dij

m∑
i=1

N−1∑
j=1

Dij

; then, Dij is set, and the entropy value

of phase point Y (j) in the reconstructed phase space is
defined as:

Ej = −
N−1∑
j=1

dij
di

ln
dij
di
.

According to the extremality of entropy, if the values of
dij
di

are approximately equal, then the entropy will be large.
If the values of dij

di
are exactly the same, then the value

of entropy Ej reaches the maximum value: ln(N − 1). It
can be easily seen that if the absolute deviation between
the component of each adjacent phase point Y (j) and the
corresponding component of the predicted center is small,
that is, if each Dij is close to 1, then the entropy Ej of
Y (j) will be large. Furthermore, the kinetic information of
the predicted center contained by each component has a
similar degree of variation; therefore, the kinetic information
of the relevant predicted center provided by Y (j) is relatively
simple. If information entropy E(j) of phase point Y (j)
is small, this indicates that the kinetic information of the
predicted center contained in each component has a greater
degree of variation and contains richer kinetic information
of the relevant predicted center.

The adjacent points of the predicted center are determined
according to the entropy value of each phase point, and the
obtained adjacent points have the most kinetic information
of the predicted center. In view of this, the entropy value is
normalized, ej = 1

ln(N−1)Ej is obtained, and ej is applied
to supplement qj = 1− ej .

Now, qj(j = 1, 2, . . . , N − 1) is used to determine
the adjacent phase points of the predicted center Y (N).
Therefore, a certain value qthr ∈ (0, 1) is selected as the
threshold, and qj and qthr are compared. If qj ≥ qthr,
then the corresponding phase point Y (j) of qj is used
as an adjacent phase point of the predicted center Y (N).
Otherwise, it can be assumed that the kinetic properties of
the phase point and the predicted center are too different and
the phase point cannot be used as an adjacent phase point for
fitting the evolution of the predicted center Y (N). Using this
approach, all of the adjacent phase points of the predicted
center Y (j1), Y (j2), . . . , Y (jM ) are identified.

The weight of each adjacent phase point is defined as
follows. The corresponding entropy value of the adjacent
phase point Y (jk)(k = 1, 2, . . . ,M) is normalized and
denoted by qk = 1− ek. qk is normalized, and the weight is
obtained:

wk =
qk
M∑
k=1

qk

(k = 1, 2, . . . ,M).

Notably, 0 ≤ wk ≤ 1 and
M∑
k=1

wk = 1 if dk = dl (dk

and dl represent the distances between the predicted center

and adjacent phase points Y (jk) and Y (jl), respectively).
However, wk ≥ wl, indicating that the Y (N) information
contained by Y (jk) is much richer than that of Y (jl); thus,
the impact of Y (jk) on the kinetic behavior of Y (N) is much
stronger than the impact of Y (jl) on the kinetic behavior of
Y (N).

Model (4) is a multivariate function of approximately
α0, α1, . . . , αp, and the weighted least squares method is
used for calculation. The model is constructed to predict the
sum of the squares of the errors:

e(α0, α1, . . . , αp) =
M∑
i=1

w(ki){x(ki+1)−α0−α1L1[x(ki)]

− α2L2[x(ki)]− · · · − αpLp[x(ki)]}2,

where w(ki) represents the weight of adjacent phase point
Y (ki). According to the standards of the least squares
method, coefficients α0, α1, . . . , αp should guarantee that
e(α0, α1, . . . , αp) reach the minimum value; therefore, the
partial derivatives of α0, α1, . . . , αp are calculated and set to
zero:

∂e

∂bj
= 2

M∑
i=1

w(ki){x(i+1)−
p∑

m=0

αmLm[x(ki)]}Lj [x(ki)]

= 0, j = 0, 1, . . . , q.

After sorting, the following formula can be obtained:

q∑
m=0

βm

M∑
i=1

w(ki)Lm[x(ki)]Lj [x(ki)]

=
M∑
i=1

w(ki)x(ki + 1)Lj [x(ki)], j ==, 1, . . . , q.

After solving the equation, the coefficients in the model
α0, α1, . . . , αp can be obtained. According to this prediction
model, the predicted value of Y (N + 1) can be calculated,
and the last component is taken from the predicted value to
calculate the predicted value x(n+ 1).

As observed from the entire modeling process, the model
gives full consideration to the different contributions from the
different adjacent phase points to the predicted center of the
phase space and to the kinetic evolution process of Y (N). It
overcomes the shortcomings of the traditional weighted mod-
el, uses the distance as the basis to evaluate the prediction
effect, and objectively describes the essential characteristics
of the kinetic behavior of Y (N). Therefore, it is a good
nonlinear approximation function and can accurately predict
the kinetic behavior of photovoltaic power.

VI. NUMERICAL SIMULATION

In this section, we analyze the chaotic behavior and
characteristics of actual photovoltaic power. Based on this,
we validate the effectiveness of our prediction model through
numerical simulations.

The data used for the numerical simulations are select-
ed from 1213 samples of photovoltaic power data pro-
vided by an electricity institute[12], and the time series
x(1), x(2)m. . . , x(1213) is constructed. As shown in Fig.
1, these data are used to establish a local chaos model to
predict the evolution trend of photovoltaic power and verify
the prediction effect of the model.
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A. Analysis of the Chaotic Behavior and Characteristics of
Photovoltaic Power

We adopt a power and attractor phase diagram and perform
qualitative analysis to determine whether the flow series have
chaotic characteristics.

By analyzing the power spectrum of photovoltaic da-
ta, we can intuitively determine whether a series has the
chaotic form of a power system and determine whether
the power spectrum of a chaos data series has continuity,
noisy background features and broad peak features. Fig. 2
shows the power spectrum of the photovoltaic data, and it
is characterized by continuity, noisy backgrounds and broad
peaks. These are the characteristics of the chaotic motion
of photovoltaic power. On the logarithmic scale, the power
spectrum at low frequencies decreases according to the rules
of a power function, which is also an external manifestation
of the chaotic characteristics of photovoltaic power.

A three-dimensional phase diagram is used to display
the attractors of photovoltaic power, as shown in Fig. 3.
Attractor orbits gather together in phase space and have
rough and irregular geometries. This result reflects the kinetic
properties of the chaotic photovoltaic power system from
another perspective.

Then, the Lyapunov index λ of the photovoltaic power
is calculated. First, the sequence is reconstructed in phase
space. This process requires two important parameters, name-
ly, embedding dimension m and delay time τ . We use
the autocorrelation function method[15], [16], [17], [18] to
determine the value of τ , as shown in Fig. 4. The abscissa is
the delay time, and the Y-axis is the autocorrelation function
of the photovoltaic power series. τ , which can reduce the
autocorrelation function value to 1 − 1

e , is the delay time,
and the value of τ is 10. The Cao algorithm can be used
to calculate m, as shown in Figure 5. The abscissa is the
embedding dimension, and the Y-axis shows the values of E1
and E2. The value of m that enables the E1 and E2 curves to
approach each other is the required embedding dimension,
and after calculation, we find that m=8.

After obtaining embedding dimension m and delay time
τ , we can use small data sets to calculate the Lyapunov index
λ. As shown in Fig. 6, the slope of the linear portion of λ
is calculated and is greater than zero. The results indicate
that the movement of the photovoltaic power has chaotic
characteristics, which is consistent with previous results
based on the analyses of power and attractor geometry.
Therefore, we will use the proposed local chaos model to
predict the photovoltaic power.

B. Prediction of Photovoltaic Power

The phase space of the photovoltaic power series is
reconstructed, and 964 phase points are obtained, of which
the Y (964) predicted center takes its adjacent phase point
as the reference fitting point. The order q of Chebyshev
polynomials is set to 2 and 3 to establish the corresponding
local prediction model. To compare the prediction effects,
we adopt the local chaos model based on the traditional
Euclidean distance to predict the photovoltaic power.

To evaluate the prediction effect of the model, x̄(t) and
x̂(t) are set as the mean value and predicted value of the

series. The relative error is defined as

E =
|x(t)− x̂(t)|
|x(t)|

.

In addition, the regularization mean square error is

MSE =

√
N∑
t=1

[x(t)− x̂(t)]2√
N∑
t=1

[x(t)− x̄(t)]2

.

The prediction effects are shown in Fig. 7. It can be easily
observed that the prediction effect of each model is relatively
close to the actual photovoltaic power. Table 1 shows the
average relative errors. Notably, from the perspective of the
relative error, the new model has better prediction perfor-
mance.

Table 2 shows the mean square error of each prediction
model. Compared with the traditional model, the first-order
and second-order Laguerre polynomial models exhibit signif-
icantly improved prediction accuracy; the prediction effect of
the second-order model is much better than that of the first-
order model. This indicates that a second-order orthogonal
local model can achieve good approximation results for the
flow series.

TABLE I
AVERAGE RELATIVE ERRORS OF EACH PREDICTION MODEL.

Model Traditional 1st-order 2nd-order

Errors 0.2849 0.2024 0.1616

TABLE II
MEAN SQUARE ERROR OF EACH PREDICTION MODEL.

Model Traditional 1st-order 2nd-order

MSE 0.331 0.225 0.216

VII. CONCLUSION

Photovoltaic power predictions can improve the ability to ad-
just a power grid peak, the ability to incorporate photovoltaic
power, the safety and stability of power grid operation, and
the competitiveness and risk avoidance of power generation
companies. The establishment of a photovoltaic power pre-
diction system can provide strong technical support for the
power grid and can provide significant economic and social
benefits for investment enterprises and other institutions. In
this paper, a weighted local linear model for photovoltaic
power prediction based on Laguerre polynomials and infor-
mation entropy is proposed. The model exploits the good
approximation effect of Laguerre polynomials and considers
the impact of adjacent phase point information entropy on
the kinetic behavior of the predicted center, thus significantly
improving the photovoltaic power prediction effect.
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Fig. 1. Photovoltaic Power Series.
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Fig. 2. Power Spectrum.
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Fig. 3. Attractor Phase Diagram.
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Fig. 4. Delay Time.
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Fig. 5. Embedding Dimension.
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Fig. 6. Lyapunov Index.
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Fig. 7. Comparison of the Prediction Effects of the Models.
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