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Abstract—The paper considers the problem of optimal con-
trol in models with disorder and provides the computational
scheme of its solution. The proposed method is based on
replacing the disorder with its estimate by the stopping time.
The calculations take place on the binary tree with nodes
divided into two classes. The division of tree nodes into two
classes is carried out using a decision rule associated either
with testing two hypothesis, or with the optimal stopping of a
Markov process developing on a binary tree. The estimate of the
disorder is the moment at which the walk on the tree is placed
in a node of the first class for the first time. The example of the
optimal control problem is related to the problem of quantile
hedging of a payoff.

Index Terms—optimal control, model with disorder, quantile
hedging, stopping time.

I. INTRODUCTION

PROCESSES with disorder and processes with regime
change are in the sphere of constant interests of re-

searchers. First of all, it should be noted the work of Shiryaev
and his colleagues [1]–[5], in which the problem of fast
detection of disorder is studied. The results of these works
will be further used. In [6] processes with disorder were used
as a means of approximating the solution of the stochastic
differential equation. In [6] disorders coincided with the
moments of reaching of given levels by random processes.

The number of works devoted to the detection of the dis-
order is growing every year. Database arxiv.org search shows
more than a hundred works for 2020 related to the problem of
disorder detection in a random process. Undoubtedly, there is
a need for algorithms for solving optimal control problems
for processes with the disorder. There is apparently much
less works associated with optimal control of processes with
the disorder. None were found in the same database.

In the work [7] control problems were considered in
models in which the disorder was a stopping time with a
known distribution law.

In our opinion, research in the field of optimal control of
processes with the disorder can develop in three directions.

In the first, a priori direction, the disorder is a stopping
time and knowledge of the a priori distribution of the disorder
is assumed. The control problem is solved as a parametric

Manuscript received February 06, 2021; revised June 10, 2021. This work
was supported by Russian Science Foundation, project � 17-19-01038.

N. Danilova is an Assistant Professor of the Operations Research De-
partment, Institute of Mathematics, Mechanics and Computer Sciences,
Southern Federal University, Rostov-on-Don, Milchakova st., 8a, 344090,
Russia. (e-mail: nvdanilova@sfedu.ru).

G. Beliavsky is a Chair of the Operations Research Department, Institute
of Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Rostov-on-Don, Milchakova st., 8a, 344090, Russia. (e-mail:
gbelyavski@sfedu.ru).

I. Zemlyakova is an Assistant of the Operations Research Department,
Institute of Mathematics, Mechanics and Computer Sciences, Southern
Federal University, Rostov-on-Don, Milchakova st., 8a, 344090, Russia. (e-
mail: izemlyakova@sfedu.ru).

problem with the subsequent integration of the parametric
solution by the disorder as a disturbing parameter. For details
see work [7]. This approach does not use the disorder
information that is in the controlled process.

The second direction use of an a posteriori estimate of
the disorder by the stopping time with the replacement
of the disorder by an estimate. The main problem lies in
the complex dependence of the estimate on the controlled
process.

The third direction is based on considering the disorder
as an uncertain parameter of the model belonging to a given
set of disorder values, with the transition to the minimax
formulation of the control problem in order to obtain a
guaranteed result. Now, there is a growing interest in robust
formulations, so this line of research looks natural.

This paper refers to the second of the listed areas. In the
paper the binary model is considered, since, in our opinion,
a binary model is the unique model that provides the ability
to obtain a computational result. In addition, in the paper a
binary approximation of the Wiener process is considered.
The trick is not new, it is enough to recall in this connection
the Prokhorov-Donsker principle of the weak convergence of
a random walk with the corresponding normalization to the
standard Wiener process [8]. There are a large number of
works devoted to the binary approximation, which estimate
the rate of convergence for functionals calculated on the
trajectories of the diffusion processes. See for example
works [9]–[12].

The structure of the work is as follows. In the second
section the problem of calculating the disorder for binary
sequences is considered. The disorder estimate is considered
as a dividing of tree nodes into two classes using the
stopping time closest to the disorder. The nodes of the
first class include nodes in which the disorder occurs. A
binary sequence is considered as a random walk along nodes
of a tree, and the disorder estimate is the minimum time
at which a random walk is at a node of the first class.
The proposed method differs from the classical methods in
which different recurrently calculated statistics, for example,
the cumulative sum, the Shiryaev-Roberts statistics, or the
posterior probability of a disorder are compared with a
time-dependent level. These methods require preliminary
calculations to determine the edge of the stop. The proposed
method performs comparable pre-computations to classify
tree nodes and simple follow-up computations associated
with a random walk. This method of detecting the disorder
allows solving optimal control problems. In this section the
binary approximation is considered.

In the third section, the Black-Scholes model, popular
in financial mathematics, with the addition of disorder is
considered, and its binary approximation is given. In the
same section, one of the optimal control problems is solved.
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This problem in financial mathematics is called the quantile
hedging problem.

The fourth section is devoted to computational examples.

II. DISORDER ESTIMATE

A. The Stochastic Disorder Model

Let us consider the binary stochastic process Xt with
Xt ∈ {0, 1} and discrete time t ∈ {1, . . . , n, . . .} on
natural stochastic basis—〈Ω, (Fn)n≥0, F, P 〉. In the basis the
set of elementary stochastic events Ω is the set of binary
sequences ω = (ω1, . . . , ωn, . . .), the filtration elements are
σ-subalgebras Fn = σ(X1, . . . , Xn), F0 = σ (Ω, ∅), the
σ-algebra F = σ

(⋃
t≥0 Ft

)
, P—probability. Consider the

stochastic variable θ ∈ {1, . . . , n, . . .}, which is the disorder.
For any sequence ω the conditional elementary probability
p(ω/θ = n) is determined, and the probability distribution—
p(n) is determined for the stochastic variable θ. The prob-
ability P is determinante in the tremens of the elemen-
tary probabilities by the formula: p(ω) =

∑
n≥1 p(ω/θ =

n)p(n). We will use the following expression for the condi-
tional probabilities:

p(ω/θ = n) = p∞(ω1) · . . . · p∞(ωn−1) · p0(ωn)

· . . . · p0(ωm) . . . , n > 1; (1)

p(ω/θ = 1) = p0(ω1) · . . . · p0(ωm) . . .

For each factor in this formula the expression

p0(ωi) = qωi
0 (1− q0)1−ωi , p∞(ωi) = qωi

∞(1− q∞)1−ωi

is true.

B. The Information Tree and Stopping Times

In connection with a binary sequence, consider a binary
tree with a set of nodes [(Aji )

2i−1
j=0 ]Ni=0, in which Aji −→

{A2j
i+1, A

2j+1
i+1 }. It is easy to establish an isomorphism be-

tween the segments of the binary sequence ωi1 and the nodes
of the tree Aji . This isomorphism is specified in a standard
way: the segment of the binary sequence ωi1 is isomorphic
to the node Aji if and only if j =

∑i
k=1 2i−kωk.

C. The Problem of Disorder Estimate

The problem of disorder detection is to calculate the
stopping time τ∗, located as closed as possible to the θ. In the
above-mentioned works, the problem of disorder detecting is
considered as the problem of optimal stopping of a Markov
process [14]. The linear criteria in the optimal stopping
problem has the form: P (θ > τ)+αE(τ−θ)+. The first term
is the probability of “false alarm”, the second is the average
delay. Shown as standard [13], that the optimal stopping
problem for discrete time and a finite horizon with the given
criteria reduces to the following optimal stopping problem:

V = min
1≤τ≤T

E

[
1− φτ + α

τ−1∑
i=1

φi

]
(2)

In (2) φn = P (θ ≤ n/Fn) =
∑n
j=1 P (θ = j/Fn)—

the sequence of posterior probabilities. According to the
Bayes formula, the elements of this sequence φn =∑n

j=1
p(X1,...,Xn/θ=j)P (θ=j)

p(X1,...,Xn) .

Simultaneously with this sequence consider the sequence
of likelihood ratios:

ψn =
φn

1− φn
=

∑n
j=0 p(X1, . . . , Xn/θ = j)P (θ = j)

p∞(X1, . . . , Xn)P (θ > n)
.

Problem (2) is expressed in terms of this sequence as
follows:

V = min
1≤τ≤T

E

[
1

1 + ψτ
+ α

τ−1∑
i=1

ψi
ψi + 1

]
. (3)

Next, the adapted sequence will be used: βn =∑n
i=1

ψi

ψi+1 . One of the suitable methods for solving problem
(3) is dynamic programming. The use of dynamic program-
ming involves the following actions:

1. Determine the sequence of Bellman functions:

Vn(ωn1 ) = min
n≤τ≤T

E

[
1

1 + ψτ
+ αβτ−1/X

n
1 = ωn1

]
or in terms of an information tree:

Vn(Ain) = min
n≤τ≤T

EAi
n

[
1

1 + ψτ
+ αβτ−1

]
,

i = 0, 2, . . . , 2n − 1.

The mathematical expectation is calculated under the con-
dition that the remainder of the random walk on the binary
tree starts at the node Ain.

2. Obtain the Bellman equations:

Vn(Ain) = min

(
1

1 + ψn(Ain)
+ αβn−1(Ajn−1), (4)

Vn+1(A2i
n+1)P (Xn+1 = 1)

+ Vn+1(A2i+1
n+1 )P (Xn+1 = 0)

)
, j = bi/2c .

The boundary condition for these equations:
VT = 1

1+ψT
+ αβT−1. The probability

P (Xn+1 = 1) = q0P (θ ≤ n+ 1) + q∞P (θ > n+ 1).

3. Calculating the optimal stopping time:

τn =

{
n, Vn = 1

1+ψn
+ αβn−1

τn+1, Vn <
1

1+ψn
+ αβn−1

With the boundary condition: τT = T . The optimal solution
of the problem (3) τ∗ = τ1, V

∗ = V1.
Consider a stopping time τ . The stopping time divides

the tree nodes into two classes as follows. Consider a
stochastic event {τ = n}, that belongs to the σ-algebra Fn =

σ
(

(Ajn)2n−1
j=0

)
, that is why {τ = n} =

⋃
j∈H1,n

Ajn. Note
that the set H1,n may be empty. In this case {τ = n} = ∅.
If the set H1,n 6= ∅, then the nodes Ajn, j ∈ H1,n belong
to the first class. If the node Ajn belongs to the first class,
then the nodes A2j

n+1 and A2j+1
n+1 also belong to the first class.

Remaining nodes of the tree belong to the second class (H2).
Now the sequence ω can be considered as a random walk
on a binary tree; if the walk is in the node of the first class,
then the rest of the walk will occur along the nodes of this
class.
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D. The Sequence of Likelihood Ratios

To implement the dynamic programming method, it is
necessary to calculate the value of the sequence of likelihood
ratios at each node of the tree. With independence and the
same distribution

p∞(X1, . . . , Xk−1) = (1− q∞)k−1

(
q∞

1− q∞

)k−1∑
i=1

Xi

,

p0(Xk, . . . , Xn) = (1− q0)n−k−1

(
q0

1− q0

) n∑
i=k

Xi

As a result, the sequence of likelihood ratios:

ψn(X1, . . . , Xn) (5)

=
1

P (θ > n)

n∑
k=1

Ln−k+1RΣn
i=kXiP (θ = k).

In (5) L = 1−q0
1−q∞ , R = q0(1−q∞)

q∞(1−q0) .
We obtain recurrent equations for the sequence of likeli-

hood ratios. For this we expand ψn+1 in the following way:

ψn+1(X1, . . . , Xn+1) =
P (θ > n)

P (θ > n+ 1)

×

 LRXn+1

P (θ > n)

n+1∑
k=1

Ln−k+1R

n∑
i=k

Xi

P (θ = k)


=

P (θ > n)

P (θ > n+ 1)

×
[
LRXn+1

(
ψn(X1, . . . , Xn) +

P (θ = n+ 1)

P (θ > n)

)]
.

Use of symbols:

Zn+1(x) =
P (θ > n)

P (θ > n+ 1)
LRx,

Un+1 =
P (θ = n+ 1)

P (θ > n+ 1)
.

Simplifies the recurrent equation:

ψn+1(X1, . . . , Xn+1)

= Zn+1(Xn+1)ψn(X1, . . . , Xn) + Un+1,

ψ1 = LRX1
P (θ = 1)

P (θ > 1)
.

Recurrent equations (6) allow calculating the ψ for any
node of the tree:

ψn+1(A2i
n+1) (6)

=
P (θ > n)

P (θ > n+ 1)
LRψn(Ain) + Un+1,

ψn+1(A2i+1
n+1 ) =

P (θ > n)

P (θ > n+ 1)
Lψn(Ain) + Un+1.

Consider other variants of the disorder detection by the
stopping time.

E. The Bayesian Model
At any time n the random events are considered: H0,n =

{θ ≤ n}, H∞,n = {θ > n}. If the θ is the stop-
ping time, then that events belong to σ-algebra Fn =
σ{X1, . . . , Xn}. To make a decision in favor of one
of them, we can use the previously defined statisticians:
φn = P (θ ≤ n/X1, . . . , Xn) and 1 − φn = P (θ >
n/X1, . . . , Xn). Let d(X1, . . . , Xn) ∈ {H0,n;H∞,n} is the
decision rule. The decision rule is defined for all realiza-
tions of a segment Xn

1 of a binary sequence or for each
node Ain of a binary tree. The quality of the decision
rule can be measured using Bayesian risk: BRn(d) =
a(d,H0,n)φn + a(d,H∞,n)(1 − φn). An optimal solution
is one that minimizes Bayesian risk: d∗(X1, X2, . . . , Xn) =
arg mind[a(d,H0,n)φn + a(d,H∞,n)(1− φn)]. It is easy to
see that the optimal decision rule will be:

d∗(X1, . . . , Xn)

=

{
H0,n, ψn ≥ a(H0,n,H∞,n)−a(H∞,n,H∞,n)

a(H∞,n,H0,n)−a(H0,n,H0,n)

H∞,n, ψn <
a(H0,n,H∞,n)−a(H∞,n,H∞,n)
a(H∞,n,H0,n)−a(H0,n,H0,n) ,

if a(H∞,n, H0,n) > a(H0,n, H0,n). For example, if the
errors are equivalent (our case), then the natural choice for a
is the following choice: a(H0,n, H∞,n) = a(H∞,n, H0,n) =
1; a(H0,n, H0,n) = a(H∞,n, H∞,n) = 0. For such a
choice, the ratio a(H0,n,H∞,n)−a(H∞,n,H∞,n)

a(H∞,n,H0,n)−a(H0,n,H0,n) = 1. Thus,
for each node of the tree, the decision rule d∗(Ain) =
d∗(ω1, ω2, . . . , ωn) is determined. Here the segment of the
sequence ωn1 is isomorphic to the node Ain. The decision rule
allows to assign an arbitrary node Ain of the tree to one of
two classes as follows: the node belongs to the first class, if
the parent node Abi/2cn−1 belongs to the first class, or the value
of the decision rule d(Ani ) = H0,n. The rest of the nodes
belong to the second class.

F. Minimization of the Maximum Possible Probability of
Error

Let us consider another popular assessment of the quality
of a solution—the maximum possible error probability. If
d(X1, X2, . . . , Xn) = H0,n, then the probability of error is
P0 = p(X1, X2, . . . , Xn/θ > n). If d(X1, X2, . . . , Xn) =
H∞,n, then the maximum possible error probability is
P∞ = max1≤j≤n{p(X1, X2, . . . , Xn)/θ = j}. The optimal
decision rule for this criteria will be:

d∗(X1, . . . , Xn) =

H0,n, max
1≤j≤n

P (X1,X2,...,Xn/θ=j)
P (X1,X2,...,Xn/θ>n) ≥ 1

H∞,n, max
1≤j≤n

P (X1,X2,...,Xn/θ=j)
P (X1,X2,...,Xn/θ>n) < 1

Using of the logarithm allows you to write this decision
rule as follows:

d∗(X1, . . . , Xn)

=

H0,n, max
1≤j≤n

ln P (X1,X2,...,Xn/θ=j)
P (X1,X2,...,Xn/θ>n) ≥ 0

H∞,n, max
1≤j≤n

ln P (X1,X2,...,Xn/θ=j)
P (X1,X2,...,Xn/θ>n) < 0.

Let us denote by

ζn = max
1≤j≤n

ln
P (X1, X2, . . . , Xn/θ = j)

P (X1, X2, . . . , Xn/θ > n)

= max
1≤j≤n

[(n− j + 1) lnC +
n∑
k=j

Xk lnB].
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Here lnC = ln 1−q0
1−q∞ , lnB = ln q0(1−q∞)

q∞(1−q0) .
Recurrent equations for the ζn will be:

ζ1(A0
1) = lnC, ζ1(A1

1) = lnC + lnB,

ζn+1(A2i
n+1) = lnC + max{ζn(Ain), 0},

ζn+1(A2i+1
n+1 ) = ln(CB) + max{ζn(Ain), 0}.

Similarly to how it was done earlier, for each node of the
tree, a decision rule is calculated, which splits the nodes of
the tree into two classes.

G. The Continuous Problem. The Binary Solution

Let us consider the stochastic process X(t), satisfying the
stochastic differential equation:

dX(t) = (µ1I(t < θ) + µ2I(t ≥ θ))dt+ σdW (t),

X(0) = 0,

θ—stochastic variable, W (t)—standard Wiener process.
Let us consider the centered and normalized process

Y (t) = X(t)−µ1t
σ , for which the equation is true:

dY (t) = µI(t ≥ θ)dt+ dW (t), (7)

Y (0) = 0, µ =
µ2 − µ1

σ
.

Simultaneously with the process Y consider two processes
Y 0(t) and Y∞(t):

dY 0(t) = µdt+ dW (t), Y 0(0) = 0,

dY∞(t) = dW (t), Y∞(0) = 0.

Next, we turn to the discrete approximation. Consider a
uniform partition of the interval [0, 1] by points ηi = i−1

N ,
i = 1, . . . , N + 1 and two binary processes:

X0
i =

1

2
(sign(Y 0

ηi − Y
0
ηi−1

) + 1) (8)

=
1

2

(
sign

(
µ

1

N
+ εi

√
1

N

)
+ 1

)
,

X∞i =
1

2
(sign(Y∞ηi − Y

∞
ηi−1

) + 1) =
1

2
(sign(εi) + 1).

The εi is i.i.d random variables with standard normal
distribution. The probability q∞ = P (X∞i = 1) = 1/2. The
probability q0 = P (X0

i = 1) = Φ
(
µ/
√
N
)

, the function Φ

is the Laplace function.
The next step is to use the disorder estimation technique

described in the previous section, matching the discrete and
continuous a priory distributions of the disorder.

III. THE BLACK-SCHOLES MODEL WITH THE DISORDER

Consider a popular model of the evolution of the stock
price with an additional element—the disorder:

dS(t) = S(t)dX(t), S(0) = S0. (9)

In (9) we change the process X(t) by the process X(t):

dX(t) = (µ1I(t < τ∗) + µ2I(t ≥ τ∗))dt+ σdW (t),

τ∗ is the stopping time. Binary approximation leads to the
discrete Cox-Ross-Rubinstein approximation with the built-
in disorder:

Sn(A2i
n ) (10)

= Sn−1(Ain−1)

(
1 + µ(Ain−1)

1

N
+

σ√
N

)
,

Sn(A2i+1
n ) = Sn−1(Ain−1)

(
1 + µ(Ain−1)

1

N
− σ√

N

)
.

With transit probabilities

P (Ain−1, A
2i
n ) = P (Ain−1, A

2i+1
n ) =

1

2
.

This formula uses: Sn = S(ηn) and

µ(Amk ) =

{
µ1, Amk ∈ H1

µ2, Amk ∈ H2
,

the tree nodes are divided into classes by the discrete
stopping time closest to the discrete disorder, see the first
section.

A. The Quantile Hedging Problem for Model with the Dis-
order

Next, consider the optimal control problem:

min
γ
E(f(SN )− YN )+, (11)

∆Yn = γn∆Sn, Y0 ≤ m.

In (11) γn are defined on the nodes Ain−1 of the infor-
mation tree. Basic process Sn is determined by the equation
(10). This problem is a special case of the class of optimal
control problems presented in the work [7]. The features of
this class of problems are as follows. The goal is determined
at the right end of the time interval, the control enters the
equation for the controlled process linearly, there is only one
measure for which the base process is a martingale, and the
constraint is set at the left end of the time interval. In this
paper the general scheme for solving the optimal control
problems for this class of problems is proposed.

For the problem (11) this scheme consists of the following
steps.

1. To solve the problem

max
ξ
EξfN , 0 ≤ ξ ≤ 1, E∗ξfN ≤ m.

The presence of an asterisk means calculating the average
over the martingale measure, the existence and uniqueness
of which is assumed.

To determine the martingale measure, we define the den-
sity process Wn: dP ∗n = WndPn, P ∗n—narrowing the mar-
tingale measure to Fn, Pn—narrowing the original measure
to Fn. Let us note the characteristic properties of the density
process. The process density is not-negative process Wn ≥ 0,

Engineering Letters, 29:4, EL_29_4_07

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



the expectation EWn = 1, and the process density is the
martingale. It follows from these properties that the following
equations are valid for the density process:

Wn(A2i
n ) = Wn(Ain−1)(1 + α(Ain−1)), (12)

Wn(A2i+1
n ) = Wn(Ain−1)(1− α(Ain−1)),

W0 = 0, |α| < 1.

From Bayes formula for the conditional expectation fol-
lows that process WnSn is the martingale, if P ∗ is the
martingale measure. From this α(Ain−1) = −µ(Ai

n−1)

σ
√
N

, and
|α| < 1, with N is enough large. Thus, for a sufficiently N
large martingale measure exists and it is unique.

Lets return to the optimization problem:

max
ξ
EξfN , 0 ≤ ξ ≤ 1, EξWNfN ≤ m.

For the finite set Ω, this optimization problem is a linear
programming problem:

max
2N−1∑
i=0

ξif
i
N ,

2N−1∑
i=0

ξiϕ
i
N ≤M, 0 ≤ ξi ≤ 1. (13)

In (13) the following notation is used:

ξi = ξ(AiN ), f iN = fN (AiN ),

ϕiN = WN (AiN )fN (AiN ), M = 2Nm.

Suppose the fN is bounded function on a finite set of
possible values of SN . The problem has solution because
the goal function is bounded and the set of feasible design
is not-empty.

Dual problem is:
min
λ≥0

max
0≤ξi≤1

(14)2N−1∑
i=0

ϕNi

(
fNi
ϕNi
− λ
)
ξi + λM

 .

The problem (15) has the solution too. We will assume
that the sequence of likelihood ratios is ordered in ascending
order and consider the internal problem:

F (λ) = max
0≤ξi≤1

ϕNi ξi

(
fNi
ϕNi
− λ
)

+ λM.

The function F (λ) is the convex function. Let λ ∈(
fk−1
N

ϕk−1
N

,
fk
N

ϕk
N

)
, on that interval

F (λ) =
2N−1∑
i=k

fNi + λ

M − 2N−1∑
i=k

ϕNi

 .

If

M −
2N−1∑
i=k

ϕNi ≥ 0,

then

F (λ) ≥ F

(
fk−1
N

ϕk−1
N

)
, λ ∈

[
fk−1
N

ϕk−1
N

,
fkN
ϕkN

)
.

From this and the convexity of the function F (λ) it follows
that to solve the problem it is necessary to find a number k∗

for which M −
∑2N−1
i=k∗ ϕ

N
i ≥ 0 and M −

∑2N−1
i=k∗−1 ϕ

N
i < 0.

The solution of the problem (13) is:

ξi =


1, i ≥ k∗,
M−
∑2N−1

i=k∗
ϕi

N

ϕk∗−1
N

, i = k∗ − 1,

0, i < k∗ − 1.

(15)

Comment. A random variable ξ can be viewed as a func-
tion of membership in a fuzzy set. Therefore, the problem
(12) is called the fuzzy Neumann—Pearson problem. The
solution of the fuzzy Neumann—Pearson problem is given
in [14].

2. Next, the closed martingale is calculated: Yn =
E∗(ξfN/Fn), here ξ– the solution of the optimization prob-
lem from the first point. Conditional mathematical expecta-
tions are calculated using the unique martingale measure. To
calculate the conditional mathematical expectations, we will
use the already mentioned Bayes formula, as a result we get
the following equality:

Yn−1(Ain−1) =
1

2

(
Yn(A2i

n )

(
1−

µ(Ain−1)

σ
√
N

)
+ Yn(A2i+1

n )

(
1 +

µ(Ain−1)

σ
√
N

))
with boundary condition YN = ξfN .

Next, we calculate γ from the equality: ∆Yn(A2i
n ) =

γn(Ain−1)∆Sn(A2i
n ). This completes the solution of the

considered control problem.
Comment. With the same result, one could use the equal-

ity: ∆Yn(A2i+1
n ) = γn(Ain−1)∆Sn(A2i+1

n ).

IV. CALCULATION

This section contains two computational examples. The
first example examines the problem of detecting the disorder
using the two statistics presented in the “Disorder estimate”
section. The stability of the method is investigated with
respect to changes in the distribution law of independent
and identically distributed random variables εi. The statistics
were calculated on the assumption that εi are distributed
according to the normal law with zero mathematical ex-
pectation and variance equal to one. In the simulation, a
different distribution laws was used, also with zero mean
and unit variance. The table shows one of the results of
experiments, namely, for random variables εi = 1√

2
(ε1
i +ε2

i ).
The density of the distribution law of the first term is

p1(x) =

{
exp(−x), x ≥ 0
0, x < 0

, the second term – p2(x) ={
exp(x), x ≤ 0
0, x > 0

. We recall that for the normal law the

parameters q∞ = 0.5, q0 = Φ
(
µ/
√
N
)

. Here N is the
number of dividing points of the interval [0, 1].

The number of dividing points of the interval N = 100, the
number of experiments was one hundred. In all experiments,
the disorder was a random variable with a geometric distri-
bution law (a priori distribution). The first statistic turned out
to be, as expected, better, since it uses a priori information.
The results of modeling using the normal distribution law
are given in parentheses. It follows from the table 1 that
the replacement of the distribution law did not lead to a
significant distortion of the results.

Engineering Letters, 29:4, EL_29_4_07

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



TABLE I
THE ABSOLUTE VALUE OF THE MEAN ERROR

IN THE DETECTION OF THE DISORDER

µ 1 1.5 2

The absolute value 0.0042 0.0032 0.0022
of the mean error, (0.0039) (0.0033) (0.0019)
the first method

The absolute value 0.0069 0.0049 0.0047
of the mean error, (0.0067) (0.0046) (0.0043)
the second method

TABLE II
DEPENDENCE OF THE OPTIMAL VALUE OF THE OBJECTIVE FUNCTION

ON THE RIGHT SIDE OF THE CONSTRAINT

ζ 0 0.2 0.4 0.6 0.8

N=10 0.178 0.139 0.102 0.068 0.033

N=20 0.183 0.143 0.105 0.069 0.034

In the second example we will consider a quantile hedging
problem in order to illustrate the efficiency of the method.
Events will develop in the interval [0, 1], although they
could develop on any other time interval. The interval is
split evently into N parts. The disorder can occur at any
discrete moment of time ηi = (i− 1)/N , i = 1, . . . , N + 1.
As apriori probability distribution for disorder we use the
geometric probability distribution: P (θ = ηi) = λi−1(1−λ),
i = 1, 2, . . . For a given prior distribution the elements
necessary for calculating likelihood ratios are calculated
as follows: Zn+1(A2i

n+1) = LR/λ, Zn+1(A2i+1
n+1 ) = L/λ,

Un = 1− λ.
The probability used in calculating Bellman functions

P (Xn+1 = 1) = q0(1 − λn+1) + λn+1/2. Elements of the
optimal control problem: the function f(SN ) = (SN −K)+,
m = ζE∗f(SN ). Parameters of the model: variable drift
µ1 = 0.1, µ2 = −0.1, volatility σ = 0.1. Calculations made
for N = 10 and N = 20. The result is shown in table II.

Let us comment on the results obtained. Firstly, for ζ =
1 the optimal solution ξ = 1, secondly, when ζ = 0 the
optimal solution ξ = 0, and thirdly, the dependence of the
optimal value of the objective functional on the parameter
ζ is linear. Comparison of the first and second lines of the
table, especially in the “realistic” range of parameter values,
shows a good agreement of the results.

Here is one of the results from a series of experiments
with different ways of assessing disorder. In the experiments
carried out, the methods for assessing the disorder either did
not affect the classification of the nodes or had little effect
on the classification of the tree nodes. In the experiments
carried out, the trends presented in table II, coincided.

V. CONCLUSION

The main result is a computational scheme for solving the
problem of stochastic optimal control of processes with dis-
order. The disorder estimation by the stopping time divides
the tree nodes into two classes. The disorder estimate is the
first time, at which the walk is at the node of the first class.
In the nodes of the first class the properties of the random
process change.

A binary tree with nodes divided into two classes can be
used to solve the stochastic optimal control problem, since

the tree contains information about the disorder for each
binary trajectory.

The computational scheme requires serious preliminary
computational costs. However, the authors see the possibility
of using fast computational algorithms on trees.

An important positive characteristic of the proposed com-
putational scheme is its robustness, comparable to the ro-
bustness of sign analysis.

The application of the computational scheme for continu-
ous models requires additional research, related to the answer
of two questions. The first question is the accuracy of the
approximation, the second is the sensitivity to the disorder.
The answer to the first question exists, the second question
requires additional research.

The computational example given in the paper can only
be considered as a preliminary positive result.
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