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Abstract—This article is devoted to investigate the stability of
nonlinear delay hybrid urban traffic network driven by α-stable
noises. We derive that the unique global solution of urban traffic
network exists and discuss the stability of solution by general
Itô formula, Hölder inequality and Bolzano-Weierstrass. We
provide an example to verify the results.

Index Terms—Delay hybrid urban traffic network; α-stable
noises; existence; stability; unique global solution.

I. INTRODUCTION

With the rapid development of society and economy,
the process of global urbanization is still advancing in an
unstoppable trend. China’s urbanization rate will rise to 0.75,
the scale of cities will continue to expand, the national
income is rising rapidly, and the people’s living standards are
improving day by day. But, it also brings many challenges,
such as air pollution, traffic congestion, and resource short-
ages. These phenomenon always present stochastic character-
istics. Stochastic phenomenon especially systems have been
described by stochastic differential equations. Furthermore,
systems are always influenced by noises. Hence, some au-
thors has modelled the actual systems by stochastic systems
( [2], [12], [19], [26]). However, the majority of stochastic
disturbances represent non-Gauss characteristic such as α-
stable noise. In the last few years, α-stable noises were
utilized in financial, biological and medical fields ( [5],
[24], [27]). Wei ( [20]) obtained the estimators about CIR
model with α-stable noises and analyzed their asymptotic
properties. Liu et al. ( [10]) discussed spectrum sensing prob-
lem with symmetric α-stable noise by maximum generalized
correntropy. Ning and Sun ( [13]) studied bifurcations about
self-sustained system with α-stable noises.

In the last few years, some authors discussed the stochastic
systems with Markovian switching. For example, Liu et al. (
[8]) derived an event-based communication scheme to study
the distributed filtering problem. Wang et al. ( [17]) utilized
aperiodically intermittent control to analyze the stabilization
of hybrid delayed system. Xia et al. ( [23]) considered dis-
sipative method to discuss the hybrid neural networks. With
deepening of human production practice, time lags have been
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noticed in biochemical, population, physics and engineering.
It is found that the appearance of this phenomenon may
be related to the connection of each sub-component of the
system and the characteristics of sub-components. A system
with time delay is called delay system because the change
of its state is not only dependent on the current state, but
also related to the previous state. In the past few decades,
many authors investigated the delay system ( [3], [4], [14],
[16], [18]). Li et al. ( [6]) constructed a new slack variable-
dependent inequality involving double integrals of system
state and derived an improved stability criterion. Qi et al.
( [15]) used a new criterion to design controller for delay
stochastic system with actuator saturation. Zhou et al. ( [25])
studied the exponential synchronization for delay stochastic
system.

In the last few years, some authors studied stability of
systems ( [1], [9], [21], [22]). Li et al. ( [7]) used Lyapunov
function to disscuss the stability of stochastic delay system
and gave a new nonlinear growth condition. Ma et al. (
[11]) utilized Itô formula to study practical stability about
stochastic system driven by Lévy noise. But, the stability
of delay hybrid urban traffic network with α-stable noises
has not been studied by many authors. In this article, the
existence, almost surely stability of unique global solution
for delay hybrid urban traffic network with α-stable noise
are investigated by general Itô formula, Hölder inequality
and Bolzano-Weierstrass.

This paper is organized as follows: In Section 2, the
delay hybrid urban traffic network with α-stable noises is
introduced. In Section 3, we prove the existence, uniqueness
and almost surely stability of the solution. In Section 4, we
give an example. In Section 5, the conclusion is provided.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Ω,F ,P) be a basic probability space equipped
with a right continuous and increasing family of σ-algebras
{Ft}t≥0 and Z = {Zt, t ≥ 0} be a strictly symmetric α-
stable Lévy motion.

A random variable ω is said to have a stable distribu-
tion with index of stability α ∈ (0, 2], scale parameter
σ ∈ (0,∞), skewness parameter β ∈ [−1, 1] and location
parameter µ ∈ (−∞,∞) if it has the following characteristic
function:

φη(u) =


exp{−σα|u|α(1− iβsgn(u) tan

απ

2
) + iµu},

exp{−σ|u|(1 + iβ
2

π
sgn(u) log |u|) + iµu}.

We denote ω ∼ Sα(σ, β, µ). When µ = 0, we say η is
strictly α-stable, if in addition β = 0, we call η symmetrical
α-stable. Throughout this paper, it is assumed that α-stable
motion is strictly symmetrical and α ∈ (1, 2).
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We will study the following delay hybrid urban traffic
network with α-stable noises:

dx(t) = f(x(t), x(t− τ(t)), t, r(t))dt (1)
+g(x(t), x(t− τ(t)), t, r(t))dZ(t),

where x(0) = {x(β) : −τ ≤ β ≤ 0} = ξ ∈
CbF0

([−τ, 0);Rn), r(0) = r0 ∈ S, Z(t) is an m-dimensional
strictly symmetric α-stable motion with the index α ∈ (1, 2),
0 ≤ τ(t) ≤ τ , ˙τ(t) ≤ dτ < 1, f : Rn×Rn×R+×S→ Rn,
g : Rn ×Rn ×R+ × S→ Rn×m, We assume that Z(t) and
r(t) are independent.

The Lévy measure ν is:

ν(dz) =
Cα
|z|α+1

dz, (2)

where

Cα =
α2α−1Γ( (1+α)

2 )

π
1
2 Γ(1− α

2 )
, (3)

where Γ(·) is a Gamma function.
Firstly, we provide some assumptions and definition.
Assumption 1: When x = 0, y = 0,

sup
t≥0,i∈S

{|f(x, y, t, i)| ∨ |g(x, y, t, i)| : t ≥ 0, i ∈ S} ≤ K0,

where K0 is a constant.
Assumption 2: ∀t ≥ 0, |x| ∨ |x∗| ∨ |y| ∨ |y∗| ≤ K and

i ∈ S,

|f(x, y, t, i)− f(x∗, y∗, t, i)|2|
∨|g(x, y, t, i)− g(x∗, y∗, t, i)|2

≤ LK(|x− x∗|2 + |y − y∗|2),

where LK > 0.
Assumption 3:

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) =∞,

LV (x, y, t, i) ≤ n(t)− α1m1(x) + α2m2(y)

where V (x, t, i) ∈ C1,2(Rn×R+×S;R+), n ∈ L1(R+;R+),
m1,m2 ∈ C(Rn;R+), α1 > 0, α2 > 0.

Definition 1: If

P( lim
t→∞

x(t; ξ, r0) = 0) = 1,

for ∀ξ ∈ CbF0
([−τ, 0);Rn) and r0 ∈ S, the system is almost

surely stability.

III. MAIN RESULTS AND PROOFS

Theorem 1: Under the conditions of 1-3, the unique global
solution {x(t), t ≥ 0} of system (1) exists.

Proof: Let k > k0 where k0 > 0 is large enough and
x0 < k0. Define the stop time

τk = inf{t ∈ [0, τe) : x(t) /∈ (
1

k
, k)}, (4)

where τe is the time of explosion.
Since the coefficients of system (1) satisfy the local

Lipschitz conditions. Then, for x0 ∈ R, the unique local
solution x(t) exists when t ∈ [0, τe). Let limk→∞ τk < τe

a.s. If τ∞ = ∞ a.s., then, for ∀t ≥ 0, we obtain x(t) ∈ R.
For constant γ > 0 and 0 < p < 1, let

Vγ(x) = (x2 + γ2)
p
2 , x ∈ R. (5)

According to Itô formula,

Vγ(x(t ∧ τk), t ∧ τk, r(t ∧ τk)) (6)
= Vγ(x0, 0, r(0))

+

∫ t∧τk

0

LVγ(x(s), s, r(s))ds+M1(t ∧ τk),

where 0 ≤ t ≤ T , M1(t ∧ τk) is a local martingale and

LVγ = px(x2 + γ2)
p−2
2 f(x)

+

∫ 1

0

[Vγ(x+ g(x)z)− Vγ(x)− V
′

γg(x)z1{0≤z≤1}](7)

Cα
|z|α+1

dz. (8)

Then, we have∫ 1

0

[Vγ(x+ g(x)z)− Vγ(x)− V
′

γg(x)z]
Cα
|z|α+1

dz

≤ sgn(g(x))|g(x)|α∫ g(x)

0

[Vγ(x+ g(x)z)− Vγ(x)− V
′

γg(x)z]

× Cα
|g(x)z|α+1

d(g(x)z)

= sgn(g(x))|x|α2
∫ g(x)

0

V
′′

γ (ξ)
Cα

|g(x)z|α+1
d(g(x)z)

,

where ξ ∈ (x, x+ g(x)z) and

V
′′

γ (ξ) = p(ξ2 + γ2)
p−2
2 ((p− 1)ξ2 + γ2). (9)

It is obviously that

−ξ2 − γ2 ≤ (p− 1)ξ2 + γ2 ≤ ξ2 + γ2. (10)

Then, we obtain

|(p− 1)ξ2 + γ2| ≤ ξ2 + γ2. (11)

Substituting (10) into (8), it follows that

V
′′

γ (ξ) ≤ p(ξ2 + γ2)
p
2−1 ≤ pξp−2. (12)

Then, it can be checked that∫ 1

0

[Vγ(x+ g(x)z)− Vγ(x)− V
′

γg(x)z]
Cα
|z|α+1

dz

≤ sgn(g(x))|g(x)|α∫ g(x)

0

g2(x)z2p||x| − |g(x)z||p−2

Cα
|g(x)z|α+1

d(g(x)z)

≤ sgn(g(x))
Cαp|ϕ(x)|p−2

2(2− α)
4x, (13)

where ϕ(x) = min(||x| − |g(x)z||).
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When |x| = |g(x)z|, we obtain

sgn(g(x))|g(x)|α∫ g(x)

0

g2(x)z2V
′′

γ (ξ)
Cα

|g(x)z|α+1
d(g(x)z)

≤ sgn(g(x))|g(x)|α∫ g(x)

0

g2(x)z2p(ξ2 + γ2)
p−2
2

Cα
|g(x)z|α+1

d(g(x)z)

≤ sgn(g(x))|g(x)|α∫ g(x)

0

g2z2p(||x| − |g(x)z||+ γ2)
p−2
2

× Cα
|g(x)z|α+1

d(g(x)z)

≤ Cαp|γ|p−2

2(2− α)
4x.

Since 0 < p < 1, we have

lim
γ→∞

Cαp|γ|p−2

2(2− α)
4x = 0. (14)

Therefore, when γ is big enough,
∫ 1

0
[Vγ(x + g(x)z) −

Vγ(x)− V ′γg(x)z] Cα
|z|α+1 dz is convergent.

Let f(γ) = Vγ(x+ g(x)z)− Vγ(x), then we obtain

f ′(γ) = pγ[((x+ g(x)z)2 + γ2)
p−2
2 − (x2 + γ2)

p−2
2 ].

Since |x+ g(x)z| > x, we obtain f ′(γ) < 0, then f(γ) <
f(0).

Thus,

|f(γ)| (15)
= |Vγ(x+ g(x)z)− Vγ(x)|
< |f(0)| = |(x+ g(x)z)p − xp| < |g(x)z|p.

Therefore,

∫ +∞

1

[Vγ(x+ g(x)z)− Vγ(x)]
Cα
|z|α+1

dz

≤ sgn(g(x))|g(x)|α (16)∫ +∞

g(x)

|Vγ(x+ g(x)z)− Vγ(x)| Cα
|g(x)z|α+1

d(g(x)z)

≤ sgn(g(x))|g(x)|α (17)∫ +∞

g(x)

|x+ g(x)z|p Cα
|g(x)z|α+1

d(g(x)z)

= sgn(g(x))|g(x)|α+p Cα
α− p

. (18)

When x ∈ [0, 1), substituting (12) and (15) into (7), we

get

LVγ(x)

≤ px(x2 + γ2)
p−2
2 (f(x))

+sgn(g(x))
Cαp|ϕ(x)|p−2

2(2− α)
4x

+sgn(g(x))|g(x)|p Cα
α− p

= px(x2 + γ2)
p−2
2 (f(x))

+sgn(g(x))
Cα

2(2− α)
|g(x)|p( |g(x)|

|ϕ(x)|
)2−p

+sgn(g(x))
Cα
α− p

|g(x)|p

= px(x2 + γ2)
p−2
2 (f(x))

+sgn(g(x))Cα2px
p
2 (

21−p

2− α
(
|g(x)|
|ϕ(x)|

)2−p +
1

α− p
).

It is assumed that Cα( 21−p

2−α ( |g(x)||ϕ(x)| )
2−p + 1

α−p ) ≤ K(x2 +

γ2)
p−2
2 and px(1 + 2θx) +K12px

p
2 ≤ K2(x2 + γ2).

Then,

LVγ(x)

≤ px(x2 + γ2)
p−2
2 (f(x))

+Ksgn(g(x))2px
p
2 (x2 + γ2)

p−2
2

≤ (x2 + γ2)
p−2
2 (px(f(x)) +K12px

p
2 )

≤ (x2 + γ2)
p−2
2 K2(x2 + γ2)

= K2Vγ(x).

When x = 0, Vγ(x) = Vγ(0) = γp. Then, V
′

γ (x) = 0 and

LVγ(x) ≤ K2γ
p.

According to Itô formula, as x(t ∧ τk) ∈ R, we have

EVγ(x(T ∧ τk), T ∧ τk, r(T ∧ τk)) (19)

= Vγ(x0, 0, r(0)) + E
∫ T∧τk

0

LVγ(x(s), s, r(s))ds,

where 0 ≤ t ≤ T .
Then, we obtain

EVγ(x(T ∧ τk), T ∧ τk, r(T ∧ τk))

≤ Vγ(x0, 0, r(0)) +K2γ
pE(T ∧ τk)

≤ Vγ(x0, 0, r(0)) +K2γ
pT.

Note that for all δ ∈ {τk ≤ T}, there exists a constant k
large enough satisfying x(τk, δ) ≥ k or x(τk, δ) ≤ 1

k .
Hence,

Vγ(x(τk, δ)) ≥ (k2 + γ2)
p
2 ∧ (

1

k2
+ γ2)

p
2 . (20)

Therefore,

(k2 + γ2)
p
2 ∧ (

1

k2
+ γ2)

p
2P (τk ≤ T ) (21)

≤ E(Vγ(x(τk, δ))1τk≤T ) ≤ Vγ(x0) +K2γ
pT.

Let k →∞, we obtain

P (τ∞ ≤ T ) = 0. (22)

Then,
P (τ∞ =∞) = 1. (23)
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The unique global solution exists.
Theorem 2: Under the conditions of 1-3, for ∀i ∈ S, if

there exists function V ∈ C1,2(Rn × R+ × S;R+), n ∈
L1(R+;R+), m1,m2 ∈ C(Rn;R+), (x, y, t, i) ∈ Rn×Rn×
R+ × S satisfy

LV (x, y, t, i) ≤ n(t)− α1m1(x) + α2m2(y),

m1(x) > m2(x), x 6= 0,

lim
|x|→∞

inf
t≥0,i∈S

V (x, t, i) =∞,

the system (1) is almost surely stability.
Proof: Since

V (x(t), t, r(t))

= V (ξ(0), 0, r0)

+

∫ t

0

LV (x(s), x(s− τ(s)), s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s), s, r(s))dZ(s)

≤ V (ξ(0), 0, r0) +

∫ t

0

n(s)ds−
∫ t

0

α1m1(x(s))ds

+

∫ t

0

α2m2(x(s− τ(s)))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s), s, r(s))dZ(s)

≤ V (ξ(0), 0, r0) +

∫ t

0

n(s)ds− α1

∫ t

0

m1(x(s))ds

+α1

∫ 0

−τ
m2(x(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(x(s), x(s− τ(s), s, r(s))dZ(s).

As ∫ ∞
0

n(s)ds <∞, (24)

we obtain

lim
t→∞

∫ t

0

m1(x(s))ds <∞ (25)

and
lim
t→∞

supV (x(t), t, r(t)) <∞. (26)

Then, we obtain

sup
0≤t<∞

inf
|x|≥|x(t)|,0≤t<∞,i∈S

V (x, t, i) <∞. (27)

and
sup

0≤t<∞
|x(t)| <∞. (28)

Since ξ ∈ CbF0
([−τ, 0);Rn), there exists a positive k0 and

|ξ| < k0. For k > k0, we define stopping time

ςk = inf{t ≥ 0 : |x(t)| ≥ k}, (29)

where inf φ =∞.
It is obviously that when k →∞, ςk →∞ a.s..
Thus, for any ε > 0, there exists kε ≥ k0 and when

k ≥ kε,
P(ςk <∞) ≤ ε. (30)

According to (9), we have

lim
t→∞

inf m1(x(t)) = 0. (31)

Next, the following results will be proved:

lim
t→∞

m1(x(t)) = 0. (32)

Suppose (29) dose not hold, we can obtain

P{ lim
t→∞

supm1(x(t) > 0} > 0. (33)

Then, there exists the following stopping time sequence:

η1 = inf{t ≥ 0 : m1(x(t) ≥ 2ε1},

η2j = inf{t ≥ η2j−1 : m1(x(t) ≤ ε1}, j = 1, 2, · · · ,

η2j+1 = inf{t ≥ η2j : m1(x(t) ≥ 2ε1}, j = 1, 2, · · · ,

and ε0 > 0, ε > ε1 > 0 satisfy

P(ς2j <∞ : j ∈ Z) ≥ ε0. (34)

According to local Lipschitz condition, ∀k > 0, there
exists Lk > 0 satisfy

|f(x, y, t, i)| ∨ |g(x, y, t, i)| ∨ |H(x, y, t, i, ν)| ≤ Lk,

for any t ≥ 0, i ∈ S and |x| ∨ |y| ≤ k.
For any j ∈ Z and the indicative function IA, when T <

η2j − η2j−1, we obtain

E[I{η2j<ηk} sup
0≤t≤T

|x(η2j−1 + t)− x(η2j−1)|2]

= E[I{η2j<ηk}

sup
0≤t≤T

|
∫ η2j−1+t

η2j−1

f(x(s), x(s− τ(s)), s, r(s))ds

+

∫ η2j−1+t

η2j−1

g(x(s), x(s− τ(s)), s, r(s))dZ(s)|2

≤ 4E[I{η2j<ηk}

sup
0≤t≤T

|
∫ η2j−1+t

η2j−1

f(x(s), x(s− τ(s)), s, r(s))ds|2]

+4E[I{η2j<ηk}

sup
0≤t≤T

(

∫ η2j−1+t

η2j−1

|g(x(s), x(s− τ(s)), s, r(s))|2αds) 1
α

≤ 4L2
kT

2 + 4L2
kT

1
α ,

Since m1(x) is uniformly continuous in Sk = {x ∈ Rn :
|x| ≤ k}. Then, ∀p > 0, when x, y ∈ Sk and |x − y| < cp,
|m1(x)−m1(y)| < p. Let ε = ε0

3 , k ≥ kε and p = ε1.
We obtain

P({ςk ≤ η2j}) + P({η2j < ςk}
∩{ sup

0≤t≤T
|n1(x(η2j−1 + t))− n1(x(η2j−1))| ≥ ε1})

≤ P({ηk ≤ η2j} ∩ {η2j =∞})
+P({ηk ≤ η2j} ∩ {η2j <∞})
+P({η2j < ηk}
∩{ sup

0≤t≤T
|x(η2j−1 + t)− x(η2j−1)| ≥ cη1})

≤ 4L2
kT

2 + 4L2
kT

1
α

c2η1
+ 1− 2ε.
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Let T = T (ε, ε1, k) is small enough to satisfy

4L2
kT

2 + 4L2
kT

1
α

c2ε1
≤ ε. (35)

Then, it can be checked that

P({η2j < ςk} (36)
∩{ sup

0≤t≤T
|n1(x(η2j−1 + t))− n1(x(η2j−1))| < ε1})

≥ ε.

Hence, we obtain

Σ∞j=1Tε1ε =
1

2
Σ∞j=1Tε0ε1 =∞

≤ Σ∞j=1Tε1P({η2j < ςk}
∩{ sup

0≤t≤T
|n1(x(η2j−1 + t))− n1(x(η2j−1))| < ε1})

≤ Σ∞j=1ε1E[Iη2j<ςk(η2j − η2j−1)]

≤ Σ∞j=1ε1E[Iη2j<ηk
∫ η2j−1+t

η2j−1

n1(x(t))dt]

≤ E[

∫ ∞
0

n1(x(t))dt]

<∞.

Obviously, the above result is contradictory. Then, there
exists Ω ∈ Ω such that P(Ω) = 1 and

lim
t→∞

m1(x(t, ω)) = 0, sup
0≤t<∞

|x(t, ω)| <∞, ∀ω ∈ Ω.

(37)
Therefore, for ∀ω ∈ Ω, {x(t, ω)}t≥0 ∈ Rn is bound-

ed. There exists a increasing sequence {ti}i≥1 such that
{x(ti, ω)}i≥1 is convergent. Since m1(x) > 0 as x 6= 0,
it is known that n1(x) = 0 when x = 0.

Therefore, the solution of system is almost surely stability.

IV. EXAMPLE

Let Z(t) be a one-dimensional α-stable motion with α =
1.5, r(t) ∈ S = {1, 2} and Γ = (γij)2×2 =(

−0.6 0.6
0.3 −0.3

)
Consider the nonlinear delay hybrid stochastic system as

follows:

dx(t) = f(x(t), x(t− τ(t)), t, r(t))dt

+g(x(t), x(t− τ(t)), t, r(t))dZ(t),

where

f(x, y, t, 1) = −2x
1
4 + y

3
4 ,

g(x, y, t, 1) = −x 3
4 + 2y

3
4 ,

f(x, y, t, 2) = (1 + t)−
1
4 − x 1

4 ,

g(x, y, t, 2) = 3x
3
4 sin(t) +

4

3
y

3
4 cos(t),

where τ(t) = 0.3 + 0.3 cos(t).
Let V (x, i) = x2. Then, we obtain

LV (x, y, t, 1) ≤ −4x
3
2 + 4y

3
2 ,

LV (x, y, t, 2) ≤ 3x(1 + t)−
1
2 − x 3

2 +
16

9
y

3
2 .

Since for any κ > 0,

3x(1 + t)−
1
2

= (
3

2
κx

3
2 )

2
3 (3(

κ

2
)−2(1 + t)−

3
2 )

1
3

≤ κx 3
2 + (

κ

2
)−2(1 + t)−

3
2 .

Thus, for all t ≥ 0, i ∈ S, it is easy to check that

LV (x, y, t, i) ≤ (
κ

2
)−2(1 + t)−

3
2 − (4− κ)x

3
2 + 4y

3
2 .

Therefore, the solution of system is almost surely stability.
Remark 1: If the system is driven by Lévy noise, let

W (t) be a one-dimensional Brownian motion, The character
measure π of Poisson jump satisfies π(dν) = λφ(dν), where
λ = 1.6 is the intensity of Poisson distribution and φ is
the probability intensity of the standard normal distributed
variable ν, r(t) ∈ S = {1, 2} and Γ = (γij)2×2 =(

−0.5 0.5
0.2 −0.2

)
Consider the nonlinear delay hybrid stochastic system

driven by Lévy noises as follows:

dx(t) = f(x(t), x(t− τ(t)), t, r(t))dt

+g(x(t), x(t− τ(t)), t, r(t))dW (t)

+

∫
Z

H(x(t−), x(t− τ(t)), t, r(t−), ν)N(dt, dν),

where

f(x, y, t, 1) = −5x
1
5 + 3y

4
5 ,

g(x, y, t, 1) = −x 1
3 + y

1
3 ,

f(x, y, t, 2) = 2(1 + t)−
1
5 − 2x

1
5 ,

g(x, y, t, 2) = 2x
4
5 cos(t) +

5

4
y

4
5 sin(t),

H(x, y, t, 1, ν) = −2x
1
5 + 2y

4
5 ,

H(x, y, t, 2, ν) = 3x
1
5 + y

4
5 ,

where τ(t) = 0.2 + 0.2 sin(t).
Let V (x, i) = x2. Then, we obtain

LV (x, y, t, 1) ≤ −25x
6
5 + 5y

6
5 ,

LV (x, y, t, 2) ≤ 4x(1 + t)−
1
5 − 4x

6
5 +

25

16
y

6
5 .

Since for any κ > 0,

4x(1 + t)−
1
5

= (
6

5
κx

6
5 )

5
6 (6(

κ

5
)−5(1 + t)−

6
5 )

1
6

≤ κx 6
5 + (

κ

5
)−5(1 + t)−

6
5 .

Thus, for all t ≥ 0, i ∈ S, it is easy to check that

LV (x, y, t, i) ≤ (
κ

5
)−5(1 + t)−

6
5 − (6− κ)x

6
5 + 5y

6
5 .
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V. CONCLUSION

This article has studied the existence, stability of unique
global solution of nonlinear delay hybrid urban traffic net-
work with α-stable noises. The existence, uniqueness and
stability of the solution for urban traffic network have been
analyzed by general Itô formula, Doob martingale inequality
and Bolzano-Weierstrass. We will consider the stability of
nonlinear hybrid system driven by fractional Lévy noise in
further research topics.
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