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Abstract—In the practice of multi-school bus route planning,
the characteristics of the bus fleet and the operation modes
of buses have produced a variety of bus planning scenarios.
In recent years, many methods have been used to arrange
the routes of school buses for the school bus routing problem
(SBRP) with a specific planning scenario. However, it is still a
challenging task to develop a general-purpose algorithm that
can effectively apply to the bus route planning for a variety of
bus planning scenarios. This paper tries to develop a hybrid
iterated local search (ILS) metaheuristic algorithm for SBRP
with multiple planning scenarios, which including homogenous
or heterogeneous fleets, single load or mixed load operation
modes. Within the framework of ILS, a variety of neighborhood
structures are used to improve the initial solution as well as the
routes generated in the process of local search are recorded.
For heterogeneous SBRP, the fleet adjustment strategy based
on route segments is also applied. In addition, the perturbation
mechanism and the acceptance of worse solutions within a
certain deviation range are adopted to enhance the diversity
of solutions. Finally, the local best solution is further promoted
by the set partitioning procedure (SP), which is modeled by
the history routes in the local search process. The experiment
results prove that the proposed algorithm is effective and it also
outperforms the existing algorithms for multi-school SBRP.

Index Terms—school bus routing problem, general-purpose,
iterated local search, set partitioning, hybrid metaheuristic.

I. INTRODUCTION

W ITH the rapid development of China’s the compulso-
ry education and the continuous improvement of the

national quality of life, the demand for the school bus service
has become very urgent. Providing school bus services for the
students in the stage of compulsory education not only can
reduce the burden of the family, but also alleviate the pressure
of traffic, especially for the relatively densely populated
areas. Planning school bus routes is an important part of the
school bus operation management. It is generally agreed that
reasonable arrangement of school bus routes can not only
provide high quality service, but also reduce the operation
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costs of the buses. School bus routing problem (SBRP)
studies how to arrange a fleet of school buses to pick up
some students from bus stations and deliver them to their
school under conditions of constraints, such as bus capacity,
maximum riding time or school time windows and so on
[1]. SBRP belongs to vehicle routing problem (VRP), and it
can be considered a variant of VRP. Like VRP, SBRP is a
kind of NP-hard problem with extremely high computational
complexity [1],[2]. Because of its complexity, it is quit
inappropriate to arrange the routes of school bus manually.
Since firstly introduced by Newton and Thomas [3], SBRP
have been continuously researched for many years. A recent
review of literature can be found in [1],[2].

From the classification of SBRP, the most common classi-
fication method is according to the number of schools served
by the school bus. The SBRP can be a single-school or
multi-school based bus service system. The single-school
SBRP is similar with capacitated vehicle routing problem
(CVRP) while just only considering capacity constraint,
which have been studies in many existing SBRP literatures
[4],[5]. For multi-school SBRP, there is one or many schools
in a school bus route. It has single load and mixed load
two operation modes. For single load SBRP, the schools
are served by school bus in a certain order. While for
mixed load SBRP, it allows the students from different
schools to stay in the same school bus at the same time.
The multi-school problem is more harder than single-school
problem, because it has more complex constraints, such as
visiting sequence of stops and schools, multiple schools
time windows and so on. Thus the multi-school problem is
always solved by heuristic algorithms [6],[7]. In recent ten
years, metaheuristic algorithms are gradually applied for this
problem [8],[9],[10]. In additional, the school bus may has
different vehicle characteristics such as bus capacity, fixed
cost, and per unit distance variable cost [1]. When planning
bus routes with heterogeneous fleet, the SBRP problem is
called heterogeneous school bus routing problem (HSBRP).

In the practice of school bus route planning for multiple
schools, different planning scenarios will be generated, be-
cause there exist many factors such as the operation mode
and the type of school bus, etc. Each of these factors can be
considered as the characteristics of a particular multi-school
SBRP, including school bus characteristics (homogeneous
or heterogeneous) and the operation mode (single load or
mixed load). In existing literatures, some methods are usually
specially designed to solve the multi-school SBRP with one
or more characteristics [8],[9],[10]. Although these methods
could effectively solve the specific multi-school SBRP, but
they have poor portability. To our best knowledge, some
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good unified algorithms have emerged for solving a class of
VRP problems in recent years, such as tabu [11], iterated
local search [12],[13], genetic algorithm [14], etc. While
for SBRP, the literatures about such unified algorithms are
still relatively few and they have been received very limited
attention.

The goal of this paper is to develop a general-purpose
hybrid metaheuristic algorithm solving several multi-school
SBRP problems with different problem characteristics. In
this paper, there are four multi-school SBRP problems to be
solved, which include multi-school SBRP with homogeneous
or heterogeneous school bus fleets, and each one also has
single load and mixed load two kinds of operation modes. We
propose a hybrid metaheuristic algorithm combining iterated
local search (ILS) with the set partitioning procedure (SP).
It has proved that SP can promote the quality of algorithm
effectively [12],[15],[16]. In our former studies [17],[18],
we find that the application of SP in iterated local search
algorithm has an advantage of improving performance and
parameters insensitivity. It has the application potential to be
a unified algorithm solving for several SBRP problems.

In the framework of ILS metaheuristic algorithm, we
use three neighborhood structures, which were original de-
signed for pickup and delivery vehicle routing problem with
time window (PDPTW), to explore solution space. For the
obtained neighborhood solution, we also use perturbation
method and allow accepting worse solution to add the
diversity of the algorithm. To avoid short-sighted of local
search, the routes found in the local search process are also
recorded in the route pool. Then a SP model is made by these
routes and then solved by CPLEX optimization software. The
SP can be used as a kind of post optimization technology for
our proposed algorithm. The results on benchmark instances
verify the validity of the proposed algorithm.

The remaining of the paper is organized in the following.
Section II gives the problem description of multi-school
SBRP. Section III describes the design of our algorithm in
detail. Computational results and findings are described in
Section IV. Finally, some concluding remarks of this work
are presented in Section V.

II. PROBLEM DESCRIPTION

Now we describe the multi-school SBRP problems. In this
paper, we consider four multi-school SBRP problems, includ-
ing homogeneous or heterogeneous school bus fleets, single
load or mixed load operation mode. In order to describe
these research issues, an unified problem model of multi-
school heterogeneous SBRP with mixed load (MLHSBRP)
is built for them. When the fleets are the same, we can
consider the problem as a specific case of MLHSBRP. In
additional, if we require the students from different schools
not to stay simultaneously in the same bus, it is the single
load SBRP. From this point of view, the single load SBRP
can be also considered as a specific case of mixed load by
adding the constraints to mixed load SBRP. Therefore, the
MLHSBRP could be changed to other research issues by
adding constraints or ignoring the difference of capacity and
cost of different bus fleets.

The MLHSBRP could be modeled as a m-1 PDPTW prob-
lem like the mixed load SBRP in [10] or a set partitioning
procedure model. In this article, we model the MLHSBRP

as the set partitioning problem, and its formulation model
based on SP is defined in the following.

Let C be the set of stops. Assume R be the set of all
possible routes for multi-school SBRP and S be a subset
of R (S ⊆ R). The set of bus types is denoted as M =
{1, 2, 3...,m}. When all the bus types are the same, M =
{1}. For the bus type k ,its fixed cost and variable cost per
mile are fk and vk . The Rk is denoted as the subset of
routes using bus type of k and S=

⋃
k∈MRk. Each route r

(r ∈ Rk) has an associated cost cr and a binary variable xr.
When xr =1, it means that the route r is one route of the
final solution. We assume that dr is the total travel distance
of route r. For homogeneous school bus fleets, we introduce
a relatively large positive integer M0 to ensure the number
of routes as the first optimization objective. The total cost cr
of route r is defined as M0 + dr. While for heterogeneous
SBRP, the total cost of route r is related with the bus type,
which including bus fixed cost and variable cost. When the
bus type of route r is k, cr is defined as fk + dr ∗ vk. Let I
be the subset of the routes covering stop i (i ∈ C,I ⊆ S). A
set partitioning formulation for the four multi-school SBRP
problems is given as follows:

Minimize ∑
r∈S

crxr (1)

s.t. ∑
r∈I

xr = 1 (2)

xr ∈ {0, 1},∀r ∈ S (3)

This SP model tries to select an optimal SBRP solution
from the possible routes. The objective function is given in
(1) which minimizes the total cost of all routes. Constraint
in equation (2) guarantees that each stop must be covered
exactly once. Constraint (3) defines the binary decision
variables.

III. PROPOSED ALGORITHM

A. Description of the Proposed Algorithm

The proposed hybrid algorithm (ILS-SP) consists of an
iterated local search algorithm and a set partitioning pro-
cedure. ILS is a metaheuristic algorithm, which has been
successfully applied to various VRP variants [13]. In this
paper, the components of the ILS are well designed to solve
several SBRP problems, including neighborhood operators,
perturbation methods and acceptance rules. At the same
time, the intermediate routes in the locally optimal solution
identified by ILS are recorded. After the execution of ILS,
the optimal solution obtained by ILS is also recorded. Then,
a SP model will be built based on the routes recorded in
route pool and then is solved by CPLEX software. Finally,
the solution solved by CPLEX software will compare with
the solution obtained by ILS, and the solution with smaller
objective value is the final solution.

B. Initial Solution Construction

For the multi-school SBRP, obtaining a feasible initial so-
lution is a very difficult job due to its complexity, especially
for mixed load SBRP. Therefore, we use a two-stage method
to get the initial solution of this problem. The first stage is to
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construct the initial routes of every school, and the second is
to combine these routes to an initial solution of multi-school
SBRP.

The initial construction method for multi-school SBRP are
described in the following.

(1) First, divide a complex multi-school SBRP into several
sub problems with only having one school according by the
school node.

(2) Then, obtain an initial solution for every single-school
SBRP. In this step, the initial solution of single-school SBRP
is obtained by the cheapest insertion method [18].

(3) Finally, the initial feasible solution for multi-school
SBRP is composed of the routes of every single-school
SBRP.

C. Neighborhood Structures

In the local search process of ILS metaheuristic algorithm,
several neighborhood structures are used iteratively to ex-
plore the solution space to find the local optima solution.
For multi-school SBRP, a student station and its paired
school station must be in the same route. It is impossible
to directly apply the neighborhood operators such as 2-opt
and or-opt designed for general SBRP to solve the multi-
school SBRP, especially for mixed load SBRP. Therefore, we
use three point pair neighborhood operators, such as single
paired insertion (SPI), swapping pairs between routes (SBR),
and within route insertion (WRI), which were designed and
applied successfully to solve PDPTW [19]. These three
operations can be found in [10], and they also are described
as follows.

(1) SPI tries to shift one student station from one route
to another route. When a student station is moved from one
route to another one, it and its destination school node must
be in the same route. If the target school has already been in
the target route, it just only need move the student station.
Otherwise, the destination school node also must be inserted
to the target route. In additional, we also determine whether
necessary to remove the destination school node from the
original route. If there exists some students from other
student stops on original route belongs to the destination
school of shifted student stop, the destination school must
be stayed on the route. Otherwise, we remove it from the
original route.

(2) SBR occurs in the two different routes, which ex-
changes a pair of student and school stations in one route
with another pair of student and school stations in the other
route. For SBR, the swap operation of the destination school
nodes also need to consider the insertion of them to the new
route as well as the removal of them from the original route.

(3) WRI relocates a pair of student and school stations
to the best position in the same route. It is usually used to
reduce the total travel distance.

These point pair neighborhood operators are executed in
a fixed sequence, which SPI are followed by WRI and SBR.
The moves of neighborhood operators will be accepted or
rejected by the rules. First, a feasible neighborhood solution
must be obtained by every move of these operators. And then,
the move will bring about the costs saving for the current
solution or the new neighborhood solution meets the demand
for the rules of acceptance. While for multi-school SBRP
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Fig. 1. An example for the partition of route segment

with heterogeneous bus fleet, the fleet adjustment will be
performed after SPI and SBR operators to decrease the total
cost of objective.

D. Fleet Type Adjustment Strategy
For HSBRP, adjusting the bus type for a route not only can

reduce its cost, but also can enhance the diversity of solutions
in the local search process. We have successfully applied
the fleet type adjustment strategy to single-school HSBRP in
[18]. In order to get better solution, it is necessary to extend
and apply the fleet type adjustment strategy to multi-school
HSBRP. Therefore, in this section, we are going to focus on
the fleet type adjustment strategy, which is used for multi-
school HSBRP.

For multi-school HSBRP, there are some student stops and
their destination school nodes in a route, while the route may
be include several different school nodes. When the students
destined to different schools could be permitted staying on
the same bus, this is mixed load, the students getting on
the bus and getting off the bus may be exist simultaneously.
Because of possible empty load in the bus, it is unfeasible
to adjust the bus fleet type directly on the whole route.

For this reason, we design a fleet adjustment strategy based
on route segment. The core of this strategy is to divide the
route into several path segments by the school node, and then
find the available bus to meet the capacity requirements of all
path segments. For the maximum actual load of the school
bus found for each path segment, the fleet type adjustment is
carried out by using the relationship between the maximum
value and the current bus capacity. This fleet adjustment
strategy can be also used for single-school HSBRP, when
the route has only one route segment. From this point, the
single-school HSBRP can be regarded as a special case of
the multi-school HSBRP.

The fleet adjustment strategy based on route segment
consists of partition of route segment and adjusting bus fleets.
The first step is to find all route segments of a route. A
route segment is defined as the set of a serial student stops
and their target school nodes. The route can be divided into
several route segments by the school nodes in it. Every route
segment starts a student stops and ends with a school node.
This partition method will generate a group of independent
route segments without stops or school node crossing. If there
exist two or more continuous school nodes on the route, only
the valid route segments are considered. Fig 1 shows the
partition of route segment for multi-school SBRP.

In Fig 1, i, m, p and q are student stops, si and sm
are stops i and m destined school nodes respectively. The
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stop p and stop q will go to the same school sq. When the
bus operation mode is single load (Fig 1(a)), the schools
are visited in order, and the route can be divided into three
route segments, such as Rsi, Rsm and Rsp. While for mixed
load SBRP, each route segment may be include student
stops with different targeted school. As shown in Fig 1(b),
route segment Rsi includes two student stops i and m with
different targeted school. There are also three route segments
in the route. But if there are no student stops between each
two adjacent school nodes, the number of route segment will
decrease. If student stop q is not in the middle of sm and sp,
the route segment Rsp is invalid. That is to say, the actual
route segments of the route are Rsi and Rsm.

The second step of fleet adjustment strategy tries to find
a lower-cost bus in a feasible route or a little bigger bus in
a route just only violating capacity constraints. Under these
condition, it needs to consider the relationship between the
actual load of every route segment and the capacity of bus
fleet type. Meanwhile, the fleet adjustment may fail because
there may be not any school bus to serve the route. If it
happens, the fleet adjustment operation will do nothing.

The fleet type adjustment strategy is described in the
following. Let the route r using bus type of k and the bus ca-
pacity is Qk. The total cost of route r is Cr

k. The set of route
segments in route r is denoted as R = {R1, R2, ..., Rn}.
The actual load of route segment R1 is QR1, and the
maximal actual load of school bus in all route segments is
Qmax = max{QR1, QR2, ..., QRn}. The set of bus types is
denoted as M = {1, 2, ...,m}, which is ordered by capacity
of bus type ascending. If Qk = Qmax , then leave it alone. If
Qmax < Qk, then it tries to find a low-cost bus to server this
route. For each bus type in the set of bus types {1, 2, ..., k−1}
, seek the bus type j that is satisfy with Qmax ≤ Qj and
makes Cr

k−Cr
j with the minimum value. When we cannot

find the bus type j or k is the smallest bus type in M , it will
do nothing. If Qmax > Qk, then it represents the number
of students exceed the bus capacity constraints, it needs to
find a new bus to server this route. For each bus type in the
set of bus types {k + 1, k + 2, ...,m}, search the bus type j
that is satisfy with Qmax ≤ Qj and makes Cr

j − Cr
k with

the minimum value. When the bus type that meets the above
constraints cannot be found, or k is the biggest bus type in
M , we will not adjust the fleet type.

E. Perturbation Mechanism

ILS uses perturbation methods to skip out the local optima,
and it repeats the local search from another starting point
to improve the performance of ILS. Usually, the multi-point
shift or multi-point swap can be utilized to perturb the current
solution [17],[18]. While these perturbation methods are not
suitable for multi-school SBRP. It is a time-consuming work
to find a feasible neighborhood solution after perturbing the
current local solution because of difficultly induced by large
scale multi-school problem.

In order to decrease the complexity of disturbance method,
we randomly select a route with more than two school nodes,
and then truncate it into multiple feasible routes by school
nodes. At the same time, we also design another perturbation
method based on SPI neighborhood operator. We randomly
select 2∼5 student stops, and then use SPI operator move

them to another routes. These two perturbation methods are
randomly executed when the objective value of solution has
not been decreased in five consecutive iterations.

F. Acceptance Rules

The optimization objective is decided by the problem type
of solved SBRP. For homogenous SBRP, the number of
routes or total travel distance is the mainly the optimization
objectives. If two solutions obtained by ILS with the same
number of school buses, we think the solution with shorter
total travel distance is better. So, we adopt a lexicographic
neighborhood solution function defined in [10] to determine
whether accept the solution or not. If the number of routes
is reduced, the solution must be accepted. If the number of
routes does not change, it tends to accept the shorter total
travel distance. Otherwise, the solution is accepted or not by
the record-to-record travel (RRT) [20] acceptance criterion.
The little worse solution could be accepted, if the product
of its total travel distance and deviation coefficient is in a
certain range of values.

For heterogeneous SBRP, the optimization objective is to
minimize the total cost, which includes fixed and variable
costs of routes. The total cost of solution is closely related
to the number of buses required and the combination of the
fleet types. The total cost could be reduced by decreasing the
number of bus routes, because the fixed cost is usually more
higher than the travel cost per distance unit for each school
bus. Therefore, we first evaluate the number of routes and
then the total cost. Similarly, some worsening neighborhood
solutions could be accepted according to the RRT acceptance
criterion [20].

G. Set Partitioning Procedure

The final step of our proposed algorithm is set partitioning
procedure, which may find a better SBRP solution from
a global point view. ILS algorithm has been successfully
used to solving various routing problems, but this kind of
local search-based algorithm has the shortcoming of short-
sighted owing to the relative small neighborhood search
space. We use the set partition procedure as a post im-
provement technology to enhance the performance of the
algorithm on the basis of existing successful experience in
[12],[15],[16],[17],[18].

In the local search process of our ILS algorithm, the
routes explored by the neighborhood operators are recorded
in a route pool. These historical routes are collected to
build a SP model according to the definition in Section II.
We utilize CPLEX optimization software to solve the SP
model. Because of its weakly NP-hard, SP model can be
solved efficiently by a MIP solver in reasonable time. The
combining ILS with SP can make full use of the advantages
of ILS and exact algorithm, and it also will improve the
effective of the algorithm.

IV. COMPUTATION RESULTS

The proposed ILS-SP algorithm described in Section III
was implemented by C # programming. All the experiments
have been executed on a personal computer with an Intel
i7-6700 3.40GHz CPU, and with 8GB of memory. The
number of maximum iteration is set to 50, and the number
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of moved nodes in perturbation methods is a random integer
number within the range of [2, 5] to balance the quality
and computation time. The value of deviation coefficient that
is used in acceptance rules is 10−5. The integer M0 in SP
model is set to 106. The SP model are solved by CPLEX
12.6 software. For CPLEX, the maximum computation time
was set to 60 seconds and the MIPGap parameter was set to
10−10. Meanwhile, each instance was executed 10 times by
the ILS algorithm.

A. Test Instances

We use the mixed load SBRP benchmark instances in
this research, which were proposed by [21]. The instances
including two groups: random spatial distribution of schools
and bus stops (RSRB) and clustered distribution (CSCB). We
select 8 benchmark instances, which are RSRB01∼RSRB04
and CSCB01∼CSCB04. The number of schools is 6∼25, and
the number of stops is 250∼500. The settings of benchmark
instances are the same as that defined in [10],[21],[22]. Just
to be clear, the homogeneous school bus has the capacity of
66. The maximum riding time (MRT) of students are set to
2700 and 5400 seconds respectively. The distance between
any two nodes is calculated by Manhattan distance. While for
multi-school SBRP with heterogeneous bus fleet, we assume
that all the instances used in this paper has three bus types
donated as A, B and C. For each bus type of them, their
capacity is 50, 60 and 70 respectively, and their fixed cost is
2500, 2800 and 3000. The average speed of each bus type
is 20 mile per hour, and their variable cost per mile is set to
1.2, 1.3 and 1.5.

B. Homogeneous multi-school SBRP

For homogeneous multi-school SBRP, the optimization
objective is to minimize the number of school buses. We
first use the ILS without SP (donated as ILS) and ILS-
SP to solve two multi-school SBRP problems respectively,
including single load and mixed load SBRP problems. In
additional, we also compare our algorithm with other existing
algorithms.

TABLE I shows the solutions obtained by ILS and ILS-
SP for multi-school homogeneous SBRP instances with two
operation modes. Columns Name, Stops, Schools are the
basic description of instances, which include instance name,
the number of student stops and the number of schools.
The columns Ns and Nm denote the best route number
respectively. The average computation time in seconds are
shown in columns Ts and Tm respectively. Columns Gs

and Gm represent the percentage deviation of the number
of routes between the best solution obtained by ILS and that
was found by ILS-SP for each instance respectively.

Compared with ILS algorithm, the ILS-SP algorithm is
effective, which can find the best solution on average. For
homogeneous SBRP with single load, the ILS-SP algorithm
can reduces the number of buses by 0.57% on average.
While for mixed load SBRP, the ILS-SP algorithm decrease
the number of buses by 1% on average. The maximum
percentage of improvement on these two SBRP problems
are 3.57% and 4.17% separately. The ILS-SP algorithm
decreases 4 and 6 buses in total respectively. The results
show that combining ILS with the set partitioning procedure

can improve the performance of ILS algorithm. Because of
adding the set partitioning procedure, the ILS-SP algorithm
needs more computation time to some extent.

To further evaluate the effective of ILS-SP algorithm,
we compare it with the existing multi-school SBRP algo-
rithms, such as post optimization heuristic algorithm (PH)
[21], simulate annealing(SA) [22] and record-to-record travel
(RRT) [10]. TABLE II shows the results found by ILS-
SP algorithms and other algorithms for each instance. For
single load SBRP, the columns PH and SA denote the
results from [21] and [22]. While for mixed load SBRP,
columns PH and RRT denote the results from [21] and
[10] respectively. Columns Gp , Gs and Gr represent the
improvement percentage of the best route number obtained
by ILS-SP algorithm for each instance when compared with
PH, SA and RRT respectively.

As shown in TABLE II, ILS-SP algorithm is more compet-
itive than existing algorithms. Compared with post optimiza-
tion heuristic algorithm, the ILS-SP algorithm decreases the
number of school buses by 25.10% and 10.62% on average
respectively for single load and mixed load SBRP. For all
the instances, ILS-SP algorithm obtain the better solutions
than PH. The maximum percentages of improvement on
two SBRP problems are 34.29% and 16.67% separately.
When compared with SA designed for single load SBRP,
the ILS-SP algorithm also outperforms it, which decreases
the number of buses by 6.81%. The maximum percentage
of improvement is 20.60%. The ILS-SP algorithm is also
effective for mixed load SBRP, it uses less buses than RRT
algorithm and the number of routes is reduced by 1.95% on
average.

C. Heterogeneous multi-school SBRP

For heterogeneous multi-school SBRP, we try to get the
best fleet composition and the lowest total cost of solutions.
Thus, the objective is the sum of fixed purchasing cost and
variable cost. We also adopt the fleet adjustment strategy
after every move made by neighborhood operators between
different routes in local search of the proposed algorithm.

First of all, we use ILS algorithm and ILS-SP algorithm
to solve all the instances respectively. The results of them
are shown in TABLE III and TABLE IV. The columns,
TC and STD, indicate the best and percentage deviation of
costs among the 10 solutions respectively. The column Fleet
denotes the best fleet composition. The average computation
time in seconds is given in column T. The description of the
remain columns are the same as TABLE I.

Seen from TABLE III and TABLE IV, the ILS-SP al-
gorithm use less total cost than ILS algorithm. For single
load SBRP, the ILS-SP algorithm decreases the total cost by
1.64% on average, when compared with ILS algorithm. For
some instances, such as RSRB02, CSCB02, and CSCB04,
the improvement percentage are all more than 3%. When the
maximum ridding time of students are set to 2700 and 5400
seconds, on average, the total cost are decrease by 1.38% and
1.91% respectively. For mixed load SBRP, the results in TA-
BLE IV show that the ILS-SP algorithm decreases the total
cost by 1.44% compared with ILS algorithm. The maximal
improvement percentage is 3.74% of all the instances. The
total cost of all instances are reduced by 2.02% and 0.86%
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TABLE I
COMPUTATIONAL RESULTS ON HOMOGENEOUS SBRP WITH SINGLE LOAD AND MIXED LOAD

Instance
MRT

ILS ILS-SP Gap(%)

Name Stops Schools Ns Ts Nm Tm Ns Ts Nm Tm Gs Gm

CSCB01 250 6 2700 28 37.54 26 74.09 27 95.72 26 136.98 3.57% 0.00%

CSCB02 250 12 2700 25 31.07 25 77.32 25 85.55 25 140.12 0.00% 0.00%

CSCB03 500 12 2700 53 108.5 48 386.92 52 178.27 48 452.53 1.89% 0.00%

CSCB04 500 25 2700 58 81.44 56 350.68 57 149.33 54 421.25 1.72% 3.57%

RSRB01 250 6 2700 26 22.98 26 53.89 26 84.89 25 86.18 0.00% 3.85%

RSRB02 250 12 2700 26 20.36 26 57.69 26 81.44 26 79.88 0.00% 0.00%

RSRB03 500 12 2700 51 85.05 51 287.61 50 126.25 51 352.63 1.96% 0.00%

RSRB04 500 25 2700 54 75.03 53 327.48 54 108.89 52 395.38 0.00% 1.89%

CSCB01 250 6 5400 23 36.93 23 40.39 23 99.84 23 85.03 0.00% 0.00%

CSCB02 250 12 5400 20 32.53 19 55.22 20 95.94 19 97.26 0.00% 0.00%

CSCB03 500 12 5400 40 110.65 39 254.26 40 165.88 38 317.33 0.00% 2.56%

CSCB04 500 25 5400 41 89.52 40 260.31 41 135.87 40 330.83 0.00% 0.00%

RSRB01 250 6 5400 23 28.88 24 33.74 23 90.20 23 83.52 0.00% 4.17%

RSRB02 250 12 5400 22 25.71 22 41.01 22 89.51 22 98.87 0.00% 0.00%

RSRB03 500 12 5400 46 98.35 46 193.6 46 171.75 46 258.6 0.00% 0.00%

RSRB04 500 25 5400 41 86.09 40 233.9 41 155.68 40 308.11 0.00% 0.00%

Avg 375 13.75 4050 36.06 60.66 35.25 170.51 35.81 119.69 34.88 227.78 0.57% 1.00%

TABLE II
COMPARISON WITH OTHER ALGORITHMS FOR HOMOGENEOUS SBRP WITH TWO OPERATION MODES

Instance
MRT

Single Load Mixed Load

Name Stops Schools PH SA ILS-SP Gp Gs PH RRT ILS-SP Gp Gr

CSCB01 250 6 2700 39 31 27 30.77% 12.90% 30 27 26 13.33% 3.70%

CSCB02 250 12 2700 33 26 25 24.24% 3.85% 30 26 25 16.67% 3.85%

CSCB03 500 12 2700 66 59 52 21.21% 11.86% 55 49 48 12.73% 2.04%

CSCB04 500 25 2700 72 61 57 20.83% 6.56% 62 57 54 12.90% 5.26%

RSRB01 250 6 2700 35 26 26 25.71% 0.00% 30 26 25 16.67% 3.85%

RSRB02 250 12 2700 32 27 26 18.75% 3.70% 29 27 26 10.34% 3.70%

RSRB03 500 12 2700 66 47 50 24.24% -6.38% 56 53 51 8.93% 3.77%

RSRB04 500 25 2700 68 58 54 20.59% 6.90% 59 52 52 11.86% 0.00%

CSCB01 250 6 5400 35 29 23 34.29% 20.69% 24 23 23 4.17% 0.00%

CSCB02 250 12 5400 27 23 20 25.93% 13.04% 22 19 19 13.64% 0.00%

CSCB03 500 12 5400 52 42 40 23.08% 4.76% 41 39 38 7.32% 2.56%

CSCB04 500 25 5400 57 45 41 28.07% 8.89% 43 37 40 6.98% -8.11%

RSRB01 250 6 5400 31 28 23 25.81% 17.86% 27 24 23 14.81% 4.17%

RSRB02 250 12 5400 30 23 22 26.67% 4.35% 23 23 22 4.35% 4.35%

RSRB03 500 12 5400 61 46 46 24.59% 0.00% 47 47 46 2.13% 2.13%

RSRB04 500 25 5400 56 41 41 26.79% 0.00% 46 40 40 13.04% 0.00%

Avg 375 13.75 4050 47.50 38.25 35.81 25.10% 6.81% 39 35.56 34.88 10.62% 1.95%

on average, when the maximum ridding time of students
are set to 2700 and 5400 seconds respectively. Moreover,
the percentage deviation is controlled within 2%. It shows
that our ILS-SP algorithm is relatively stable. In general, the
results in these two tables show that ILS-SP algorithm is
very effective.

Further, we compare the ILS-SP algorithm with the ex-
isting algorithms solving for multi-school heterogeneous

SBRP. These algorithms include adaptive location based
heuristic(ALBH) [7],random location based heuristic(RLBH)
[6] and RRT algorithm proposed in [8] and so on. We
have implemented these three algorithms according to the
description of them in [6], [7] and [8] to compare them with
our proposed algorithm. The parameter settings of these three
algorithms are the same as our proposed algorithm. TABLE
V shows the results of these algorithms on the benchmark
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TABLE III
COMPUTATIONAL RESULTS ON HETEROGENEOUS SBRP WITH SINGLE LOAD

Instance
MRT

ILS ILS-SP
Gap(%)

Name Stops Schools TC T TC Std(%) Fleet T

CSCB01 250 6 2700 80864.15 47.96 80603.48 2.07% 16A4B9C 98.55 0.32%

CSCB02 250 12 2700 72057.53 42.29 71940.05 2.59% 23A4C 83.76 0.16%

CSCB03 500 12 2700 152623.22 148.89 152296.48 1.28% 34A6B15C 216.34 0.21%

CSCB04 500 25 2700 164024.32 166.67 162587.27 1.41% 27A6B24C 217.67 0.88%

RSRB01 250 6 2700 81758.28 40.39 80458.02 1.52% 29A2B 96.57 1.59%

RSRB02 250 12 2700 79006.90 49.82 75945.93 1.42% 15A2B10C 68.49 3.87%

RSRB03 500 12 2700 154727.50 119.39 151287.36 1.41% 5A1B35C 200.47 2.22%

RSRB04 500 25 2700 158562.35 137.59 155765.00 1.72% 35A21C 199.8 1.76%

CSCB01 250 6 5400 70056.64 49.15 68023.96 2.07% 1A21C 78.63 2.90%

CSCB02 250 12 5400 60674.66 46.84 58823.07 1.91% 13A8C 68.85 3.05%

CSCB03 500 12 5400 124919.86 126.91 122153.89 1.41% 1A1B37C 211.28 2.21%

CSCB04 500 25 5400 127549.64 147.41 123057.63 2.49% 5A35C 199.61 3.52%

RSRB01 250 6 5400 73739.09 33.48 72954.14 1.69% 3A1B20C 84.72 1.06%

RSRB02 250 12 5400 63062.71 45.56 62548.89 2.45% 1A19C 60.31 0.81%

RSRB03 500 12 5400 138608.09 146.42 138607.49 1.25% 9A1B36C 185.13 0.00%

RSRB04 500 25 5400 129252.28 124.14 127056.54 2.36% 13A3B27C 192.33 1.70%

Avg 375 13.75 4050 108217.95 92.06 106506.83 1.82% - 141.41 1.64%

TABLE IV
COMPUTATIONAL RESULTS ON HETEROGENEOUS SBRP WITH MIXED LOAD

Instance
MRT

ILS ILS-SP
Gap(%)

Name Stops Schools TC T TC Std(%) Fleet T

CSCB01 250 6 2700 78588.32 65.82 75646.03 1.22% 8A3B15C 101.25 3.74%

CSCB02 250 12 2700 71249.23 65.53 68824.43 1.67% 16A3B6C 100.75 3.40%

CSCB03 500 12 2700 140998.88 231.28 137948.06 1.58% A2B19C28 286.48 2.16%

CSCB04 500 25 2700 156409.01 174.63 152360.77 1.06% 24A5B24C 236.18 2.59%

RSRB01 250 6 2700 81480.43 44.45 80875.94 1.39% 28A3B 89.71 0.74%

RSRB02 250 12 2700 76118.90 45.89 75590.44 1.97% 16A3B8C 73.85 0.69%

RSRB03 500 12 2700 154135.70 134.23 151767.05 1.13% 30A3B21C 228.68 1.54%

RSRB04 500 25 2700 153061.90 159.87 151071.97 1.29% 38A1B16C 211.59 1.30%

CSCB01 250 6 5400 67754.86 67.89 67481.62 1.72% 2A20C 87.23 0.40%

CSCB02 250 12 5400 57597.21 66.84 57041.52 2.24% 4A1B14C 71.68 0.96%

CSCB03 500 12 5400 116509.42 224.54 115080.36 2.38% 2A35C 284.76 1.23%

CSCB04 500 25 5400 118611.09 213.25 115737.65 2.49% 2A1B34C 268.18 2.42%

RSRB01 250 6 5400 73786.99 43.91 73113.65 2.13% 8A2B15C 78.43 0.91%

RSRB02 250 12 5400 62622.53 45.98 62527.04 2.16% 1A19C 62.86 0.15%

RSRB03 500 12 5400 139659.56 135.98 138945.23 0.93% 14A1B32C 188.25 0.51%

RSRB04 500 25 5400 123892.87 174.37 123494.71 2.12% 8A4B29C 203.42 0.32%

Avg 375 13.75 4050 104529.81 118.40 102969.15 1.72% - 160.83 1.44%

instances.

As shown in TABLE V, ILS-SP algorithm is more effective
than existing algorithms [6],[7],[8] for heterogeneous multi-
school SBRP. Compared with ALBH [7], RLBH [6] and
RRT [8] algorithms, ILS-SP algorithm can reduces the total
cost on average by 38.13%, 28.32% and 6.09% respec-
tively. When the operation mode is mixed load, the ILS-
SP algorithm can decrease the total cost on average by

35.74%, 31.99% and 6.2% respectively. Because the ALBH
and RLBH algorithms are constructive heuristics, ILS-SP
algorithm is remarkable better than them. For the RRT meta-
heuristic algorithm proposed in [8], the ILS-SP algorithm is
also very competitive. The ILS-SP algorithm overcomes the
short-sighted shortcoming of local-search based algorithms
because of combining the SP procedure. The results in
TABLE V show the ILS-SP algorithm is effective again.
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TABLE V
COMPARISON WITH OTHER ALGORITHMS FOR HETEROGENEOUS SBRP WITH TWO OPERATION MODES

Instance MRT
Single Load Mixed Load

ALBH RLBH RRT ILS-SP ALBH RLBH RRT ILS-SP

CSCB01 2700 128591.49 110593.02 83416.94 80603.48 115940.25 113275.18 77326.51 75646.03

CSCB02 2700 127199.59 112026.34 77546.25 71940.05 123439.74 111280.21 74484.74 68824.43

CSCB03 2700 265827.83 207966.90 161914.23 152296.48 218367.30 205769.17 143410.50 137948.06

CSCB04 2700 295366.78 255514.99 180064.96 162587.27 279958.64 253832.53 174158.57 152360.77

RSRB01 2700 129591.58 111351.18 80528.02 80458.02 112524.91 109166.74 80465.92 80875.94

RSRB02 2700 152984.43 110567.49 80585.55 75945.93 129453.80 117878.37 83734.15 75590.44

RSRB03 2700 264493.47 230727.13 152029.08 151287.36 214386.55 214092.19 152174.87 151767.05

RSRB04 2700 267452.78 240011.31 167449.28 155765.00 240874.22 234870.24 164533.32 151071.97

CSCB01 5400 105246.91 88480.98 71576.71 68023.96 105246.91 92983.28 71485.11 67481.62

CSCB02 5400 89917.36 78530.22 62403.68 58823.07 89917.36 84570.64 62156.32 57041.52

CSCB03 5400 173060.06 153844.00 131565.85 122153.89 170112.54 152476.59 128402.38 115080.36

CSCB04 5400 207265.28 162250.28 144392.80 123057.63 218984.09 186439.28 132036.07 115737.65

RSRB01 5400 101760.70 86791.02 74603.33 72954.14 101760.70 94525.81 71522.76 73113.65

RSRB02 5400 104173.48 88992.89 72114.50 62548.89 97772.75 93685.18 68905.21 62527.04

RSRB03 5400 160589.67 166384.03 140170.72 138607.49 165532.43 175558.17 140167.93 138945.23

RSRB04 5400 180839.73 173248.69 134263.37 127056.54 179697.08 182042.90 131455.92 123494.71

Avg 4050 172147.57 148580.03 113414.08 106506.83 160248.08 151402.91 109776.27 102969.15

D. Performance Analysis of ILS-SP Algorithm

According to the results from TABLE I to TABLE V,
the ILS-SP algorithm can effectively solve the multi-school
homogeneous or heterogeneous SBRP with single load and
mixed load. The comparison result of ILS-SP algorithm with
other algorithms is shown in Fig 2.

Seen from the Fig 2, we can find that ILS-SP algorithm
is more effective than existing algorithm for multi-school
SBRP. For single load and mixed load homogeneous SBRP,
the ILS-SP algorithm uses least the number of routes. Com-
pared with post optimization heuristic [21], ILS-SP algorithm
reduces the number of routes by more than 10%. While for
SA [22] and RRT [10], ILS-SP algorithm can also decrease
the routes on average by 6.8% and 1.95% respectively. While
for single load and mixed load heterogeneous SBRP, ILS-SP
algorithm is significantly better than ALBH [7] and RLBH
[6] heuristic algorithms. When compared with ILS algorithm,
it reduces the total cost on average by 1.64% and 1.44%
respectively. The ILS-SP algorithm also outperforms the RRT
metaheuristic algorithm proposed by [8], and it decreases the
average total cost by 6.09% and 6.2% respectively. All in
all, we can draw the conclusion that the ILS-SP algorithm is
very effective, and it can outperform existing algorithms for
homogeneous or heterogeneous SBRP with single load and
mixed load.

Among of these algorithms, post optimization heuristic
[21] and simulated annealing proposed by [22] are both two-
stage algorithms, which firstly get routes of every single
school and then combine them with some certain strategies.
The former, that is post optimization heuristic, uses simple
heuristic to combine, while the latter combines the routes
in the framework of simulated annealing metaheuristic. Al-
though they can solve the multi-school SBRP quickly, they
lack global considerations in the optimization process. The
ALBH [6] and RLBH [7] are both constructive heuristic

algorithms, which both have the limited ability to find the
better solution. While for the two record-to-record travel
algorithms proposed by [8] and [10], they just only use the
acceptance rule based on deviation factor to enhance the
diversity of solution. Compared with these two algorithms,
our ILS-SP algorithm adopts several heuristic strategies,
including perturbation methods and allowing accepting worse
solution, to explore the diversity of neighborhood solutions
and avoid trapping local optima.

In additional, the ILS-SP algorithm uses the set parti-
tioning procedure to optimize the solution from a global
point of view. The ILS-SP algorithm takes advantages of ILS
algorithm and exact algorithm, which can use SP to improve
further ILS algorithm. Although the computation time of the
ILS-SP algorithm increases to some extent, the increase in
computation time may be negligible for large-scale multi-
school SBRP, because planning school bus routes for schools
usually has one time before each semester begins.

E. Analysis of ILS-SP algorithm on Different Instances
Groups

In this section, we tries to analysis the performance of ILS-
SP algorithm on two different instances groups. The average
school buses number of all the instance for two homogeneous
SBRP problems are calculated. At the same time, the average
total cost of all the instance for two heterogeneous SBRP
problems are also computed. The results of them are shown
in Fig 3 and Fig 4 respectively.

There are some findings from Fig 3 and Fig 4. First,
the ILS-SP algorithm can find better solutions on CSCB
instances. Because of stops and schools clustered distribution
in CSCB instances, the ILS-SP algorithm with the limited
iterations could be easy to find the better solutions than it
solves the RSRB instances. Second, when the maximum rid-
ding time of students are set to 5400, it causes difficult to find
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(a) homogeneous SBRP with single load
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(b) homogeneous SBRP with mixed load
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(c) heterogeneous SBRP with single load
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(d) heterogeneous SBRP with mixed load

Fig. 2. Comparison of different algorithms for homogeneous and heterogeneous multi-school SBRP
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Fig. 3. Average buses number of different algorithms for homogeneous multi-school SBRP
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Fig. 4. Average total cost of different algorithms for heterogeneous multi-school SBRP
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best local solution. The maximum ridding time constraint is
relaxed, it means that it is easy to obtain the neighborhood
solution. But because of limited iterations and relative big
neighborhood solution space, the best local solution is d-
ifficult to obtain. Therefore, relaxing the maximum ridding
time constraint cannot reduce the complexity of multi-school
SBRP.

V. CONCLUSION

This paper proposes a hybrid metaheuristic algorithm(ILS-
SP) algorithm to solve the school bus routing problem
with multiple schools. We consider four multi-school SBRP
problems, which including homogeneous fleets and hetero-
geneous fleets, single load and mixed load operation mode.
The problems are firstly modeled as a kind of heterogeneous
mixed load SBRP, and the problem model can be convert-
ed to other problems by decreasing the constraints. Then
the ILS-SP algorithm is implemented, which combines an
ILS metaheuristic with SP. The addition of SP enhances
the ability of the ILS algorithm to find better solutions,
because it can effectively overcome the short-term behavior
of the local search-based algorithm. Finally, the algorithm
is evaluated using the benchmark instances and compared
with other existing algorithms for SBRP. The results prove
that our proposed algorithm is very competitive. The ILS-SP
algorithm can effectively solve multi-school SBRP problems
and it is also an effective general-purpose algorithm for large-
scale multi-school SBRP.

In the future, we intent to improve and extend the ILS-SP
algorithm for solving other SBRP variants, which have ad-
ditional attributes such as split delivery and multiple depots.
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