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Abstract—In this work, we derive a one-parameter family of
Super Halley’s method for finding simple roots of nonlinear
equations. The scheme is powerful since it regenerates an
infinity interesting methods. The convergence analysis shows
that the order of convergence of each method of the proposed
family is at least three. The originality of the new family
manifests in the fact that all these methods are governed by a
recurring formula that depends on a natural integer parameter
p. Moreover, under certain conditions, the convergence speed
of these methods improves by increasing p. A fairly detailed
study on their global convergence is carried out. To illustrate
the abilities and performances of proposed family, numerical
comparisons have been made with several other existing third
order and higher order methods.

Index Terms—Nonlinear equations, One-parameter family,
Iterative methods, Order of convergence, Third order method,
Super Halley’s method

I. INTRODUCTION

THE design of iterative formulas for solving nonlinear
equations is a very important and interesting task in

engineering, scientific computing and applied mathematics in
general [1], [2]. In this research, we are interested in finding
simple roots of a nonlinear equation:

f(x) = 0 (1)

where f : I ⊆ R → R for an open interval I is a
scalar function. The zero α of f , assumed simple, can be
determined as a fixed point of some Iteration Function (I.F.)
by means of the one-point iteration method [3]–[12]:

xn+1 = F (xn) for n = 0, 1, 2, · · · (2)

where x0 is starting value. A point α is called a fixed point
of F if F (α) = α. The convergence of the sequence (xn)
to the root α can be guaranteed under certain conditions and
by making a good choice of iterative function F .

The best known iterative method for determining a solu-
tion for this problem is Newton’s method [13] given by:

xn+1 = xn −
f(xn)

f ′(xn)
n = 0, 1, 2, . . . (3)
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a special case of (2) with F (x) = x − f(x)

f ′ (x)
. This

method converges quadratically to the simple root α, if x0
is sufficiently close to α.

Recently, some new methods, with cubic convergence,
have been developed. For example, Halley [5], [13]–[22],
Chebyshev [1], [13], [19], [22]–[24], Hansen-Patrick [25],
Ostrowski [24], Chun [26], Sharma [27]–[29], Jiang-Han
[30], Barrada et al. [20], [31]–[33], Amat [19], Traub [13],
Kou, Li and Wang [34], Chun and Neta [35], Torres et al. [36]
have proposed some interesting and well-known methods.
Among the methods, of order 3, most known in literature,
we cite in particular Super-Halley’s method [18], [19], [26],
[27], [30], [35] given by:

xn+1 = xn −
f(xn)

f ′(xn)
V0(Ln) (4)

where V0(Ln) =
2− Ln

2(1− Ln)

and Ln = Lf (xn) =
f(xn)f

′′
(xn)

f ′(xn)2

A special case of (2) with I.F. :

F0(x) = x− f(x)

f ′(x)

(
2− Lf (x)

2(1− Lf (x))

)
.

On the other note, several researches have been carried
out with the aim to create multi-step iterative methods with
improved convergence order. Fang et al. [37], Torres et al.
[36] have constructed Some fifth-order convergent iterative
methods. Wang and Zhang [38], Kou et al. [34], [39], Chun
and Ham [40] have developed some families of sixth-order
methods. Bi W. et al. [41] introduced some families of
eighth-order convergence methods.

In articles [20], [31]–[33], we proposed some interesting
new family of Halley’s method and Chebyshev’s method. In
this paper, based on the Super Halley’s method and second-
order Taylor polynomial, we will construct a new family
for finding simple roots of nonlinear equations with cubical
convergence. The main characteristics of this family are that,
on one hand, its methods can be derived from each other
from a recurrent formula which depends on a natural integer
parameter p and, on the other hand, under certain hypothesis,
the speed of convergence of these methods improves by
increasing p. The efficiency of this method will be tested on
a number of numerical examples. A comparison with third,
five and sixth order methods will be realized.

II. DERIVATION OF NEW ITERATIVE PROCESS

Newton’s method is derivate by approximating the given
function f at x = xn by the tangent line

y(x) = f(xn) + f
′
(xn)(x− xn)
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to the graph of f at (xn, f(xn)). By solving y(xn+1) = 0
for xn+1, we find the sequence (3).

The linear approximation in Newton’s method is simply
the first-degree Taylor polynomial of f at xn. Now let’s use
a second degree polynomial:

y(x) = f(xn) + f
′
(xn)(x− xn) +

f
′′
(xn)

2
(x− xn)2 (5)

Where xn is again an approximate solution of f(x) = 0.
The goal is to calculate a point (xn+1, 0) where the graph of
y intersects the x-axis, that is, to solve of following equation
for xn+1:

0 = f(xn)+f
′
(xn)(xn+1−xn)+

f
′′
(xn)

2
(xn+1−xn)2 (6)

by replacing (xn+1 − xn) located on the right-hand side
of (6) by Super Halley’s correction given in (4), we get :

0 = f(xn) + f
′
(xn)(xn+1 − xn) + f

′′
(xn)
2

(
− f(xn)

2f ′(xn)

(
2− Ln

1− Ln

))2

(7)

From which it follows that

xn+1 = xn −
f(xn)

f ′(xn)
V1(Ln) (8)

where V1(Ln) = 1 + Ln

2 V
2
0 (Ln) =

L3
n + 4L2

n − 12Ln + 8

8(1− Ln)2

By repeating the above procedure p times and each
time replace (xn+1 − xn) located on the right side of (6)
with the last method found, we derive the following general
family of Super Halley’s method (Bp):


xn+1 = xn − Vp(Ln)

f(xn)

f ′(xn)

Vp+1(x) = 1 +
x

2
V 2
p (x) n = 0, 1, 2, . . .

V0(x) =
2− x

2(1− x)

(9)

where p is a non-zero natural integer parameter.
The iterative process (9), noted (Bp), represents a general

family of Super Halley’s method for finding simple roots of
nonlinear equations. It is a special case of (2) with following
(I.F.) :

Fp(x) = x− f(x)

f ′(x)
.Vp(Lf (x)) (10)

The scheme (9) is powerful because it regenerates the
Super-Halley method (B0), and several new methods such
as (B1) , given by (8), and (B2) given by:

xn+1 = xn − V2(Ln)
f(xn)

f ′(xn)

Where V2 is given by:

V2(Ln) =
L7
n + 8L6

n − 8L5
n + 48L4

n − 304L3
n + 576L2

n − 448Ln + 128

128(1− Ln)4

III. ANALYSIS OF CONVERGENCE

A. Order of convergence
The order of convergence of sequence (9) is given by the

following theorem.

Theorem 1. Let p be a parameter where p is a non-negative
integer. We Suppose that the function f has at least two
continuous derivatives in the neighborhood of a zero, α.
Further, we assume that f

′
(α) 6= 0 and x0 is sufficiently

close to α. Then, the sequences (9), converge cubically to
α, for any natural integer parameter p, and satisfy the error
equation

en+1 = −f
(3)(α)

3!f ′(α)
e3n +O(e4n) (11)

where en = xn − α is the error at nth iteration

Proof: Let α be a simple root, i.e. f(α) = 0 and
f

′
(α) 6= 0, of a nonlinear equation f(x) = 0. We use the

following Taylor expansions about α :


f(xn) = f

′
(a)[en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5n)]

f
′
(xn) = f

′
(α)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)]

f ′′(xn) = f
′
(α)[2c2 + 6c3en + 12c4e

2
n +O(e3n)]

(12)

where ci =
f (i)(α)

i!f ′(α)
, i = 2, 3, . . . (13)

Using (12) we get


[f

′
(xn)]

2 = [f
′
(α)]2[1 + 4c2en + 2(2c22 + 3c3)e

2
n

+ 4(3c2c3 + 2c4)e
3
n +O(e4n)]

f(xn)

f ′(xn)
= en − c2e2n + 2(c22 − c3)e3n +O(e4n)

(14)

and

Ln =
f(xn)f

′′
(xn)

[f ′(xn)]2
= 2c2en − 6(c22 − c3)e2n

+4(4c32 − 7c2c3

+3c4)e
3
n +O(e4n)

(15)

Using the Taylor’s series expansion [29] of Vp(Ln) about
L(α) leads to

Vp(Ln) = Vp(L(α)) + (Ln − L(α))V
′
p (L(α))

+
1

2
(Ln − L(α))2V

′′
p (L(α))

+O
(
(Ln − L(α))3

)
Where p is a natural integer parameter.
Taking into account that L(α) = 0, we obtain

Vp(Ln) = Vp(0) + LnV
′

p (0) +
1

2
L2
nV

′′

p (0) +O
(
L3
n

)
(16)

We have: V0(x) = 2−x
2(1−x) and Vp+1(x) = 1+ x

2V
2
p (x)

We obtain

V
′
0 (x) =

1

2(1− x)2

V
′
p+1(x) =

1

2
V 2
p (x) + x.Vp(x)V

′
p (x)

V
′′
0 (x) =

1

(1− x)3 ,

V
′′
p+1(x) = 2Vp(x)V

′
p (x) + x

(
V

′2
p (x) + Vp(x)V

′′
p (x)

)
(17)
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It is easy to prove that function Vp check following
conditions:

For all p ∈ N, Vp(0) = 1, V
′
p (0) =

1

2
and V

′′
p (0) = 1 (18)

Thus, the Formula (16) becomes

For all p ∈ N, Vp(Ln) = 1+
1

2
Ln+

1

2
L2
n+O(L3

n) (19)

Using (15), we get

For all p ∈ N,
Vp(Ln) = 1 + c2en + [−c22 + 3c3]e

2
n +O(e3n)

(20)

Substituting (14) and (20) in formula (9), we obtain the
error equation

en+1 = −c3e3n +O(e4n)

which completes the proof of the theorem.

B. Global Convergence of the super Halley’s family

We will make a first study of the global convergence of
some selected methods from the proposed family (Bp), in
the case where they converge towards the root in a monotone
way [3], [27], [42]–[44]. But before, we give two elementary
lemmas, which will be used to this study.

Lemma 1. Let us write the iterative function of f , from the
sentences (Bp) :

Fp(x) = x− f(x)

f ′(x)
.Vp(Lf (x))

Then, the derivative of Fp is given by:

F
′
p(x) = 1− Lf (x)[1 + Lf (x)(Lf

′ (x)− 2)]V
′
p (Lf (x))

−Vp(Lf (x))(1− Lf (x))
(21)

Lemma 2. Let x a real number such as 0 6 x < 1 and (ap)
the sequence defined by:

a0 =
2− x

2(1− x)
, ap+1 = 1+

x

2
a2p, for p = 0, 1, 2 . . .

then (ap) is an increasing sequence with strictly positive
terms.

Proof: As 0 6 x < 1, it is easy to prove by induction
that ap > 0 for all p ∈ N.

Let us show by induction that (ap) is increasing sequence,
for a given p. We have:

a1 − a0 =
x3

8(1− x)2
. As x > 0, then a1 > a0. Now

we assume that for an integer p, we have ap+1 > ap. Since
ap > 0 and ap+1 > 0, then a2p+1 > a2p, and as x > 0, we
deduce that ap+2 > ap+1 and the induction is completed.

C. Monotonic Convergence of the Sequences (Bp)

Theorem 2. Let p ∈ N, f ∈ Cm[a , b],m > 4, f
′ 6= 0, f

′′ 6=
0, 0 6 Lf < 1 and the iterative function Fp of f, defined by
(10), is increasing function on an interval [a , b] containing
the root α of f. Then the sequence given by (9) is decreasing
(resp. increasing) and converges to α from any point x0 ∈
[a , b] checking f(x0)f

′
(x0) > 0 (resp. f(x0)f

′
(x0) < 0)

Proof: Let us consider the case where f(x0)f
′
(x0) > 0,

then x0 > α. Applying Mean Value Theorem to the function
Fp, where p is a natural integer, we obtain:

x1 − α = Fp(x0)− Fp(α) = F
′

p(s)(x0 − α)

for some s ∈ (α , x0). As Fp is an increasing function on
[a , b], then derivative of Fp given by (21) checks F

′

p(x) > 0
in [α , b], we deduce that x1 > α. By induction, we obtain
xn > α for all n ∈ N.

On the other note, according to (9), we have:

x1 − x0 = −Vp(L0)
f(x0)

f ′(x0)

As 0 6 L0 < 1 then, from Lemma 2, we have :

ap = Vp(L0) > 0 for all p ∈ N

Since f(x0)

f ′ (x0)
> 0, we deduce that x1 6 x0. Now it is easy

to prove by induction that xn+1 6 xn for all n ∈ N.
Thereby, the sequence (9) is decreasing and converges to

a limit λ ∈ [a , b] where λ > α. So, by taking the limit in
(9) we obtain:

λ = λ− f(λ)

f ′(λ)
Vp(Lf (λ))

We have Vp(Lf (λ)) > 0 for all p ∈ N and for every
real Lf (λ) ∈ [0 , 1), so Vp(Lf (λ)) 6= 0 and consequently
f(λ) = 0. As α is the unique root of f in [a , b], therefore
λ = α. This completes the proof of theorem.

Analogously, we prove that the sequences (9) are increas-
ing and converges to α under the same assumptions of
Theorem 2, but for f(x0)f

′
(x0) < 0.

IV. PRINCIPAL ADVANTAGE OF NEW FAMILY

As the family (Bp) is governed by formula (9), depending
on the parameter p, where p is a nonnegative integer, it would
be interesting to look for which p values, and under which
conditions, the convergence is faster.

Theorem 3. Let p ∈ N∗. Let (un) and (wn) be defined,
respectively, by the sequences (xp+1

n ) and (xpn) given by
equation (9), f ∈ Cm[a , b],m > 4, f

′
(x) 6= 0, f

′′
(x) 6= 0,

0 6 Lf (x) < 1 and the iterative functions Fp and Fp+1

of f , defined by (10), be increasing functions on an interval
[a , b] containing the root α of f . Starting from the same
initial point x0 ∈ [a , b], the rate of convergence of sequence
(xp+1

n ) is higher than one of sequence (xpn).

Proof: Supposing that the initial value x0 checks
f(x0)f

′
(x0) > 0, so x0 > α. According to Theorem 2,

we know that if f
′
(x) 6= 0, f

′′
(x) 6= 0, 0 ≤ Lf < 1,

Fp and Fp+1 are increasing functions an interval [a , b], the
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sequences (xpn) and (xp+1
n ), given by (9), are decreasing and

converge to α from any point x0 ∈ [a , b]
Let (un) and (wn) be defined, respectively, by (xp+1

n ) and
(xpn). Since u0 = w0 = x0 and the two sequences are
decreasing, we expect that un 6 wn for all n ∈ N. This
can be proved by induction. Let n = 1 , then:

u1 − w1 = − f(x0)
f ′(x0)

(Vp+1(L0)− Vp(L0))

As 0 ≤ L0 = Lf (x0) < 1, then from Lemma 2:
Vp+1(L0) > Vp(L0). As f(x0)

f ′ (x0)
> 0, we deduce that :

u1 ≤ w1.
Now we assumed that un ≤ wn. Since, under above

hypotheses, Fp+1 is increasing function in [a , b], we obtain
Fp+1(un) ≤ Fp+1(wn).

On the other hand, we have :

Fp+1(wn)−Fp(wn) = −
f(wn)

f ′(wn)
(Vp+1(Ln)− Vp(Ln)) ≤ 0

We deduce that Fp+1(un) ≤ Fp(wn). So un+1 ≤ wn+1

and induction is completed. The case f(x0)f
′
(x0) < 0 is

similar to the previous one.
Consequently, the originality and the power of Super

Halley’s Family is illustrated analytically by justifying that,
under certain conditions, the convergence speed of these
methods increases with the parameter p. Since the famous
Super Halley’s method is a particular case of this family
whose parameter (p = 0) is the smallest, its convergence
speed is lower than other new methods of the same family,
having higher parameters.

V. NUMERICAL RESULTS

In this section we exhibit numerical results showing the
behavior of some methods in the new family for some
arbitrary chosen equations.

All results have been carried out in MATLAB R2015b and
the stopping criterion has been taken as |xn+1−xn| ≤ 10−15

and |f(xn)| ≤ 10−15. We give the number of iterations (N)
or/and the number of function evaluations (NOFE) required
to satisfy the stopping criterion, CU denotes that the method
converges to an undesired root, F denotes that the method
fails and D denotes divergence. The tests functions, used in
Table II, III and IV, and their roots α, are displayed in Table
I.

A. Numerical Comparison between some methods of new
family

Let us consider the function f13 defined in Table I. Tacking
x0 = 14, we have f(x0)f

′
(x0) > 0. Table II presents

a numerical comparison between some methods from the
proposed family (Bp) obtained for p = 1, 3, 4, 15 and 21.

We show, in Table II, that :
• All the sequences (B1, B3, B4, B15 and B21) defined

by (9) is decreasing and converges to the solution α = 6
of equation f(x) = 0 in I;

• By increasing parameter p, the convergence speed of the
methods (Bp) increases and their number of iterations
decreases;

Table I: Test functions and their roots.

Test functions Root (α)

f1(x) = x2 − 5x+ 6
2.000000000000000
3.000000000000000

f2(x) = (sinx)2 − x2 + 1 1.404491648215341

f3(x) = x3 − 5x2 + 10x+ 12 -0,814380855386419

f4(x) = (x− 3)ex + 1 2,947530902542285

f5(x) = x lnx 1.000000000000000

f6(x) = (x− 1)3 − 1 2.000000000000000

f7(x) = cosx− x 0,7390851332151607

f8(x) =
1
2
x3 + 3

4
x2 − 3x− 1 1,570796326794897

f9(x) = (sinx)2 −
√
3 sinx -3,141592653589793

f10(x) = x3 + 4x2 − 10 1,365230013414097

f11(x) =
2
3
x3 + 2x2 − x+ 1 -3,54288610445217

f12(x) =
2x2

x2+1
− ln(1 + x2) 1,98029130043221

f13(x) = x2 − 11x+ 30 6.000000000000000

• The convergence rate of Super Halley’s method (B1) is
lower than that of the other new methods which have
higher values of parameter p (B3, B4, B15 and B21).

B. Comparison with other third order methods

In Table III, we shall present numerical results obtained by
employing classical Newton’s method (N) defined by formula
(3), and some third order methods: Chebyshev’s method (C)
defined by (13) in [26], Sharma’s method (S1) defined by
equation (17) with α = 0.5 in [29], Chun’s method (CH)
defined by (23) with an = 1 in [25], Jiang-Han’s rational
method (JH) defined by (19) with parameter α = 1 in [30],
Sharma’s method (S2) defined by (20) with an = 1 in
[27], Hansen and Patrick’s method (HP) defined by (2.13)
in [25] and Halley’s method (H) defined in [14], [17], [18].
To represent the new Super Halley’s family (9), we choose
five formulas designated as B2, B5, B7, B11 and B19.

In Table III, all the methods converge cubically and require
three function evaluations per step. Consequently, they have
the same efficiency index E = 3

√
3. Thus, the comparison

can be made on the basis of the number of iterations (N).
We see that the five proposed methods B2, B5, B7, B11 and
B19 of the new family are better or similar to other used
third-order methods, as they converge often to the root much
faster and take lower number of iterations.

C. Comparison with higher order methods

In Table IV, we compared four methods of the proposed
family (B2, B7, B13 and B19), with some higher order
methods : (K) a sixth-order method denotes for Kou [39];
(F), a fifth-order method, denotes for Fang et al. (formula
(2) in [37]). (CA) a sixth-order method, denotes for Chun
and Ham (formulas (10), (11), (12) in [40]); (W) a fourth-
order iterative method, denotes of Wang and Zhang (formula
(19) with (γ = β = −0.6) in [38]. (T) a sixth-order method,
denotes for Fernandez-Torres and al. (formulas (14) and (15)
in [36]).

Table 4 shows the number of iterations (N) and the number
of function evaluations (NOFE) required to approximate the
root α. The efficiency and power of the new family is also
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Table II: Numerical comparison between some methods of the proposed family.

B1 B3 B4 B15 B21

14.0 14.0 14.0 14.0 14.0

7.401499276471242 7.047518717194924 6.921353177190888 6.316280960753437 6.199090390091074

6.09218540988839 6.021178939757613 6.009191392373784 6.00000000220852 6.0

6.000007898965875 6.000000000012418 6.0 6.0

6.0 6.0

Table III: Comparison with other third order methods.

N: Number of iterations

Test function x0 N C S1 CH JH S2 HP H B2 B5 B7 B11 B19

f1 -1,5 7 5 4 5 6 5 4 5 3 3 3 2 2

f1 5 7 5 4 5 5 5 4 4 3 3 2 2 2

f2 1 6 5 4 4 5 4 3 4 3 3 3 3 4

f3 0.1 6 5 4 5 5 5 3 4 4 4 3 3 3

f4 2.6 6 5 4 5 4 5 3 4 4 3 3 3 3

f5 0.63 5 5 4 4 4 4 3 4 3 3 3 3 3

f5 2.2 5 4 4 4 4 4 4 4 3 3 3 3 3

f6 1.65 6 5 4 4 5 4 3 4 3 3 3 4 4

f7 -0.1 5 4 4 4 4 4 3 4 3 3 3 3 3

f7 1,6 5 4 3 4 4 4 4 4 3 3 4 3 3

f8 1,93 5 4 4 4 4 4 4 4 3 3 3 3 3

f9 -3.5 5 4 4 4 4 4 3 3 3 3 3 3 3

f10 0.8 6 4 4 4 4 4 3 4 3 3 3 3 3

Table IV: Comparison with some higher order methods.

N: Number of iterations NOFE: Number of functions evaluations

Test function x0 K F CA W T B2 B7 B13 B19 K F CA W T B2 B7 B13 B19

f1 -1.5 3 4 3 d 3 3 3 2 2 12 16 12 D 12 9 9 6 6

f1 5 3 3 3 5 19 3 2 2 2 12 12 12 15 76 9 6 6 6

f2 1 3 3 3 4 5 3 3 3 3 12 12 12 12 20 9 9 9 9

f4 2.6 2 3 3 4 D 4 3 3 3 8 12 12 12 D 12 9 9 9

f4 1.6 2 3 3 4 D 3 3 3 3 8 12 12 12 D 9 9 9 9

f5 2.2 2 3 2 4 D 3 3 3 3 8 12 8 12 D 9 9 9 9

f6 1.65 2 3 3 4 4 3 3 4 4 8 12 12 12 16 9 9 12 12

f7 1.6 3 3 2 4 3 3 3 3 3 12 12 8 12 12 9 9 9 9

f9 -3.52 CU 3 3 3 3 3 3 3 3 CU 12 12 9 12 9 9 9 9

f10 2.3 2 3 3 4 5 3 3 3 3 8 12 12 12 20 9 9 9 9

f11 -4.4 2 3 3 3 5 3 3 3 3 8 12 12 9 20 9 9 9 9

f12 1.4 2 3 3 4 3 3 4 3 3 8 12 12 12 12 9 12 9 9

confirmed by Table 4 which shows that, for the considered
examples, our new four methods (B2, B7, B13 and B19)
require a smaller number of function evaluations than most of
the selected methods of higher order (fifth and sixth order).
However, these results lead us to ask a big question: how
can our methods, which are of order three, converge more
quickly than other methods of higher order? A very likely
answer is the good quality of our methods but there are also
other factors such as the choice of the initial point. Indeed,
we know that, to find the theoretical order of convergence of
a method, we suppose that the initial point x0 is sufficiently
close to the root of the function α. But, if x0 is too far

from α (and x0 in the basin of attraction of α), the order
of convergence changes particularly for the first iterations.
Thus, we calculate the computational order of convergence
(ρ) at the step n, given by :

ρ ∼=
ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)|

where xn−1, xn, are three consecutive iterations.
In article [32], we have shown that, in general, if we

choose an initial point x0 far from the root α, we find values
of computational order of convergence (ρ) almost equal to
the theoretical value (ρ ≈ d = 3) for the one-point methods,
of order 3, unlike the multi-points methods, of high order,
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which show values of ρ clearly lower than the theoretical
value. This leads us to suppose that, for a choice of the initial
point x0 far from α, the high order methods would start
the first iterations with a low speed; then, as the iterations
advances, they would progressively regain speed to reach
their maximum in the last iteration. Thus, the delay in the
first iterations could lead to a decrease in the average speed of
convergence, and consequently to an increase in the number
of iterations. This would explain why, in several cases, our
methods, which are of order 3, converge faster than other
methods of much higher order, contrary to predictions.

VI. CONCLUSION

In this paper, we have developed a new family of third-
order iterative methods for solving nonlinear equations with
simple roots. The proposed scheme regenerates Super Hal-
ley’s method and many new interesting methods. The orig-
inality of this family lies in the fact that these methods are
linked by a recurring formula depending on a natural integer
parameter p. Moreover, in case where certain hypotheses
are satisfied, the sequences converge more rapidly when the
value of parameter p increases. As parameter p can take
very large values, the convergence speed can be largely
improved with p. To test the new methods, several numerical
examples were presented. The performances of our methods
are compared with known methods of similar or higher order.
Numerical results have confirmed the efficiency and speed of
the techniques of the new family built in this article.
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